首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wen L  Chen SJ  Zhang W  Ma HW  Zhang SQ  Chen L 《Cytokine》2011,53(2):215-222
B cell activating factor belonging to the TNF family (BAFF, also called BLyS, TALL-1, THANK, or zTNF4) is an important survival factor for B cells, and is able to regulate T-cell activation. Recently, we have demonstrated that treatment of mice with human soluble BAFF (hsBAFF) causes a significant increase of percentages of splenic CD4(+) T lymphocytes dose-dependently, but the CD8(+) T lymphocyte percentages maintained unchanged. Here, we show that hsBAFF significantly enhanced CD4(+) T lymphocyte response of cultured mouse splenic cells, and hsBAFF induced the proliferation and IL-2/IFN-γ secretion of purified CD4(+) T lymphocytes suboptimally stimulated through anti-CD3. Of importance, we observed that IL-2 or IFN-γ cytokine has additive effect on the proliferation and activity of hsBAFF-stimulated CD4(+) T lymphocytes. Using Flow cytometry with fluorescent probe, Fluo-3/AM, we found that hsBAFF elicited [Ca(2+)](i) elevation contributing to CD4(+) T cell proliferation. This is evidenced by our finding that pretreatment with BAPTA/AM, an intracellular Ca(2+) chelator, significantly attenuated the proliferation of hsBAFF-stimulated CD4(+) T lymphocytes. Subsequently, we revealed that hsBAFF-stimulated CD4(+) T cell proliferation was markedly suppressed after pretreatment with EGTA, an extracellular Ca(2+) chelator, or with 2-APB, an inhibitor of Ca(2+) influx through CRAC channels, respectively, suggesting that extracellular Ca(2+) influx due to hsBAFF is closely associated with [Ca(2+)](i) elevation contributing to CD4(+) T cell proliferation. In addition, we noticed that hsBAFF-treated cells conferred partial resistance to decrease of cellular viability induced by thapsigargin (Tg), an endoplasmic reticulum (ER) Ca(2+)-ATPase inhibitor. Taken together, our data indicate that hsBAFF may promote CD4(+) T cell proliferation and response by upregulation of [Ca(2+)](i) homeostasis.  相似文献   

2.
3.
Effects of epidermal growth factor (EGF) on the intracellular Ca(2+) ([Ca(2+)](i)) responses to nucleotides, Ca(2+) release from thapsigargin-sensitive stores and capacitative Ca(2+) entry were investigated in cultured mouse mammary epithelial cells. EGF treatment induced proliferation of mammary epithelial cells. We checked for mitotic activity by immunocytochemistry with an anti-PCNA (proliferating cell nuclear antigen) antibody, which stains nuclei of the cells in S-phase of cell cycle. EGF treatment apparently increased the number of PCNA-stained cells compared to those treated with differentiating hormones (insulin, prolactin and cortisol) or without any hormone. Application of EGF did not induce any acute [Ca(2+)](i) response. EGF treatment for 1-2 days in culture, however, enhanced [Ca(2+)](i) responses including [Ca(2+)](i) increase by ATP, UTP and other nucelotides, Ca(2+) release from thapsigargin-sensitive stores, as well as capacitative Ca(2+) entry. Genistein, a tyrosine kinase inhibitor, prevented EGF-induced cell proliferation and the [Ca(2+) ](i) responses in a dose-dependent manner. These results indicate that EGF treatment enhances Ca(2+) mobilization and capacitative Ca(2+) entry, well correlated with cellular proliferation in mammary epithelial cells.  相似文献   

