首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test the hypothesis that during the course of a multiple-breath N2 washout (MBNW) diffusion-dependent ventilation maldistribution is more apparent in the early breaths, whereas convection-dependent maldistribution predominates in the later breaths, we performed MBNW with 0-, 1-, and 4-s end-inspiratory breath holds (BH0, BH1, BH4, respectively) in five normal subjects. Each subject breathed with a constant tidal volume of 1 liter, at 10-12 breaths/min and at constant flow rates. For each breath we computed the slope of the alveolar plateau normalized by the mean expired N2 concentration (Sn), the Bohr dead space (VDB), and an index analogous to the Fowler dead space (V50). In all five subjects, Sn, VDB, and V50 decreased with breath holding, indicating diffusion dependence of these indexes. Over the first five breaths the rate of increase of Sn as a function of cumulative expired volume (delta Sn/delta sigma VE) decreased by 29 and 54% during BH1 and BH4, respectively, compared with BH0. In contrast, from breath 5 to the end of the washout there was no significant change in delta Sn/delta sigma VE during BH1 and BH4 compared with BH0. Our results provide further experimental support for the hypothesis that the increase of Sn as a function of cumulative expired volume after the fifth breath constitutes a diffusion-independent index of ventilation inhomogeneity. It therefore reflects alveolar gas inequalities among larger units.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
To investigate airflow regulation in newborn infants, we recorded airflow, volume, diaphragm (Di), and laryngeal electromyogram (EMG) during spontaneous breathing in eight supine unsedated sleeping full-term neonates. Using an esophageal catheter electrode, we recorded phasic respiratory activity consistent with that of the principal laryngeal abductors, the posterior cricoarytenoids (PCA). Sequential activation of PCA and Di preceded inspiration. PCA activity typically peaked early in inspiration followed by either a decrescendo or tonic EMG activity of variable amplitude during expiration. Expiratory airflow retardation, or braking, accompanied by expiratory prolongation and reduced ventilation, was commonly observed. In some subjects we observed a time interval between PCA onset and a sudden increase in expiratory airflow just before inspiration, suggesting that release of the brake involved an abrupt loss of antagonistic adductor activity. Our findings suggest that airflow in newborn infants is controlled throughout the breathing cycle by the coordinated action of the Di and the reciprocal action of PCA and laryngeal adductor activities. We conclude that braking mechanisms in infants interact with vagal reflex mechanisms that modulate respiratory cycle timing to influence both the dynamic maintenance of end-expiratory lung volume and ventilation.  相似文献   

3.
4.
Estimation of cardiac output by impedance cardiography (QZ) in exercise during normal breathing (NB) has been limited by motion artifact. Our objective was to obtain readable impedance cardiograms on five subjects during upright cycle exercise at 0, 50, 100, 150, and 200 W to permit comparisons of QZ during NB, expiratory breath hold (EXP) and inspiratory breath hold (INSP). Q was also determined using an equilibration CO2 rebreathing method [Q(RB)]. QZ during NB exceeded EXP QZ at 100, 150, and 200 W, and exceeded INSP QZ at 100 W (P less than 0.05). The low EXP QZ values were due to a significantly lower stroke volume at 100, 150, and 200 W (P less than 0.05). For the INSP QZ at 100 W, heart rate was lower than during EXP (P less than 0.05). Regression of QZ (NB) against Q(RB) resulted in a linear relationship (r = 0.93) over the range of Q = 7-26 1/min. The slope of the regression differed significantly from 1.0 (P less than 0.05). We conclude that QZ values obtained during EXP or INSP should not be assumed to represent QZ during NB, at least at work rates greater than 50 W. A consequence of the linear relationship between QZ(NB) and Q(RB) over the range of 0-200 W is that estimates of CO2 rebreathing cardiac output can be obtained by impedance cardiography if QZ is adjusted using an appropriate empirical factor.  相似文献   

