共查询到20条相似文献,搜索用时 12 毫秒
1.
A simple algorithm locates beta-strands in the amyloid fibril core of alpha-synuclein, Abeta, and tau using the amino acid sequence alone 总被引:1,自引:0,他引:1 下载免费PDF全文
Zibaee S Makin OS Goedert M Serpell LC 《Protein science : a publication of the Protein Society》2007,16(5):906-918
Fibrillar inclusions are a characteristic feature of the neuropathology found in the alpha-synucleinopathies such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Familial forms of alpha-synucleinopathies have also been linked with missense mutations or gene multiplications that result in higher protein expression levels. In order to form these fibrils, the protein, alpha-synuclein (alpha-syn), must undergo a process of self-assembly in which its native state is converted from a disordered conformer into a beta-sheet-dominated form. Here, we have developed a novel polypeptide property calculator to locate and quantify relative propensities for beta-strand structure in the sequence of alpha-syn. The output of the algorithm, in the form of a simple x-y plot, was found to correlate very well with the location of the beta-sheet core in alpha-syn fibrils. In particular, the plot features three peaks, the largest of which is completely absent for the nonfibrillogenic protein, beta-syn. We also report similar significant correlations for the Alzheimer's disease-related proteins, Abeta and tau. A substantial region of alpha-syn is capable [corrected] of converting from its disordered conformation into a long [corrected] alpha-helical protein. We have developed the aforementioned algorithm to locate and quantify the alpha-helical hydrophobic moment in the amino acid sequence of alpha-syn. As before, the output of the algorithm, in the form of a simple x-y plot, was found to correlate very well with the location of alpha-helical structure in membrane bilayer-associated alpha-syn. 相似文献
2.
The formation of fibrillar aggregates by beta-lactoglobulin in the presence of urea has been monitored by using thioflavin T fluorescence and transmission electron microscopy (TEM). Large quantities of aggregated protein were formed by incubating beta-lactoglobulin in 3-5 M urea at 37 degrees C and pH 7.0 for 10-30 days. The TEM images of the aggregates in 3-5 M urea show the presence of fibrils with diameters of 8-10 nm, and increases in thioflavin T fluorescence are indicative of the formation of amyloid structures. The kinetics of spontaneous fibrillogenesis detected by thioflavin T fluorescence show sigmoidal behavior involving a clear lag phase. Moreover, addition of preformed fibrils into protein solutions containing urea shows that fibril formation can be accelerated by seeding processes that remove the lag phase. Both of these findings are indicative of nucleation-dependent fibril formation. The urea concentration where fibril formation is most rapid, both for seeded and unseeded solutions, is approximately 5.0 M, close to the concentration of urea corresponding to the midpoint of unfolding (5.3 M). This result indicates that efficient fibril formation involves a balance between the requirement of a significant population of unfolded or partially unfolded molecules and the need to avoid conditions that strongly destabilize intermolecular interactions. 相似文献
3.
Kihara D 《Protein science : a publication of the Protein Society》2005,14(8):1955-1963
The influence of long-range residue interactions on defining secondary structure in a protein has long been discussed and is often cited as the current limitation to accurate secondary structure prediction. There are several experimental examples where a local sequence alone is not sufficient to determine its secondary structure, but a comprehensive survey on a large data set has not yet been done. Interestingly, some earlier studies denied the negative effect of long-range interactions on secondary structure prediction accuracy. Here, we have introduced the residue contact order (RCO), which directly indicates the separation of contacting residues in terms of the position in the sequence, and examined the relationship between the RCO and the prediction accuracy. A large data set of 2777 nonhomologous proteins was used in our analysis. Unlike previous studies, we do find that prediction accuracy drops as residues have contacts with more distant residues. Moreover, this negative correlation between the RCO and the prediction accuracy was found not only for beta-strands, but also for alpha-helices. The prediction accuracy of beta-strands is lower if residues have a high RCO or a low RCO, which corresponds to the situation that a beta-sheet is formed by beta-strands from different chains in a protein complex. The reason why the current study draws the opposite conclusion from the previous studies is examined. The implication for protein folding is also discussed. 相似文献
4.
