首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
以马铃薯晚疫病水平抗性品种LBr-12和感病品种费乌瑞它为材料,采用普通光学和电子显微镜技术,系统研究了马铃薯与晚疫病菌(致病疫霉)互作的组织细胞学反应特征。观察结果显示:(1)接种后,水平抗性材料LBr-12出现过敏反应,病菌被限制在侵染点的几个细胞中,菌丝产生较少的分支和吸器。(2)感病品种费乌瑞它被侵染细胞呈蔓延趋势,菌丝产生较多的分支和吸器。(3)电镜观察发现,抗病品种上病菌的胞间菌丝、吸器母细胞、吸器在细胞和亚细胞水平均发生了一系列异常变化,包括原生质的电子致密度加深、液泡增多变大、菌丝细胞壁不规则增厚、细胞器排列紊乱及解体、吸器母细胞及吸器形态异常、病菌最终畸形坏死,同时发现抗病品种受病菌侵染时可迅速产生结构防卫反应,形成的细胞壁沉积物使胞壁极度增厚或细胞膜上产生乳突状结构。  相似文献   

4.
Cellulose, the important structural compound of cell walls, provides strength and rigidity to cells of numerous organisms. Here, we functionally characterize four cellulose synthase genes (CesA) in the oomycete plant pathogen Phytophthora infestans, the causal agent of potato (Solanum tuberosum) late blight. Three members of this new protein family contain Pleckstrin homology domains and form a distinct phylogenetic group most closely related to the cellulose synthases of cyanobacteria. Expression of all four genes is coordinately upregulated during pre- and early infection stages of potato. Inhibition of cellulose synthesis by 2,6-dichlorobenzonitrile leads to a dramatic reduction in the number of normal germ tubes with appressoria, severe disruption of the cell wall in the preinfection structures, and a complete loss of pathogenicity. Silencing of the entire gene family in P. infestans with RNA interference leads to a similar disruption of the cell wall surrounding appressoria and an inability to form typical functional appressoria. In addition, the cellulose content of the cell walls of the silenced lines is >50% lower than in the walls of the nonsilenced lines. Our data demonstrate that the isolated genes are involved in cellulose biosynthesis and that cellulose synthesis is essential for infection by P. infestans.  相似文献   

5.
Biotrophic plant pathogenic fungi are one of the major causes of crop losses. The infection processes they exhibit are typified by infected host plant cells remaining alive for several days. This requires the development of specialized infection structures such as haustoria which are produced by obligate biotrophs, and intracellular hyphae which are produced by many hemibiotrophs. These infection hyphae are surrounded by the host plant plasma membrane, and in the case of haustoria the extrahaustorial membrane differs biochemically and structurally from the normal membrane. An interfacial matrix separates haustoria and intracellular hyphae from the invaginated membrane and this seems to be characteristic of biotrophic interactions. There is clear evidence for molecular differentiation of the haustorial plasma membrane in powdery mildews and rusts in comparison with the other fungal membranes. Relatively few pathogenicity genes related to biotrophy, and the switch from biotrophy to necrotrophy in hemibiotrophs, have been identified.  相似文献   

6.
Walls of uredospores, infection structures, intercellular hyphae and haustoria of the soybean rust fungus (Phakopsora pachyrhizi) were studied by electron microscopy using gold-labeled wheat germ lectin (WGL) and Concanavalin A (ConA) as cytochemical probes. Receptors for WGL (probably chitin) were detected in all fungal walls included in this study. WGL-binding occurred throughout the entire walls (uredospores, appressorial cone, penetration hyphae, haustorial mother cells) or only to the inner wall layers (germ tubes, appressoria, intercellular hyphae).  相似文献   

7.
8.
9.
Summary In the powdery mildew disease of barley,Erysiphe graminis f. sp.hordei forms an intimate relationship with compatible hosts, in which haustoria form in epidermal cells with no obvious detrimental effects on the host until late in the infection sequence. In incompatible interactions, by contrast, the deposition of papillae and localized host cell death have been correlated with the cessation of growth byE. g. hordei. With the advent of improved, low temperature methods of sample preparation, we felt that it was useful to reevaluate the structural details of interactions between barley andE. g. hordei by transmission electron microscopy. The haustoria that develop in susceptible barley lines appear highly metabolically active based on the occurrrence of abundant endoplasmic reticulum, Golgi-like cisternae, and vesicles. In comparison, haustoria found in the resistant barley line exhibited varying signs of degradation. A striking clearing of the matrix and loss of cristae were typical early changes in the haustorial mitochondria in incompatible interactions. The absence of distinct endoplasmic reticulum and Golgi-like cisternae, the formation of vacuoles, and the occurrence of a distended sheath were characteristic of intermediate stages of haustorial degeneration. At more advanced stages of degeneration, haustoria were dominated by large vacuoles containing membrane fragments. This process of degeneration was not observed in haustoria ofE. g. hordei developing in the susceptible barley line.Abbreviations b endoplasmic reticulum extension, blebbing - er endoplasmic reticulum - f fibrillar material - g Golgi-like structure - h haustorium - hb haustorial body - hcw haustorial cell wall - hcy haustorial cytoplasm - hf haustorial finger - hocw host cell wall - hocy host cytoplasm - 1 lipid-like droplet - m mitochondrion - mt microtubule - mve multivesicular body - n nucleus - p papilla - ph penetration site of an infection peg - pl plasma membrane - s sheath - sm extrahaustorial membrane - v vacuole - ve vesicle  相似文献   