5.
6.
7.
8.
We investigated how breath holding increases the deposition of micrometer particles in pulmonary airways, compared with the deposition during inhalation period. A subject-specific airway model with up to thirteenth generation airways was constructed from multi-slice CT images. Airflow and particle transport were simulated by using GPU computing. Results indicate that breath holding effectively increases the deposition of 5μm particles for third to sixth generation (G3-G6) airways. After 10s of breath holding, the particle deposition fraction increased more than 5 times for 5μm particles. Due to a small terminal velocity, 1μm particles only showed a 50% increase in the most efficient case. On the other hand, 10μm particles showed almost complete deposition due to high inertia and high terminal velocity, leading to an increase of 2 times for G3-G6 airways. An effective breath holding time for 5μm particle deposition in G3-G6 airways was estimated to be 4-6s, for which the deposition amount reached 75% of the final deposition amount after 10s of breath holding.  相似文献   

9.
Exhaled nitric oxide (NO) may be a useful marker of lung inflammation, but the concentration is highly dependent on exhalation flow rate due to a significant airway source. Current methods for partitioning pulmonary NO gas exchange into airway and alveolar regions utilize multiple exhalation flow rates or a single-breath maneuver with a preexpiratory breath hold, which is cumbersome for children and individuals with compromised lung function. Analysis of tidal breathing data has the potential to overcome these limitations, while still identifying region-specific parameters. In six healthy adults, we utilized a three-compartment model (two airway compartments and one alveolar compartment) to identify two potential flow-independent parameters that represent the average volumetric airway flux (pl/s) and the time-averaged alveolar concentration (parts/billion). Significant background noise and distortion of the signal from the sampling system were compensated for by using a Gaussian wavelet filter and a series of convolution integrals. Mean values for average volumetric airway flux and time-averaged alveolar concentration were 2,500 +/- 2,700 pl/s and 3.2 +/- 3.4 parts/billion, respectively, and were strongly correlated with analogous parameters determined from vital capacity breathing maneuvers. Analysis of multiple tidal breaths significantly reduced the standard error of the parameter estimates relative to the single-breath technique. Our initial assessment demonstrates the potential of utilizing tidal breathing for noninvasive characterization of pulmonary NO exchange dynamics.  相似文献   

10.
The basic principles governing trajectories of change in muscle length (henceforth referred to as "movement") were analyzed at varying rates of distributed afferent stimulation during experiments on the soleus and plantaris muscles in unanesthetized cats. The theoretical possibility of describing evoked movements within the context of a model having nonlinear hysteresis properties and dependence of dynamic parameters on direction of movement were demonstrated. A difference in static transitions between muscle contraction and lengthening was found and vice versa and retardation of movement at the start of lengthening reaction (induced by a reduced efferent stimulation rate) was more pronounced. Interaction was discovered between two disruptive influences: changes in the rate of efferent stimulation and external load, mainly due to hysteresis effects of muscle contraction. The trajectory of movement produced by alteration in one of the inputs at work (external load or afferent stimulation) is associated with the lead-up to the muscle motion, irrespective of the reason inducing the foregoing movement. Functional implications of the nonlinear dynamics of muscular contraction are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 4, pp. 443–450, July–August, 1989.  相似文献   

11.
12.
13.
14.
To examine the effect of cardiogenic gas mixing on gas exchange we measured arterial tension of O2 (PaO2) and arterial tension of CO2 (PaCO2) during 3- to 5-min breath holds (BH) before and after infusing 50 ml of saline into the pericardial space (PCF) of seven anesthetized, paralyzed, mechanically ventilated dogs. During BH the ventilator was disconnected and a bias flow of 50% O2 at 4-5 l/min was delivered through the side ports of a small catheter whose tip was positioned 1 cm cephalad of the carina. Paired runs, alternately with and without PCF, were performed in triplicate in each dog. Initial PaO2 was similar for control runs [81 +/- 3 mmHg (SE)] and PCF runs (78 +/- 3 mmHg; P greater than 0.1). After 3-min BH, PaO2 in PCF runs (33 +/- 3 mmHg) was less than that in control runs (58 +/- 4 mmHg) (P less than 0.001). In contrast, the pattern of PaCO2 during BH did not differ with PCF. After 3-min BH, PaCO2 was 49 +/- 3 mmHg with PCF and 49 +/- 2 mmHg in the control runs (P greater than 0.7). In two dogs, repeated 50-ml reductions in lung volume, produced by rib cage compression, did not alter the time course of PaO2 during BH. Although cardiac output decreased slightly with PCF, hemodynamic changes due to PCF were unlikely to account for the observed fall in PaO2. Our results indicate a substantial effect of cardiogenic gas mixing on O2 uptake when tracheal gas is O2 enriched during breath holding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have examined the relationship between respiratory effort sensation (modified Borg scale) and amplitude of the integrated surface electromyogram of the diaphragm (Edi, esophageal electrode), rib cage muscles (Erc), and sternomastoid muscle (Esm) during the development of diaphragm fatigue in five normal subjects. Three conditions were studied: run A: transdiaphragmatic pressure (Pdi), 65% Pdimax; esophageal pressure (Pes), 60% Pesmax; run B: Pdi, 50% Pdimax; Pes, 60% Pesmax; and run C: Pdi, 50% Pdimax; Pes, 20% Pesmax. During all runs there was a progressive rise in sensation, which was greater in runs A and B than in run C (P less than 0.05, analysis of variance). There was no difference between runs A and B. At the end of run C subjects did not report a maximal Borg score despite their inability to generate the target Pdi. The increase in sensory score with fatigue correlated highly with Esm/Esmmax and with Erc/Ercmax. There was no correlation between sensory score and Edi/Edimax. We conclude that the increase in respiratory effort sensation that accompanies diaphragm fatigue is not due to perception of increased diaphragmatic activation. It may reflect increased overall respiratory motor output not directed to the diaphragm.  相似文献   