The recently published microcrystal structures of amyloid fibrils from small peptides greatly enhanced our understanding of the atomic-level structure of the amyloid fibril. However, only a few amyloid fibrils can form microcrystals. The dansyl-tryptophan fluorescence resonance energy transfer (FRET) pair was shown to be able to detect the inter-peptide arrangement of the Transthyretin (105-115) amyloid fibril. In this study, we combined the known microcrystal structures with the corresponding FRET efficiencies to build a model for amyloid fibril structure classification. We found that fibrils with an antiparallel structural arrangement gave the largest FRET signal, those with a parallel arrangement gave the lowest FRET signal, and those with a mixed arrangement gave a moderate FRET signal. This confirms that the amyloid fibril structure patterns can be classified based on the FRET efficiency. 相似文献
5.
Kleiger G Panina EM Mallick P Eisenberg D 《Protein science : a publication of the Protein Society》2004,13(1):221-229
The identification of the enzymes involved in the metabolism of simple and complex carbohydrates presents one bioinformatic challenge in the post-genomic era. Here, we present the PFIT and PFRIT algorithms for identifying those proteins adopting the alpha/beta barrel fold that function as glycosidases. These algorithms are based on the observation that proteins adopting the alpha/beta barrel fold share positions in their tertiary structures having equivalent sets of atomic interactions. These are conserved tertiary interaction positions, which have been implicated in both structure and function. Glycosidases adopting the alpha/beta barrel fold share more conserved tertiary interactions than alpha/beta barrel proteins having other functions. The enrichment pattern of conserved tertiary interactions in the glycosidases is the information that PFIT and PFRIT use to predict whether any given alpha/beta barrel will function as a glycosidase or not. Using as a test set a database of 19 glycosidase and 45 nonglycosidase alpha/beta barrel proteins with low sequence similarity, PFIT and PFRIT can correctly predict glycosidase function for 84% of the proteins known to function as glycosidases. PFIT and PFRIT incorrectly predict glycosidase function for 25% of the nonglycosidases. The program PSI-BLAST can also correctly identify 84% of the 19 glycosidases, however, it incorrectly predicts glycosidase function for 50% of the nonglycosidases (twofold greater than PFIT and PFRIT). Overall, we demonstrate that the structure-based PFIT and PFRIT algorithms are both more selective and sensitive for predicting glycosidase function than the sequence-based PSI-BLAST algorithm. 相似文献
6.
Self-assembly of proteins and peptides into amyloid structures has been the subject of intense and focused research due to their association with neurodegenerative, age-related human diseases and transmissible prion diseases in humans and mammals. Of the disease associated amyloid assemblies, a diverse array of species, ranging from small oligomeric assembly intermediates to fibrillar structures, have been shown to have toxic potential. Equally, a range of species formed by the same disease associated amyloid sequences have been found to be relatively benign under comparable monomer equivalent concentrations and conditions. In recent years, an increasing number of functional amyloid systems have also been found. These developments show that not all amyloid structures are generically toxic to cells. Given these observations, it is important to understand why amyloid structures may encode such varied toxic potential despite sharing a common core molecular architecture. Here, we discuss possible links between different aspects of amyloidogenic structures and assembly mechanisms with their varied functional effects. We propose testable hypotheses for the relationship between amyloid structure and its toxic potential in the context of recent reports on amyloid sequence, structure, and toxicity relationships. 相似文献
7.