10.
Monoclonal antibodies have been raised against haustorial complexes isolated from pea (Pisum sativum L.) leaves infected by the biotrophic powdery mildew fungus Erysiphe pisi D.C. Immuno-localisation studies, using isolated haustorial complexes and infected pea leaf material, have shown that one of the antibodies, designated UB7, binds to fungal wall and plasma membranes present in both haustoria and mycelia. However, a second antibody, UB8, binds specifically to the haustorial plasma membrane, and does not label fungal plasma membranes in mycelia. Western blotting and antigen-modification techniques have shown that UB8 recognises a protein epitope of a 62-kDa antigen. A reduction in molecular weight of this component after endo-F treatment indicates that the antigen is an N-linked glycoprotein. UB7 also recognises a 62-kDa glycoprotein, which is susceptible to endo-F treatment, and the antibody binds to a carbohydrate epitope. Differences in molecular weights of the products after endo-F treatment of antigens show that the 62-kDa glycoproteins recognised by the antibodies are distinct molecules, in accordance with the localisation results. Overall, the results provide evidence for molecular differentiation associated with the development of haustoria in a biotrophic infection.Abbreviations ehm extrahaustorial membrane - ELISA enzyme-linked immunosorbent assay - HC haustorial complex - hpm haustorial plasma membrane - IIF indirect immunofluorescence - MAb monoclonal antibody - Mr apparent molecular weight - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis We thank Mr. D. Mills and Mr. P. Stanley for help with the EM immunogold techniques. This work was supported by an Agricultural and Food Research Council grant and a studentship from the Science and Engineering Research Council.  相似文献   

11.
12.
Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.  相似文献   

13.
S. Freytag  K. Mendgen 《Protoplasma》1991,161(2-3):94-103
Summary Uredospores ofUromyces viciae-fabae differentiate to form germ tubes, appressoria, infection hyphae and haustorial mother cells on oil-containing collodion membranes. The cell walls of these infection structures were studied with the electron microscope and with FITC-labeled lectins before and after treatment with enzymes and inorganic solvents. Binding of the FITC-labeled lectins was measured with a microscope photometer. The enzymes pronase E, laminarinase, chitinase and lipase had different effects on each infection structure. Pronase treatment uncovered the chitin of germ tubes, appressoria and haustorial mother cells, but not of substomatal vesicles and infection hyphae. A mixture of - and -1,3-glucanase which also contained chitinase activity dissolved germ tubes and appressoria completely, but not infection pegs, substomatal vesicles, infection hyphae and haustorial mother cells. After treatment with laminarinase or lipase, an additional layer, which is especially obvious over the substomatal vesicle, infection hypha and haustorial mother cell, bound to LCA-FITC. In the wall of the haustorial mother cell, a ring, which surrounds the presumed infection peg, had strong affinity for WGA after protease and sodium hydroxide treatment. The infection structures have a fibrillar skeleton. The main constituent seems to be chitin. This skeleton is more dense or has a higher chitin content in the walls of appressoria and haustorial mother cells. The fibrils of the skeleton extend throughout the cell wall of the germ tube and appressorium. They are embedded within amorphous material of complex chemical composition (-1,3-glucan, -1,3-glucan, glycoprotein). The chitin of the infection peg, substomatal vesicle, infection hypha and haustorial mother cell is covered completely with this amorphous material. These results show, that each infection structure has distinct surface and wall characteristics. They may reflect the different tasks of the infection structures during host recognition and leaf penetration.Abbreviations AP appressorium - FITC fluorescein isothiocyanate - GT germ tube - HC haustorial mother cell - IH infection hypha - IP infection peg - LCA Lens culinaris agglutinin - n nucleus - neu neuramic acid - p pyranoside - R ring - s septum - SV substomatal vesicle - WGA wheat germ agglutinin  相似文献   