16.
Creatine kinase(CK) provides ATP buffering in skeletal muscle and is expressed as1) cytosolic myofibrillar CK (M-CK)and 2) sarcomeric mitochondrial CK(ScCKmit) isoforms that differ in their subcellular localization. Wecompared the isometric contractile and fatigue properties of1) control CK-sufficient (Ctl),2) M-CK-deficient (M-CK[/]), and3) combined M-CK/ScCKmit-deficientnull mutant (CK[/]) diaphragm (Dia) todetermine the effect of the absence of M-CK activity on Dia performancein vitro. Baseline contractile properties were comparable across groupsexcept for specific force, which was ~16% lower inCK[/] Dia compared withM-CK[/] and Ctl Dia. During repetitiveactivation (40 Hz, duty cycle), force declined in all threegroups. This decline was significantly greater inCK[/] Dia compared with Ctl and M-CK[/] Dia. The pattern of forcedecline did not differ between M-CK[/] andCtl Dia. We conclude that Dia isometric muscle function is notabsolutely dependent on the presence of M-CK, whereas the completeabsence of CK acutely impairs isometric force generation duringrepetitive activation.

  相似文献   

17.
Nasal expiratory positive airway pressure (nEPAP) delivered with a disposable device (Provent, Ventus Medical) has been shown to improve sleep-disordered breathing (SDB) in some subjects. Possible mechanisms of action are 1) increased functional residual capacity (FRC), producing tracheal traction and reducing upper airway (UA) collapsibility, and 2) passive dilatation of the airway by the expiratory pressure, carrying over into inspiration. Using MRI, we estimated change in FRC and ventilation, as well as UA cross-sectional area (CSA), in awake patients breathing on and off the nEPAP device. Ten patients with SDB underwent nocturnal polysomnography and MRI with and without nEPAP. Simultaneous images of the lung and UA were obtained at 6 images/s. Image sequences were obtained during mouth and nose breathing with and without the nEPAP device. The nEPAP device produced an end-expiratory pressure of 4-17 cmH(2)O. End-tidal Pco(2) rose from 39.7 ± 5.3 to 47.1 ± 6.0 Torr (P < 0.01). Lung volume changes were estimated from sagittal MRI of the right lung. Changes in UA CSA were calculated from transverse MRI at the level of the pharynx above the epiglottis. FRC determined by MRI was well correlated to FRC determined by N(2) washout (r = 0.76, P = 0.03). nEPAP resulted in a consistent increase in FRC (46 ± 29%, P < 0.001) and decrease in ventilation (50 ± 15%, P < 0.001), with no change in respiratory frequency. UA CSA at end expiration showed a trend to increase. During wakefulness, nEPAP caused significant hyperinflation, consistent with an increase in tracheal traction and a decrease in UA collapsibility. Direct imaging effects on the UA were less consistent, but there was a trend to dilatation. Finally, we showed significant hypoventilation and rise in Pco(2) during use of the nEPAP device during wakefulness and sleep. Thus, at least three mechanisms of action have the potential to contribute to the therapeutic effect of nEPAP on SDB.  相似文献   