4.
Many functions of endothelial cells are Ca(2+)/calmodulin dependent, whereas the role of calmodulin in the regulation of cytosolic Ca(2+) ([Ca(2+)](i)) remains largely unexplained. In the present study, effects of various calmodulin antagonists on [Ca(2+)](i) were investigated in cultured aortic endothelial cells loaded with the Ca(2+)-sensitive dye fura-2/AM, and were compared with those of calmodulin-dependent protein kinase II (CaM kinase II) inhibitors. The calmodulin antagonists W-7, calmidazolium and fendiline provoked dose-dependent increases in [Ca(2+)](i). However, the CaM kinase II inhibitors KN-93 and lavendustin C had no effect on [Ca(2+)](i). In the absence of extracellular Ca(2+), pretreatment of cells with bradykinin (BK) and thapsigargin completely prevented W-7-stimulated increase in [Ca(2+)](i). Alternatively, pretreatment with W-7 also completely blocked BK- and thapsigargin-stimulated increases in [Ca(2+)](i). The time course of the Ca(2+)-response in W-7 treated cells was identical to that in thapsigargin-treated cells, but not that in BK-stimulated cells, suggesting that calmodulin antagonists could share a common signaling pathway with thapsigargin to increase [Ca(2+)](i) in endothelial cells. These findings indicate that calmodulin is involved in the regulation of [Ca(2+)](i), and may play an important role in the uptake of Ca(2+) to intracellular stores.  相似文献   

5.
Treatment of Madin-Darby canine kidney (MDCK) cells with the peptide hormone angiotensin II (Ang II) results in an increase in the concentrations of cytosolic free calcium ([Ca(2+)](i)) and sodium ([Na(+)](i)) with a concomitant decrease in cytosolic free Mg(2+) concentration ([Mg(2+)](i)). In the present study we demonstrate that this hormone-induced decrease in [Mg(2+)](i) is independent of [Ca(2+)](i) but dependent on extracellular Na(+). [Mg(2+)](i), [Ca(2+)](i), and [Na(+)](i) were measured in Ang II-stimulated MDCK cells by fluorescence digital imaging using the selective fluoroprobes mag-fura-2AM, fura-2AM, and sodium-binding benzofuran isophthalate (acetoxymethyl ester), respectively. Ang II decreased [Mg(2+)](i) and increased [Na(+)](i) in a dose-dependent manner. These effects were inhibited by irbesartan (selective AT(1) receptor blocker) but not by PD123319 (selective AT(2) receptor blocker). Imipramine and quinidine (putative inhibitors of the Na(+)/Mg(2+) exchanger) and removal of extracellular Na(+) abrogated Ang II-mediated [Mg(2+)](i) effects. In cells pretreated with thapsigargin (reticular Ca(2+)-ATPase inhibitor), Ang II-stimulated [Ca(2+)](i) transients were attenuated (p < 0.01), whereas agonist-induced [Mg(2+)](i) responses were unchanged. Clamping the [Ca(2+)](i) near 50 nmol/liter with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) inhibited Ang II-induced [Ca(2+)](i) increases but failed to alter Ang II-induced [Mg(2+)](i) responses. Benzamil, a selective blocker of the Na(+)/Ca(2+) exchanger, inhibited [Na(+)](i) but not [Mg(2+)](i) responses. Our data demonstrate that in MDCK cells, AT(1) receptors modulate [Mg(2+)](i) via a Na(+)-dependent Mg(2+) transporter that is not directly related to [Ca(2+)](i). These data support the notion that rapid modulation of [Mg(2+)](i) is not simply a result of Mg(2+) redistribution from intracellular buffering sites by Ca(2+) and provide evidence for the existence of a Na(+)-dependent, hormonally regulated transporter for Mg(2+) in renally derived cells.  相似文献   

6.
Intracellular signaling mechanisms by the angiogenesis inhibitors endostatin and angiostatin remain poorly understood. We have found that endostatin (2 microg/ml) and angiostatin (5 microg/ml) elicited transient, approximately threefold increases in intracellular Ca(2+) concentration ([Ca(2+)](i)). Acute exposure to angiostatin or endostatin nearly abolished subsequent endothelial [Ca(2+)](i) responses to carbachol or to thapsigargin; conversely, thapsigargin attenuated the Ca(2+) signal elicited by endostatin. The phospholipase C inhibitor U-73122 and the inositol trisphosphate (IP(3)) receptor inhibitor xestospongin C both inhibited endostatin-induced elevation in [Ca(2+)](i), and endostatin rapidly elevated endothelial cell IP(3) levels. Pertussis toxin and SB-220025 modestly inhibited the endostatin-induced Ca(2+) signal. Removal of extracellular Ca(2+) inhibited the endostatin-induced rise in [Ca(2+)](i), as did a subset of Ca(2+)-entry inhibitors. Peak Ca(2+) responses to endostatin and angiostatin in endothelial cells exceeded those in epithelial cells and were minimal in NIH/3T3 cells. Overnight pretreatment of endothelial cells with endostatin reduced the subsequent acute elevation in [Ca(2+)](i) in response to vascular endothelial growth factor or to fibroblast growth factor by approximately 70%. Intracellular Ca(2+) signaling may initiate or mediate some of the cellular actions of endostatin and angiostatin.  相似文献   