Yoshihiro Kuroda Yoshitaka Maeda Hirofumi Hanaoka Kazuhide Miyamoto Terumichi Nakagawa 《Journal of peptide science》2004,10(1):8-17
The effects of oligopeptides on the secondary structures of Abeta and NAC, a fragment of alpha-synuclein protein, were studied by circular dichroism (CD) spectra. The effects of oligopeptides on the amyloid fibril formation were also studied by fluorescence spectra due to thioflavine-T. The oligopeptides were composed of a fragment of Abeta or NAC and were interposed by acidic or basic amino acid residues. The peptide, Ac-ELVFFAKK-NH2, which involved a fragment Leu-Val-Phe-Phe-Ala at Abeta(17-21), had no effect on the secondary structures of Abeta(1-28) in 60% or 90% trifluoroethanol (TFE) solutions at both pH 3.2 and pH 7.2. However, it showed pronounced effects on the secondary structure of Abeta(1-28) at pH 5.4. The Ac-ELVFFAKK-NH2 reduced the alpha-helical content, while it increased the beta-sheet content of Abeta(1-28). In phosphate buffer solutions at pH 7.0, Ac-ELVFFAKK-NH2 had little effect on the secondary structures of Abeta(1-28). However, it accelerated amyloid fibril formation when monitored by fluorescence spectra due to thioflavine-T. On the other hand, LPFFD, a peptide known as a beta-sheet breaker, caused neither an appreciable extent of change in the secondary structure nor amyloid fibril formation in the same buffer solution. The peptide, Ac-ETVK-NH2, which involved a fragment Thr-Val at NAC(21-22), had no effect on the secondary structure of NAC in 90% TFE and in isotonic phosphate buffer. However, Ac-ETVK-NH2 in water with small amounts of NaN3 and hexafluoroisopropanol greatly increased the beta-sheet content of NAC after standing the solution for more than 1 week. Interestingly, in this solution. Ac-ETVK-NH2, accelerated the fibril formation of NAC. It was concluded that an oligopeptide that involves a fragment of amyloidogenic proteins could be a trigger for the formation of amyloid plaques of the proteins even when it had little effect on the secondary structures of the proteins as monitored by CD spectra for a short incubation time. 相似文献
8.
The roles of turn formation and cross-strand interactions in fibrillization of peptides derived from the OspA single-layer beta-sheet 下载免费PDF全文
Ohnishi S Koide A Koide S 《Protein science : a publication of the Protein Society》2001,10(10):2083-2092
We previously demonstrated that a beta-hairpin peptide, termed BH(9-10), derived from a single-layer beta-sheet of Borrelia OspA protein, formed a native-like beta-turn in trifluoroethanol (TFE) solution, and it assembled into amyloid-like fibrils at higher TFE concentrations. This peptide is highly charged, and fibrillization of such a hydrophilic peptide is quite unusual. In this study, we designed a circularly permutated peptide of BH(9-10), termed BH(10-9). When folded into their respective beta-hairpin structures found in OspA, these peptides would have identical cross-strand interactions but different turns connecting the strands. NMR study revealed that BH(10-9) had little propensity to form a turn structure both in aqueous and TFE solutions. At higher TFE concentration, BH(10-9) precipitated with a concomitant alpha-to-beta conformational conversion, in a similar manner to the BH(9-10) fibrillization. However, the BH(10-9) precipitates were nonfibrillar aggregation. The precipitation kinetics of BH(10-9) was exponential, consistent with a first-order molecular assembly reaction, while the fibrillization of BH(9-10) showed sigmoidal kinetics, indicative of a two-step reaction consisting of nucleation and molecular assembly. The correlation between native-like turn formation and fibrillization of our peptide system strongly suggests that BH(9-10) adopts a native-like beta-hairpin conformation in the fibrils. Remarkably, seeding with the preformed BH(10-9) precipitates changed the two-step BH(9-10) fibrillization to a one-step molecular assembly reaction, and disrupted the BH(9-10) fibril structure, indicating interactions between the BH(10-9) aggregates and the BH(9-10) peptide. Our results suggest that, in these peptides, cross-strand interactions are the driving force for molecular assembly, and turn formation limits modes of peptide assembly. 相似文献
9.
He MM Wood ZA Baase WA Xiao H Matthews BW 《Protein science : a publication of the Protein Society》2004,13(10):2716-2724
In general, alpha-helical conformations in proteins depend in large part on the amino acid residues within the helix and their proximal interactions. For example, an alanine residue has a high propensity to adopt an alpha-helical conformation, whereas that of a glycine residue is low. The sequence preferences for beta-sheet formation are less obvious. To identify the factors that influence beta-sheet conformation, a series of scanning polyalanine mutations were made within the strands and associated turns of the beta-sheet region in T4 lysozyme. For each construct the stability of the folded protein was reduced substantially, consistent with removal of native packing interactions. However, the crystal structures showed that each of the mutants retained the beta-sheet conformation. These results suggest that the structure of the beta-sheet region of T4 lysozyme is maintained to a substantial extent by tertiary interactions with the surrounding parts of the protein. Such tertiary interactions may be important in determining the structures of beta-sheets in general. 相似文献
10.