18.
30 young males performed inspiratory breath holdings during expectation of an aversive stimulus and at relative rest. The consecutive R-R intervals of the ECG from breath-hold trial were analysed via spectral analysis of time series. Following parameters were ascertained for each breath holding: mean R-R interval, total R-R interval variability, breath-hold time and relative variability in three spectral bands 3-8 s, 8-12 s and 12-18 s. Neither of these variables was influenced by expectation of an aversive stimulus. The data were subsequently analysed by means of multivariate analysis. Three distinct frequency components were selected according to both histogram data and multivariate analysis. Their modal periods were 5-6 s, 12 s and 16 s respectively. The 8-12 s component of R-R interval variability dominated during breath holdings. The 3-8 s band bore a negative relationship to breath-hold time.  相似文献   

19.
Breathing exercises (BE), incentive spirometry and positioning are considered treatment modalities to achieve lung re-expansion. This study evaluated the influence of incentive spirometry and forward leaning on inspired tidal volumes (VT) and electromyographic activity of inspiratory muscles during BE. Four modalities of exercises were investigated: deep breathing, spirometry using both flow and volume-oriented devices, and volume-oriented spirometry after modified verbal instruction. Twelve healthy subjects aged 22.7 ± 2.1 years were studied. Surface electromyography activity of diaphragm, external intercostals, sternocleidomastoid and scalenes was recorded. Comparisons among the three types of exercises, without considering spirometry after modified instruction, showed that electromyographic activity and VT were lower during volume-oriented spirometry (p = 0.000, p = 0.054, respectively). Forward leaning resulted in a lower VT when compared to upright sitting (p = 0.000), but electromyographic activity was not different (p = 0.606). Inspired VT and electromyographic activity were higher during volume-oriented spirometry performed after modified instruction when compared with the flow-oriented device (p = 0.027, p = 0.052, respectively). In conclusion BE using volume-oriented spirometry before modified instruction resulted in a lower work of breathing as a result of a lower VT and was not a consequence of the device type used. Forward leaning might not be assumed by healthy subjects during situations of augmented respiratory demand.  相似文献   

20.
Surface electromyography (EMG) can assess muscle recruitment patterns during cycling, but has limited applicability to studies of deep muscle recruitment and electrically stimulated contractions. We determined whether muscle recruitment timing could be inferred from MRI-measured transverse relaxation time constant (T(2)) changes and a cycle ergometer modified to vary power as a function of pedal angle. Six subjects performed 6 min of single-leg cycling under two conditions (E0°-230° and E90°-230°), which increased the power from 0°-230° and 90-230° of the pedal cycle, respectively. The difference condition produced a virtual power output from 0-180° (V0°-180°). Recruitment was assessed by integrating EMG over the pedal cycle (IEMG) and as the (post-pre) exercise T(2) change (ΔT(2)). For E0°-230°, the mean IEMG for vastus medialis and lateralis (VM/VL; 49.3 ± 3.9 mV·s; mean ± SE) was greater (P < 0.05) than that for E90°-230° (17.9 ± 1.9 mV·s); the corresponding ΔT(2) values were 8.7 ± 1.0 and 1.4 ± 0.5 ms (P < 0.05). For E0°-230° and E90°-230°, the IEMG values for biceps femoris/long head (BF(L)) were 37.7 ± 5.4 and 27.1 ± 5.6 mV·s (P > 0.05); the corresponding ΔT(2) values were 0.9 ± 0.9 and 1.5 ± 0.9 ms (P > 0.05). MRI data indicated activation of the semitendinosus and BF/short head for E0°-230° and E90°-230°. For V0°-180°, ΔT(2) was 7.2 ± 0.9 ms for VM/VL and -0.6 ± 0.6 ms for BF(L); IEMG was 31.5 ± 3.7 mV·s for VM/VL and 10.6 ± 7.0 mV·s for BF(L). MRI and EMG data indicate VM/VL activity from 0 to 180° and selected hamstring activity from 90 to 230°. Combining ΔT(2) measurements with variable loading allows the spatial and temporal patterns of recruitment during cycling to be inferred from MRI data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号