7.
The sensing of extracellular Ca(2+) concentration ([Ca(2+)](o)) and modulation of cellular processes associated with acute or sustained changes in [Ca(2+)](o) are cell-type specific and mediated by the calcium sensing receptor (CaR). [Ca(2+)](o) signalling requires protein kinase C (PKC), but the identity and role of PKC isoforms in CaR-mediated responses remain unclear. Here we show that high [Ca(2+)](o) activated PKC-alpha and PKC- in parathyroid cells and in human embryonic kidney (HEK293) cells overexpressing the CaR (HEK-CaR) and that this response correlated with the CaR-dependent activation of mitogen-activated protein kinases ERK1/2. Activation of ERK1/2 by acute high [Ca(2+)](o) required influx of Ca(2+)through Ni(2+)-sensitive Ca(2+)channels and phosphatidylinositol-dependent phospholipase C-beta activity. Inhibition of PKC by co-expression of dominant-negative (DN) mutants of PKC-alpha or - with the CaR attenuated sustained ERK1/2 activation. Overexpression of a PKC phosphorylation site (T888A) mutant CaR in HEK293 cells showed that this site was important for ERK1/2 activation at high [Ca(2+)](o). Activation of ERK1/2 by high [Ca(2+)](o) was not necessary for the [Ca(2+)](o)-regulated secretion of parathyroid hormone (PTH) in dispersed bovine parathyroid cells. These data suggest that the CaR-mediated [Ca(2+)](o) signal leading to regulated PTH secretion that requires diacylglycerol-responsive PKC isoforms is not mediated via the ERK pathway.  相似文献   

8.
Intracellular calcium ion concentration ([Ca(2+)](i)) transients are observed in the fertilized eggs of all species investigated so far, and are critical for initiating several events related to egg activation and cell cycle control. Here, we investigated the role of the Mos/MEK/ERK cascade and Cdk1 on Ca(2+) oscillations in fertilized ascidian eggs. The egg of the ascidian Phallusia nigra shows [Ca(2+)](i) oscillations after fertilization: Ca(2+) waves immediately following fertilization (phase I), and [Ca(2+)](i) oscillations between the first and second polar body extrusions (phase II). Our results show that in P. nigra eggs, ERK activity peaked just before the extrusion of the first polar body, and decreased gradually, eventually disappearing at the extrusion of the second polar body. Cyclin-dependent protein kinase 1(Cdk1) activity decreased to undetectable levels immediately after fertilization, and then periodically increased according to the meiotic and mitotic cell cycle. When the unfertilized eggs were incubated with U0126, an inhibitor of MEK, before insemination, ERK was immediately inactivated, and the phase II [Ca(2+)](i) oscillations disappeared. Alternatively, when the constitutively active Mos protein (GST-Mos) was injected into the unfertilized eggs, ERK activity was preserved for at least 120 min after fertilization, and the phase II [Ca(2+)](i) oscillations lasted for more than 120 min after the second polar body extrusion. These results suggest that ERK activity is necessary for maintaining [Ca(2+)](i) oscillations. GST-ΔN85-cyclin, which maintains Cdk1 activity, caused ERK activity in the eggs to persist for over 120 min after fertilization, and prolonged [Ca(2+)](i) oscillations. Moreover, the effects of GST-ΔN85-cyclin on the egg were abrogated by the application of U0126. Thus, Cdk1-mediated [Ca(2+)](i) oscillations seem to require ERK activity. However, GST-Mos triggered [Ca(2+)](i) oscillations after the second polar body extrusion, whereas GST-ΔN85-cyclin did not, although it prolongs the duration of [Ca(2+)](i) oscillations. Interestingly, GST-ΔN85-cyclin increased the frequency of [Ca(2+)](i) transients in the Mos-induced [Ca(2+)](i) oscillations after the extrusion of the second polar body. Thus, Cdk1 could maintain, but not activate, ERK and [Ca(2+)](i) oscillations. ERK activity and [Ca(2+)](i) oscillations seem to form a negative feedback loop which may be responsible for maintaining the meiotic period.  相似文献   