Masatomo So Yuto Kimura Keiichi Yamaguchi Toshihiko Sugiki Toshimichi Fujiwara Cesar Aguirre Kensuke Ikenaka Hideki Mochizuki Yasushi Kawata Yuji Goto 《Protein science : a publication of the Protein Society》2021,30(8):1701
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer''s and Parkinson''s diseases. Amyloid fibrils form above the solubility of amyloidogenic proteins or peptides upon breaking supersaturation, followed by a nucleation and elongation mechanism, which is similar to the crystallization of solutes. Many additives, including salts, detergents, and natural compounds, promote or inhibit amyloid formation. However, the underlying mechanisms of the opposing effects are unclear. We examined the effects of two polyphenols, that is, epigallocatechin gallate (EGCG) and kaempferol‐7─O─glycoside (KG), with high and low solubilities, respectively, on the amyloid formation of α‐synuclein (αSN). EGCG and KG inhibited and promoted amyloid formation of αSN, respectively, when monitored by thioflavin T (ThT) fluorescence or transmission electron microscopy (TEM). Nuclear magnetic resonance (NMR) analysis revealed that, although interactions of αSN with soluble EGCG increased the solubility of αSN, thus inhibiting amyloid formation, interactions of αSN with insoluble KG reduced the solubility of αSN, thereby promoting amyloid formation. Our study suggests that opposing effects of polyphenols on amyloid formation of proteins and peptides can be interpreted based on the solubility of polyphenols. 相似文献
11.
Sequence specificity, statistical potentials, and three-dimensional structure prediction with self-correcting distance geometry calculations of beta-sheet formation in proteins 总被引:3,自引:0,他引:3 下载免费PDF全文
A statistical analysis of a representative data set of 169 known protein structures was used to analyze the specificity of residue interactions between spatial neighboring strands in beta-sheets. Pairwise potentials were derived from the frequency of residue pairs in nearest contact, second nearest and third nearest contacts across neighboring beta-strands compared to the expected frequency of residue pairs in a random model. A pseudo-energy function based on these statistical pairwise potentials recognized native beta-sheets among possible alternative pairings. The native pairing was found within the three lowest energies in 73% of the cases in the training data set and in 63% of beta-sheets in a test data set of 67 proteins, which were not part of the training set. The energy function was also used to detect tripeptides, which occur frequently in beta-sheets of native proteins. The majority of native partners of tripeptides were distributed in a low energy range. Self-correcting distance geometry (SECODG) calculations using distance constraints sets derived from possible low energy pairing of beta-strands uniquely identified the native pairing of the beta-sheet in pancreatic trypsin inhibitor (BPTI). These results will be useful for predicting the structure of proteins from their amino acid sequence as well as for the design of proteins containing beta-sheets. 相似文献
12.
Keiichi Yamaguchi Kenshiro Hasuo Masatomo So Kensuke Ikenaka Hideki Mochizuki Yuji Goto 《The Journal of biological chemistry》2021,297(5)
Amyloid fibrils, crystal-like fibrillar aggregates of proteins associated with various amyloidoses, have the potential to propagate via a prion-like mechanism. Among known methodologies to dissolve preformed amyloid fibrils, acid treatment has been used with the expectation that the acids will degrade amyloid fibrils similar to acid inactivation of protein functions. Contrary to our expectation, treatment with strong acids, such as HCl or H2SO4, of β2-microglobulin (β2m) or insulin actually promoted amyloid fibril formation, proportionally to the concentration of acid used. A similar promotion was observed at pH 2.0 upon the addition of salts, such as NaCl or Na2SO4. Although trichloroacetic acid, another strong acid, promoted amyloid fibril formation of β2m, formic acid, a weak acid, did not, suggesting the dominant role of anions in promoting fibril formation of this protein. Comparison of the effects of acids and salts confirmed the critical role of anions, indicating that strong acids likely induce amyloid fibril formation via an anion-binding mechanism. The results suggest that although the addition of strong acids decreases pH, it is not useful for degrading amyloid fibrils, but rather induces or stabilizes amyloid fibrils via an anion-binding mechanism. 相似文献
13.