14.
The fine structure of the intercellular hyphae of the obligate parasite Albugo candida infecting radish does not differ markedly from that described previously for cells of Peronospora manshurica. The stalked, capitate haustoria do not contain nuclei and are packed with mitochondria and lomasomes. The fungal plasma membrane and cell wall are continuous from the intercellular hypha throughout the haustorium except that there is no evidence of fungal cell wall around a portion of the haustorial stalk proximal to the haustorial head. Within the vacuolate host mesophyll cell, the haustorium is always surrounded by host plasma membrane and with at least a thin layer of host cytoplasm. The host cell wall invaginates at the point of haustorial penetration to form a short sheath around the region of penetration, but normally there is no host cell wall around the balance of the haustorium. About 1% of the haustoria observed were necrotic, and these were invariably walled-off completely from host cytoplasm by host cell wall. An amorphous, moderately electron-dense encapsulation lies between the haustorium proper and the host plasma membrane and extends into the penetration region between the sheath and the fungal cell wall. Invaded host cells contain more ribosomal-rich ground cytoplasm than uninfected cells. Glandular-like systems of tubules and connecting vesicles are often numerous in host cytoplasm in the vicinity of haustorial heads. These tubules open into the encapsulation, their limiting unit membranes being continuous with the host plasma membrane. We suggest that these represent a secretory mechanism of the host specifically induced by the parasite.  相似文献   

15.
Powdery mildew fungi are biotrophic pathogens that require living plant cells for their growth and reproduction. Elaboration of a specialized cell called a haustorium is essential for their pathogenesis, providing a portal into host cells for nutrient uptake and delivery of virulence effectors. Haustoria are enveloped by a modified plant plasma membrane, the extrahaustorial membrane (EHM), and an extrahaustorial matrix (EHMx), across which molecular exchange must occur, but the origin and composition of this interfacial zone remains obscure. Here we present a method for isolating Golovinomyces orontii haustoria from Arabidopsis leaves and an ultrastructural characterization of the haustorial interface. Haustoria were progressively encased by deposits of plant cell wall polymers, delivered by secretory vesicles and multivesicular bodies (MVBs) that ultimately become entrapped within the encasement. The EHM and EHMx were not labelled by antibodies recognizing eight plant cell wall and plasma membrane antigens. However, plant resistance protein RPW8.2 was specifically recruited to the EHMs of mature haustoria. Fungal cell wall-associated molecular patterns such as chitin and β-1,3-glucans were exposed at the surface of haustoria. Fungal MVBs were abundant in haustoria and putative exosome vesicles were detected in the paramural space and EHMx, suggesting the existence of an exosome-mediated secretion pathway.  相似文献   

16.
17.
Plants resist attack by haustorium-forming biotrophic and hemi-biotrophic fungi through fortification of the cell wall to prevent penetration through the wall and the subsequent establishment of haustorial feeding structures by the fungus. While the existence of cell wall-based defences has been known for many years, only recently have the molecular components contributing to such defences been identified. Forward genetic screens identified Arabidopsis mutants impaired in penetration resistance to powdery mildew fungi that were normally halted at the cell wall. Several loci contributing to penetration resistance have been identified and a common feature is the striking focal accumulation of proteins associated with penetration resistance at sites of interaction with fungal appressoria and penetration pegs. The focal accumulation of defence-related proteins and the deposition of cell wall reinforcements at sites of attempted fungal penetration represent an example of cell polarization and raise many questions of relevance, not only to plant pathology but also to general cell biology.  相似文献   

18.
19.
Nutrients for a rust fungus: the role of haustoria.   总被引:1,自引:0,他引:1  
Haustoria are specialized organs that are formed within the living cell of a host by biotrophic fungal pathogens. It had been speculated that fungi obtain nutrients via the haustorium, but the actual function of haustoria was unclear. Now, sugars have been shown to pass into the haustorium from the host via a sugar transporter, a hexose-proton symport located exclusively in the haustorial plasma membrane.  相似文献   

20.
Ebstrup T  Saalbach G  Egsgaard H 《Proteomics》2005,5(11):2839-2848
A proteomics study using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed on Phytophthora infestans. Proteins from cysts, germinated cysts and appressoria grown in vitro were isolated and separated by 2-DE. Statistical quantitative analysis of the protein spots from five independent experiments of each developmental stage revealed significant up-regulation of ten spots on gels from germinated cysts compared to cysts. Five spots were significantly up-regulated on gels from appressoria compared to germinated cysts and one of these up-regulated spots was not detectable on gels from cysts. In addition, one spot was significantly down-regulated and another spot not detectable on the gels from appressoria. The corresponding proteins to 13 of these spots were identified with high confidence using tandem mass spectrometry and database searches. The functions of the proteins that were up-regulated in germinated cysts and appressoria can be grouped into the following categories: protein synthesis (e.g. a DEAD box RNA helicase), amino acid metabolism, energy metabolism and reactive oxygen species scavenging. The spot not detected in appressoria was identified as the P. infestans crinkling- and necrosis-inducing protein CRN2. The identified proteins are most likely involved in the establishment of the infection of the host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号