9.
Purinergic receptor stimulation has potential therapeutic effects for cystic fibrosis (CF). Thus, we explored roles for P2Y and P2X receptors in stably increasing [Ca(2+)](i) in human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Cytosolic Ca(2+) was measured by fluorospectrometry using the fluorescent dye Fura-2/AM. Expression of P2X receptor (P2XR) subtypes was assessed by immunoblotting and biotinylation. In IB3-1 cells, ATP and other P2Y agonists caused only a transient increase in [Ca(2+)](i) derived from intracellular stores in a Na(+)-rich environment. In contrast, ATP induced an increase in [Ca(2+)](i) that had transient and sustained components in a Na(+)-free medium; the sustained plateau was potentiated by zinc or increasing extracellular pH. Benzoyl-benzoyl-ATP, a P2XR-selective agonist, increased [Ca(2+)](i) only in Na(+)-free medium, suggesting competition between Na(+) and Ca(2+) through P2XRs. Biochemical evidence showed that the P2X(4) receptor is the major subtype shared by these airway epithelial cells. A role for store-operated Ca(2+) channels, voltage-dependent Ca(2+) channels, or Na(+)/Ca(2+) exchanger in the ATP-induced sustained Ca(2+) signal was ruled out. In conclusion, these data show that epithelial P2X(4) receptors serve as ATP-gated calcium entry channels that induce a sustained increase in [Ca(2+)](i). In airway epithelia, a P2XR-mediated Ca(2+) signal may have therapeutic benefit for CF.  相似文献   

10.
We examined the mechanisms involved in the [Ca(2+)](i) response to the extracellular hypotonicity in the principal cells of freshly isolated rat cortical collecting duct (CCD), using Fura-2/AM fluorescence imaging. Reduction of extracellular osmolality from 305 (control) to 195 mosmol/kgH(2)O (hypotonic) evoked transient increase in [Ca(2+)](i) of principal cells of rat CCDs. The [Ca(2+)](i) increase was markedly attenuated by the removal of extracellular Ca(2+)(.) The application of a P(2) purinoceptor antagonist, suramin failed to inhibit the hypotonicity-induced [Ca(2+)](i) increase. The [Ca(2+)](i) increase in response to extracellular hypotonicity was not influenced by application of Gd(3+) and ruthenium red. On the other hand, a voltage-gated Ca(2+) channel inhibitor, nicardipine, significantly reduced the peak amplitude of [Ca(2+)](i) increase in the principal cells. In order to assess Ca(2+) entry during the hypotonic stimulation, we measured the quenching of Fura-2 fluorescence intensity by Mn(2+). The hypotonic stimulation enhanced quenching of Fura-2 fluorescence by Mn(2+), indicating that a Ca(2+)-permeable pathway was activated by the hypotonicity. The hypotonicity-mediated enhancement of Mn(2+) quenching was significantly inhibited by nicardipine. These results strongly suggested that a nicardipine-sensitive Ca(2+) entry pathway would contribute to the mechanisms underlying the hypotonicity-induced [Ca(2+)](i) elevation of principal cells in rat CCD.  相似文献   