Patrick C.A. van der Wel 《朊病毒》2012,6(3):211-216
For several different proteins an apparent correlation has been observed between the propensity for dimerization by domain-swapping and the ability to aggregate into amyloid-like fibrils. Examples include the disease-related proteins β2-microglobulin and transthyretin. This has led to proposals that the amyloid-formation pathway may feature extensive domain swapping. One possible consequence of such an aggregation pathway is that the resulting fibrils would incorporate structural elements that resemble the domain-swapped forms of the protein and, thus, reflect certain native-like structures or domain-interactions. In magic angle spinning solid-state NMR-based and other structural studies of such amyloid fibrils, it appears that many of these proteins form fibrils that are not native-like. Several fibrils, instead, have an in-register, parallel conformation, which is a common amyloid structural motif and is seen, for instance, in various prion fibrils. Such a lack of native structure in the fibrils suggests that the apparent connection between domain-swapping ability and amyloid-formation may be more subtle or complex than may be presumed at first glance. 相似文献
14.
Santiveri CM Santoro J Rico M Jiménez MA 《Protein science : a publication of the Protein Society》2004,13(4):1134-1147
We have recently reported on the design of a 20-residue peptide able to form a significant population of a three-stranded up-and-down antiparallel beta-sheet in aqueous solution. To improve our beta-sheet model in terms of the folded population, we have modified the sequences of the two 2-residue turns by introducing the segment DPro-Gly, a sequence shown to lead to more rigid type II' beta-turns. The analysis of several NMR parameters, NOE data, as well as Deltadelta(CalphaH), DeltadeltaC(beta), and Deltadelta(Cbeta) values, demonstrates that the new peptide forms a beta-sheet structure in aqueous solution more stable than the original one, whereas the substitution of the DPro residues by LPro leads to a random coil peptide. This agrees with previous results on beta-hairpin-forming peptides showing the essential role of the turn sequence for beta-hairpin folding. The well-defined beta-sheet motif calculated for the new designed peptide (pair-wise RMSD for backbone atoms is 0.5 +/- 0.1 A) displays a high degree of twist. This twist likely contributes to stability, as a more hydrophobic surface is buried in the twisted beta-sheet than in a flatter one. The twist observed in the up-and-down antiparallel beta-sheet motifs of most proteins is less pronounced than in our designed peptide, except for the WW domains. The additional hydrophobic surface burial provided by beta-sheet twisting relative to a "flat" beta-sheet is probably more important for structure stability in peptides and small proteins like the WW domains than in larger proteins for which there exists a significant contribution to stability arising from their extensive hydrophobic cores. 相似文献
15.
Kim JR Muresan A Lee KY Murphy RM 《Protein science : a publication of the Protein Society》2004,13(11):2888-2898
Aggregation of beta-amyloid (Abeta) into fibrillar deposits is widely believed to initiate a cascade of adverse biological responses associated with Alzheimer's disease. Although it was once assumed that the mature fibril was the toxic form of Abeta, recent evidence supports the hypothesis that Abeta oligomers, intermediates in the fibrillogenic pathway, are the dominant toxic species. In this work we used urea to reduce the driving force for Abeta aggregation, in an effort to isolate stable intermediate species. The effect of urea on secondary structure, size distribution, aggregation kinetics, and aggregate morphology was examined. With increasing urea concentration, beta-sheet content and the fraction of aggregated peptide decreased, the average size of aggregates was reduced, and the morphology of aggregates changed from linear to a globular/linear mixture and then to globular. The data were analyzed using a previously published model of Abeta aggregation kinetics. The model and data were consistent with the hypothesis that the globular aggregates were intermediates in the amyloidogenesis pathway rather than alternatively aggregated species. Increasing the urea concentration from 0.4 M to 2 M decreased the rate of filament initiation the most; between 2 M and 4 M urea the largest change was in partitioning between the nonamyloid and amyloid pathways, and between 4 M and 6 M urea, the most significant change was a reduction in the rate of filament elongation. 相似文献
16.