11.
Although lysophosphatidic acid (LPA) is known to increase intracellularfree calcium concentration ([Ca(2+)](i)) in different cell types, the effect of LPA on the skeletal muscle cells is not known. The present study was therefore undertaken to examine the effect of LPA on the [Ca(2+)](i) in C2C12 cells. LPA induced a concentration and time dependent increase in [Ca(2+)](i), which was inhibited by VPC12249, VPC 32183 and dioctanoyl glycerol pyrophosphate, LPA1/3 receptor antagonists. Pertussis toxin, a G(i) protein inhibitor, also inhibited the LPA-induced increase in [Ca(2+)](i). Inhibition of tyrosine kinase activities with tyrphostin A9 and genistein also prevented the increase in [Ca(2+)](i) due to LPA. Likewise, wortmannin and LY 294002, phosphatidylinositol 3-kinase (PI3-K) inhibitors, inhibited [Ca(2+)](i) response to LPA. The LPA effect was also attenuated by ethylene glycolbis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), an extracellular Ca(2+) chelator, Ni(2+) and KB-R7943, inhibitors of the Na(+)-Ca(2+) exchanger; the receptor operated Ca(2+) channel (ROC) blockers, 2-aminoethoxydiphenyl borate and SK&F 96365. However, the L-type Ca(2+) channel blockers, verapamil and diltiazem; the store operated Ca(2+) channel blockers, La(3+) and Gd(3+); a sarcoplasmic reticulum calcium pump inhibitor, thapsigargin; an inositol trisphosphate receptor antagonist, xestospongin and a phospholipase C inhibitor, U73122, did not prevent the increase [Ca(2+)](i) due to LPA. Our data suggest that the LPA-induced increase in [Ca(2+)](i) might occur through G(i)-protein coupled LPA(1/3) receptors that may be linked to tyrosine kinase and PI3-K, and may also involve the Na(+)-Ca(2+) exchanger as well as the ROC. In addition, LPA stimulated C2C12 cell proliferation via PI3-K. Thus, LPA may be an important phospholipid in the regulation of [Ca(2+)](i) and growth of skeletal muscle cells.  相似文献   

12.
Ovarian granulosa cell and testicular Sertoli cell functions are regulated by the tropic action of the pituitary follicle-stimulating hormone (FSH), which may exert pleiotropic effects using a variety of signaling pathways. The effects of FSH on the mobilization of Ca(2+) into granulosa and Sertoli cells have been widely studied, but whether all the effects of the hormone are mediated by the single G-protein-coupled (G(s)) receptor with the seven-transmembrane structure (R1) has remained an enigma. With the object of resolving this mystery, we have compared the hormonal responses of HEK 293 cells transfected with three different cloned FSH receptor cDNAs of testis/ovary, designated R1 (G(s)), R2 (similar to R1 but having a shorter carboxyl terminus), and R3, a novel FSH receptor exhibiting a growth factor type I receptor motif. The latter two that use the same DNA segment for alternative splicing of the single large 80- to 100-kilobase gene create different structural motifs and carboxyl termini. Of the three receptors, only the FSH-R3 type induced a significant rise in intracellular free calcium concentration ([Ca(2+)](i)), as measured by single cell fluorescence digital imaging with the Ca(2+) sensitive dye fura-2AM. FSH induced a rapid [Ca(2+)](i) response that was concentration dependent. The response was hormone-specific, as neither its individual alpha/beta subunits nor the related glycoprotein hormone LH were effective. To determine whether the [Ca(2+)](i) response was due to Ca(2+) influx or to intracellular Ca(2+) mobilization, cells were exposed to Ca(2+)-free buffer and to the Ca(2+)-channel blocker diltiazem (10(-5) M). FSH-Induced [Ca(2+)](i) responses were inhibited in Ca(2+)-free buffer and abrogated in the presence of diltiazem. These novel data demonstrate that FSH can increase [Ca(2+)](i) through L-type voltage-dependent Ca(2+) channels via the growth factor type 1 receptor. Our findings support the concept that different receptor motifs act to integrate intracellular signaling events.  相似文献   

13.
Capsazepine is thought to be a selective antagonist of vanilloid type 1 receptors; however, its other in vitro effect on different cell types is unclear. In human MG63 osteosarcoma cells, the effect of capsazepine on intracellular Ca(2+) concentrations ([Ca(2+)](i)) and cytotoxicity was explored by using fura-2 and tetrazolium, respectively. Capsazepine caused a rapid rise in [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 100 microM. Capsazepine-induced [Ca(2+)](i) rise was partly reduced by removal of extracellular Ca(2+), suggesting that the capsazepine-induced [Ca(2+)](i) rise was composed of extracellular Ca(2+) influx and intracellular Ca(2+). In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca(2+)](i) rise, after which the increasing effect of capsazepine on [Ca(2+)](i) was inhibited by 75%. Conversely, pretreatment with capsazepine to deplete intracellular Ca(2+) stores totally prevented thapsigargin from releasing more Ca(2+). U73122, an inhibitor of phospholipase C, abolished histamine (an inositol 1,4,5-trisphosphate-dependent Ca(2+) mobilizer)-induced, but not capsazepine-induced, [Ca(2+)](i) rise. Overnight treatment with 1-100 microM capsazepine inhibited cell proliferation in a concentration-dependent manner. These findings suggest that in human MG63 osteosarcoma cells, capsazepine increases [Ca(2+)](i) by stimulating extracellular Ca(2+) influx and also by causing intracellular Ca(2+) release from the endoplasmic reticulum via a phospholiase C-independent manner. Capsazepine may be mildly cytotoxic.  相似文献   

14.
Epidermal growth factor (EGF) is a multifunctional factor known to influence proliferation and function of a variety of cells. The actions of EGF are mediated by EGF receptor tyrosine kinase pathways, including stimulation of phospholipase Cgamma and mobilization of intracellular Ca(2+) ([Ca(2+)](i)). Generally, agonist-mediated Ca(2+) mobilization involves both Ca(2+) release from internal stores and Ca(2+) influx activated by store depletion (i.e. capacitative or store-operated Ca(2+) influx). However, the role of capacitative Ca(2+) entry in EGF-mediated Ca(2+) mobilization is still largely unknown. In this study, we compared [Ca(2+)](i) signals elicited by EGF with those induced by agents (the muscarinic receptor agonist carbachol and thapsigargin (Tg)) known to activate capacitative Ca(2+) entry. Unlike carbachol and Tg, EGF (5 nm) elicited a transient [Ca(2+)](i) signal without a plateau phase in the presence of extracellular Ca(2+) and also failed to accelerate Mn(2+) entry. Repletion of extracellular Ca(2+) to cells stimulated with EGF in the absence of Ca(2+) elicited an increase in [Ca(2+)](i), indicating that EGF indeed stimulates Ca(2+) influx. However, the influx was activated at lower EGF concentrations than those required to stimulate Ca(2+) release. Interestingly, the phospholipase C inhibitor completely inhibited Ca(2+) release induced by both EGF and carbachol and also reduced Ca(2+) influx responsive to carbachol but had no effect on Ca(2+) influx induced by EGF. EGF-induced Ca(2+) influx was potentiated by low concentrations (<5 ng/ml) of oligomycin, a mitochondrial inhibitor that blocks capacitative Ca(2+) influx in other systems. Transient expression of the hTRPC3 protein enhanced Ca(2+) influx responsive to carbachol but did not increase EGF-activated Ca(2+) influx. Both EGF and carbachol depleted internal Ca(2+) stores. Our results demonstrate that EGF-induced Ca(2+) release from internal stores does not activate capacitative Ca(2+) influx. Rather, EGF stimulates Ca(2+) influx via a mechanism distinct from capacitative Ca(2+) influx induced by carbachol and Tg.  相似文献   

15.
Role of mitochondria in Ca(2+) homeostasis of mouse pancreatic acinar cells   总被引:1,自引:0,他引:1  
The effects of mitochondrial Ca(2+) uptake on cytosolic Ca(2+) concentration ([Ca(2+)](c)) were investigated in mouse pancreatic acinar cells using cytosolic and/or mitochondrial Ca(2+) indicators. When calcium stores of the endoplasmic reticulum (ER) were emptied by prolonged incubation with thapsigargin (Tg) and acetylcholine (ACh), small amounts of calcium could be released into the cytosol (Delta[Ca(2+)](c)=46 +/- 6 nM, n=13) by applying mitochondrial inhibitors (combination of rotenone (R) and oligomycin (O)). However, applications of R/O, soon after the peak of Tg/Ach-induced Ca(2+) transient, produced a larger cytosolic calcium elevation (Delta[Ca(2+)](c)=84 +/- 6 nM, n=9), this corresponds to an increase in the total mitochondrial calcium concentration ([Ca(2+)](m)) by approximately 0.4 mM. In cells pre-treated with R/O or Ru360 (a specific blocker of mitochondrial Ca(2+) uniporter), the decay time-constant of the Tg/ACh-induced Ca(2+) response was prolonged by approximately 40 and 80%, respectively. Tests with the mitochondrial Ca(2+) indicator rhod-2 revealed large increases in [Ca(2+)](m) in response to Tg/ACh applications; this mitochondrial uptake was blocked by Ru360. In cells pre-treated with Ru360, 10nM ACh elicited large global increases in [Ca(2+)](c), compared to control cells in which ACh-induced Ca(2+) signals were localised in the apical region. We conclude that mitochondria are active elements of cellular Ca(2+) homeostasis in pancreatic acinar cells and directly modulate both local and global calcium signals induced by agonists.  相似文献   