Monti M Principe S Giorgetti S Mangione P Merlini G Clark A Bellotti V Amoresano A Pucci P 《Protein science : a publication of the Protein Society》2002,11(10):2362-2369
Amyloid fibrils of patients treated with regular hemodialysis essentially consists of beta2-microglobulin (beta2-m) and its truncated species DeltaN6beta2-m lacking six residues at the amino terminus. The truncated fragment has a more flexible three-dimensional structure and constitutes an excellent candidate for the analysis of a protein in the amyloidogenic conformation. The surface topology of synthetic fibrils obtained from intact beta2-m and truncated DeltaN6beta2-m was investigated by the limited proteolysis/mass spectrometry approach that appeared particularly suited to gain insights into the structure of beta2-m within the fibrillar polymer. The distribution of prefential proteolytic sites observed in both fibrils revealed that the central region of the protein, which had been easily cleaved in the full-length globular beta2-m, was fully protected in the fibrillar form. In addition, the amino- and carboxy-terminal regions of beta2-m became exposed to the solvent in the fibrils, whereas they were masked completely in the native protein. These data indicate that beta2-m molecules in the fibrils consist of an unaccessible core comprising residues 20-87 with the strands I and VIII being not constrained in the fibrillar polymer and exposed to the proteases. Moreover, proteolytic cleavages observed in vitro at Lys 6 and Lys 19 reproduce specific cleavages that have to occur in vivo to generate the truncated forms of beta2-m occurring in natural fibrils. On the basis of these data, a possible mechanism for fibril formation from native beta2-m is discussed and an explanation for the occurrence of truncated protein species in natural fibrils is given. 相似文献
17.
The solution structure of human beta2-microglobulin reveals the prodromes of its amyloid transition 下载免费PDF全文
Verdone G Corazza A Viglino P Pettirossi F Giorgetti S Mangione P Andreola A Stoppini M Bellotti V Esposito G 《Protein science : a publication of the Protein Society》2002,11(3):487-499
The solution structure of human beta2-microglobulin (beta2-m), the nonpolymorphic component of class I major histocompatibility complex (MHC-I), was determined by (1)H NMR spectroscopy and restrained modeling calculations. Compared to previous structural data obtained from the NMR secondary structure of the isolated protein and the crystal structure of MHC-I, in which the protein is associated to the heavy-chain component, several differences are observed. The most important rearrangements were observed for (1) strands V and VI (loss of the C-terminal and N-terminal end, respectively), (2) interstrand loop V-VI, and (3) strand I, including the N-terminal segment (displacement outward of the molecular core). These modifications can be considered as the prodromes of the amyloid transition. Solvation of the protected regions in MHC-I decreases the tertiary packing by breaking the contiguity of the surface hydrophobic patches at the interface with heavy chain and the nearby region at the surface charge cluster of the C-terminal segment. As a result, the molecule is placed in a state in which even minor charge and solvation changes in response to pH or ionic-strength variations can easily compromise the hydrophobic/hydrophilic balance and trigger the transition into a partially unfolded intermediate that starts with unpairing of strand I and leads to polymerization and precipitation into fibrils or amorphous aggregates. The same mechanism accounts for the partial unfolding and fiber formation subsequent to Cu(2+) binding, which is shown to occur primarily at His 31 and involve partially also His 13, the next available His residue along the partial unfolding pathway. 相似文献
18.
On the nucleation of amyloid beta-protein monomer folding 总被引:1,自引:0,他引:1
Lazo ND Grant MA Condron MC Rigby AC Teplow DB 《Protein science : a publication of the Protein Society》2005,14(6):1581-1596
Neurotoxic assemblies of the amyloid beta-protein (Abeta) have been linked strongly to the pathogenesis of Alzheimer's disease (AD). Here, we sought to monitor the earliest step in Abeta assembly, the creation of a folding nucleus, from which oligomeric and fibrillar assemblies emanate. To do so, limited proteolysis/mass spectrometry was used to identify protease-resistant segments within monomeric Abeta(1-40) and Abeta(1-42). The results revealed a 10-residue, protease-resistant segment, Ala21-Ala30, in both peptides. Remarkably, the homologous decapeptide, Abeta(21-30), displayed identical protease resistance, making it amenable to detailed structural study using solution-state NMR. Structure calculations revealed a turn formed by residues Val24-Lys28. Three factors contribute to the stability of the turn, the intrinsic propensities of the Val-Gly-Ser-Asn and Gly-Ser-Asn-Lys sequences to form a beta-turn, long-range Coulombic interactions between Lys28 and either Glu22 or Asp23, and hydrophobic interaction between the isopropyl and butyl side chains of Val24 and Lys28, respectively. We postulate that turn formation within the Val24-Lys28 region of Abeta nucleates the intramolecular folding of Abeta monomer, and from this step, subsequent assembly proceeds. This model provides a mechanistic basis for the pathologic effects of amino acid substitutions at Glu22 and Asp23 that are linked to familial forms of AD or cerebral amyloid angiopathy. Our studies also revealed that common C-terminal peptide segments within Abeta(1-40) and Abeta(1-42) have distinct structures, an observation of relevance for understanding the strong disease association of increased Abeta(1-42) production. Our results suggest that therapeutic approaches targeting the Val24-Lys28 turn or the Abeta(1-42)-specific C-terminal fold may hold promise. 相似文献
19.
Antwi K Mahar M Srikanth R Olbris MR Tyson JF Vachet RW 《Protein science : a publication of the Protein Society》2008,17(4):748-759
beta-2-Microglobulin (beta2m) is deposited as amyloid fibrils in the bones and joints of patients undergoing long-term dialysis treatment as a result of kidney failure. Previous work has shown that biologically relevant amounts of Cu(II) can cause beta2m to be converted to amyloid fibrils under physiological conditions in vitro. In this work, dynamic light scattering, mass spectrometry, and size-exclusion chromatography are used to characterize the role that Cu plays in the formation of oligomeric intermediates that precede fibril formation. Cu(II) is found to be necessary for the stability of the dimer and an initial form of the tetramer. The initially formed tetramer then undergoes a structural change to a state that no longer binds Cu(II) before progressing to a hexameric state. Based on these results, we propose that the lag phase associated with beta2m fibril formation is partially accounted for by the structural transition of the tetramer that results in Cu(II) loss. Consistent with this observation is the determination that the mature beta2m amyloid fibrils do not contain Cu. Thus, Cu(II) appears to play a catalytic role by enabling the organization of the necessary oligomeric intermediates that precede beta2m amyloid formation. 相似文献
20.
Jäger M Dendle M Fuller AA Kelly JW 《Protein science : a publication of the Protein Society》2007,16(10):2306-2313
Using the human Pin1 WW domain (hPin1 WW), we show that replacement of two nearest neighbor non-hydrogen-bonded residues on adjacent beta-strands with tryptophan (Trp) residues increases beta-sheet thermodynamic stability by 4.8 kJ mol(-1) at physiological temperature. One-dimensional NMR studies confirmed that introduction of the Trp-Trp pair does not globally perturb the structure of the triple-stranded beta-sheet, while circular dichroism studies suggest that the engineered cross-strand Trp-Trp pair adopts a side-chain conformation similar to that first reported for a designed "Trp-zipper" beta-hairpin peptide, wherein the indole side chains stack perpendicular to each other. Even though the mutated side chains in wild-type hPin1 WW are not conserved among WW domains and compose the beta-sheet surface opposite to that responsible for ligand binding, introduction of the cross-strand Trp-Trp pair effectively eliminates hPin1 WW function as assessed by the loss of binding affinity toward a natural peptide ligand. Maximizing both thermodynamic stability and the domain function of hPin1 WW by the above mentioned approach appears to be difficult, analogous to the situation with loop 1 optimization explored previously. That introduction of a non-hydrogen-bonded cross-strand Trp-Trp pair within the hPin1 WW domain eliminates function may provide a rationale for why this energetically favorable pairwise interaction has not yet been identified in WW domains or any other biologically evolved protein with known three-dimensional structure. 相似文献