16.
The purpose of this study was to explore the effect of tamoxifen on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) and cell viability in OC2 human oral cancer cells. [Ca(2+)](i) and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Tamoxifen at concentrations above 2 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was reduced partly by removing extracellular Ca(2+). The tamoxifen-induced Ca(2+) influx was sensitive to blockade of L-type Ca(2+) channel blockers but insensitive to the estrogen receptor antagonist ICI 182,780 and protein kinase C modulators. In Ca(2+)-free medium, after pretreatment with 1 muM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor), tamoxifen-induced [Ca(2+)](i) rises were substantially inhibited; and conversely, tamoxifen pretreatment inhibited a part of thapsigargin-induced [Ca(2+)](i) rises. Inhibition of phospholipase C with 2 microM U73122 did not change tamoxifen-induced [Ca(2+)](i) rises. At concentrations between 10 and 50 microM tamoxifen killed cells in a concentration-dependent manner. The cytotoxic effect of 23 microM tamoxifen was not reversed by prechelating cytosolic Ca(2+) with BAPTA. Collectively, in OC2 cells, tamoxifen induced [Ca(2+)](i) rises, in a nongenomic manner, by causing Ca(2+) release from the endoplasmic reticulum, and Ca(2+) influx from L-type Ca(2+) channels. Furthermore, tamoxifen-caused cytotoxicity was not via a preceding [Ca(2+)](i) rise.  相似文献   

17.
cGMP-regulated store-operated calcium entry in human hepatoma cells   总被引:1,自引:0,他引:1  
This study aimed to investigate cGMP-regulated store-operated Ca(2+)entry in human 7721 hepatoma cells. [Ca(2+)](i)was measured using Fura2/AM. After incubation of the cells with 4 microm thapsigargin, Ca(2+)entry was evoked by application of 1 mMm Ca(2+)to extracellular solution and was blocked by 3 m m Ni(2+), indicating the presence of store-operated Ca(2+)entry in human 7721 hepatoma cell line. Application of 8-Br-cGMP reduced the [Ca(2+)](i)in hepatoma 7721 cells by 80%. These data demonstrated for the first time that store-operated Ca(2+)entry pathway is present in human hepatoma cells, which is regulated by cGMP.  相似文献   

18.
In freshly isolated rabbit pulmonary artery smooth muscle cells, endothelin (ET)-1 induced a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) followed by a return to the initial [Ca(2+)](i). This response was not abolished by the voltage-dependent Ca(2+) channel blocker nicardipine or removal of Ca(2+) from the bath solution but was inhibited by ryanodine and thapsigargin. This finding suggested that the increase in [Ca(2+)](i) induced by ET-1 was attributable to release of Ca(2+) from ryanodine- and inositol 1,4,5-trisphosphate-sensitive intracellular Ca(2+) stores. The transient increase in [Ca(2+)](i) induced by ET-1 was also inhibited by pretreatment with antagonists of ET type A and B (ET(A) and ET(B)) receptors (BQ-123 and BQ-788, respectively). Furthermore, the ET(B) receptor agonist IRL-1620 induced an increase in [Ca(2+)](i) that was followed by a sustained increase in [Ca(2+)](i); the sustained increase in [Ca(2+)](i) was blocked by nicardipine. Using the nystatin-perforated patch-clamp technique, we found that IRL-1620 caused an increase in Ca(2+) current that was inhibited by addition of ET-1. ET-1 did not inhibit Ca(2+) current when cells were pretreated with BQ-123. These results suggested that when both receptor types are activated, the opposing responses lead to abolition of the sustained [Ca(2+)](i) increases induced by ET(B) receptor activation. Western blot analysis confirmed expression of ET(A) and ET(B) receptors. Finally, U-73122 inhibited the ET-1-induced [Ca(2+)](i) increase, indicating that phospholipase C was involved in modulation of the ET-1-induced [Ca(2+)](i) increase in rabbit pulmonary artery smooth muscle cells.  相似文献   

19.
We studied cadmium toxicity in murine hepatocytes in vitro. Cadmium effects on intracellular free Ca(2+) concentration ([Ca(2+)](i)) were assayed, using a laser scanning confocal microscope with a fluorescent probe, Fluo-3/AM. The results showed that administration of cadmium chloride (CdCl(2), 5, 10, 25 microM) resulted in a dose-dependent decrease of hepatocyte viability and an elevated aspartate aminotransferase (AST) activity in the culture medium (p<0.05 for 25 microM CdCl(2) vs. control). Significant increases of lactate dehydrogenase (LDH) activities in 10 and 25 microM CdC1(2)-exposed groups were observed (p<0.05 and p<0.01, respectively). A greatly decreased albumin content and a more malondialdehyde (MDA) formation also occurred after CdC1(2) treatment. The Ca(2+) concentrations in the culture medium of CdCl(2)-exposed hepatocytes were significantly decreased, while [Ca(2+)](i) appeared to be significantly elevated (p<0.05 or p<0.01 vs. control). We found that in Ca(2+)-containing hydroxyethyl piperazine ethanesulfonic acid-buffered salt solution (HBSS) only, CdCl(2) elicited [Ca(2+)](i) increases, which comprised an initially slow ascent and a strong elevated phase. However, in Ca(2+)-containing HBSS with addition of 2-aminoethoxydiphenyl borane (2-APB), CdCl(2) caused a mild [Ca(2+)](i) elevation in the absence of an initial rise phase. Removal of extracellular Ca(2+) showed that CdCl(2) induced an initially slow [Ca(2+)](i) rise alone without being followed by a markedly elevated phase, but in a Ca(2+)-free HBSS with addition of 2-APB, CdCl(2) failed to elicit the [Ca(2+)](i) elevation. These results suggest that abnormal Ca(2+) homeostasis due to cadmium may be an important mechanism of the development of the toxic effect in murine hepatocytes. [Ca(2+)](i) elevation in acutely cadmium-exposed hepatocytes is closely related to the extracellular Ca(2+) entry and an excessive release of Ca(2+) from intracellular stores.  相似文献   

20.
Dysregulation of nuclear factor kappa B (NF-(kappa)B) and increased Ca(2+) signals have been reported in airway epithelial cells of patients with cystic fibrosis (CF). The hypothesis that Ca(2+) signaling may regulate NF-(kappa)B activation was tested in a CF bronchial epithelial cell line (IB3-1, CFTR genotype DeltaF508/W1282X) and compared to the CFTR-corrected epithelial cell line S9 using fluorescence microscopy to visualized in situ NF-(kappa)B activation at the single cell level. Upon stimulation with IL-1beta,we observed a slow but prolonged [Ca(2+)](i) increase (up to 10 min) in IB3-1 cells compared to S9 cells. The IL-1beta-induced [Ca(2+)](i) response was accompanied by an activation of NF-(kappa)B in IB3-1 but not in S9 cells. Pretreatment of IB3-1 cells with the ER Ca(2+) pump inhibitor thapsigargin inhibited the IL-1beta-induced [Ca(2+)](i) response. Treatment with either the calcium chelator BAPTA or an inhibitor of I(kappa)Balpha phosphorylation (digitoxin) led to a drastic [Ca(2+)](i) decrease accompanied by an inhibition of NF-(kappa)B activation of IL-1beta-stimulated IB3-1 cells in comparison to untreated cells. In IB3-1 cells cultured at low temperature (26 degrees C) for 16 h, the IL-1beta-induced [Ca(2+)](i) response was inhibited and no significant NF-(kappa)B activation was observed. To our knowledge, this is the first report of visualization of the Ca(2+)-mediated activation of NF-(kappa)B in individual living airway epithelial cells. Our results support the concept that [Ca(2+)](i) is a key regulator of NF-(kappa)B activation in CF airway epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号