首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although residue management seems a key factor in residue-mediated weed suppression, very few studies have systematically compared the influence of different residue management strategies on the establishment of crop and weed species. We evaluated the effect of several methods of pre-treatment and placement of winter rye (Secale cereale L.) and winter oilseed rape (Brassica napus L.) residue on seedling emergence under field conditions. For both species two cultivars, differing in allelochemical content, were used. Residues incorporated in the upper soil layer exerted a large inhibitory effect on the establishment of the relatively early emerging lettuce (Lactuca sativa L.) and spinach (Spinacia oleracea L.) seedlings, whereas the inhibitory effect on the slightly later emerging Stellaria media L. seedlings was variable, and often a stimulatory effect on the very late emerging Chenopodium album L. seedlings was observed. Differences between cover crop cultivars were minor. For winter oilseed rape residue, pre-treatment strongly affected the time-course of residue-mediated effects. Finely ground residues were only inhibitory to seedling establishment during the first two to three weeks, whereas cut residues became inhibitory after this period. For winter rye, residue placement was most important. Residue incorporation gave variable results, whereas placement of winter rye residue on top of the soil inhibited the emergence of all receptor species. In conclusion, the optimal residue management strategy for weed suppression depends both on the cover crop species used and the target weed species.  相似文献   

2.
6-Methoxy-2-benzoxazolinone (MBOA) inhibited germination of rice (Oryza sativa L.), wheat (Triticum aethiopicum Jakubz), rye (Secale cereale L.), onion (Allium cepa L.), wild oat (Avena fatua L.), barnyard grass [Echinochloa crus-galli (L.) Beauv.], ryegrass (Lolium rigidum Gaudin), cress (Lepidium sativum L.), lettuce (Lactuca sativa L.), tomato (Lycopersicum esculentum Mill.), carrot (Daucus carota L.) and amaranth (Amaranthus retroflexus L) and the inhibition increased with increasing MBOA concentrations. MBOA also inhibited the induction of α-amylase in these plant seeds and the inhibition increased with increasing MBOA concentrations. There were variations in sensitivity of these plant species to MBOA, and species of family Poaceae (barnyard grass, wild oat, rice, rye, ryegrass, and wheat) were less sensitive to MBOA than the other plant species.  相似文献   

3.
4.
A new method for germination bioassays in allelopathy was evaluated. Inspired by pharmacology, allelochemical quantity to test on different target seeds was calculated according to seeds biometry. The first step consisted in measuring volume, mass, surface and shape of Lactuca sativa and Raphanus sativus seeds. The radish seed mass, surface, volume and contact area biometric parameters were respectively 10, 2, 6 and 1.7 that of lettuce. Two germination bioassay sets were compared: (i) a conventional one, testing the same concentration of allelochemical (2-benzoxazolinone termed as “BOA”) on the two species and, (ii) a biometrics enhanced seed test (“BEST” method), employing quantities of the chemical that were calculated in proportion to seed biometry parameters. The conventional method indicated that 1 mM BOA slowed and decreased germination rate (radish 50 %, lettuce 10 %) whereas 10 and 0.1 μM did not induce any effect. The BEST method offered more differentiated results: applied BOA according to seed volume induced significant inhibition of radish germination (both quantities), while lettuce was only affected by the highest dose. The same occurred when considering grain surface and contact area. Thus, the BEST assay showed more clearly that radish was more sensitive to BOA than lettuce. Compared to a setup with identical test compound concentrations for all tested species, the BEST method provides more differentiated results contributing to a more realistic comparative susceptibility assessment.  相似文献   

5.
The preformed antimicrobial compounds produced by maize, 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one and its desmethoxy derivative 2,4-dihydroxy-2H-1,4-benzoxazin-3-one, are highly reactive benzoxazinoids that quickly degrade to the antimicrobials 6-methoxy-2-benzoxazolinone (MBOA) and 2-benzoxazolinone (BOA), respectively. Fusarium verticillioides (= F. moniliforme) is highly tolerant to MBOA and BOA and can actively transform these compounds to nontoxic metabolites. Eleven of 29 Fusarium species had some level of tolerance to MBOA and BOA; the most tolerant, in decreasing order, were F. verticillioides, F. subglutinans, F. cerealis (= F. crookwellense), and F. graminearum. The difference in tolerance among species was due to their ability to detoxify the antimicrobials. The limited number of species having tolerance suggested the potential utility of these compounds as biologically active agents for inclusion within a semiselective isolation medium. By replacing the pentachloronitrobenzene in Nash-Snyder medium with 1.0 mg of BOA per ml, we developed a medium that resulted in superior frequencies of isolation of F. verticillioides from corn while effectively suppressing competing fungi. Since the BOA medium provided consistent, quantitative results with reduced in vitro and taxonomic efforts, it should prove useful for surveys of F. verticillioides infection in field samples.  相似文献   

6.
Despite the knowledge regarding allelopathy, known as a major ecological mechanism for biological weed control, had increased greatly, the role of soil microorganisms in that field remained controversial. The study sought to evaluate the interference potential of soil microorganisms, residues-derived allelochemicals and their interaction on seed germination and understand the variation of microbial community in allelopathic activities. Three different rice residues-derived fractions from variety PI312777 (extracts, straw fraction and fresh residue) were applied to sterile and live soils to disentangle the interference potential of soil microorganisms, residues-derived allelochemicals and their interaction concerned allelopathic activities. The results demonstrated that microbe-only and residues-only exerted onefold promotion and inhibition effects on lettuce (Lactuca sativa Linn.) seed germination, respectively, whereas, microbe-by-residues interaction showed an inhibition at the beginning, and a feeble promotion later. The 20 most dominant genera of microbes were classified into three clusters, with 13 genera in one cluster, only 1 in the second cluster and 6 in the third one. The genera in the first cluster commonly exerted negative effects on phenol content, while showed positive correlation with seed germination. Interestingly, Bacillus, clustered in the second cluster, had an opposite effect alone. The third cluster genera somehow had a weak correlation with both germination as well as the release of the allelochemicals. Overall, we incorporated molecular methodology for tracking bacterial impacts during incubation with allelochemicals, and demonstrated the mutable role of soil microbes in allelopathy. It may be potentially important for stimulating the beneficial roles of microbes for environmentally friendly weed management.  相似文献   

7.
Germination of barley seeds was inhibited by 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) and 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) at concentrations greater than 0.03mmol/L, and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) and benzoxazolin-2(3H)-one (BOA) at concentrations greater than 0.1mmol/L. These benzoxazinoids also inhibited the induction of alpha-amylase activity in the barley seeds, and inhibited gibberellin-induced alpha-amylase activity in de-embryonated barley seeds. Significant inhibition in the germination and alpha-amylase induction were observed as concentrations of DIMBOA, DIBOA, MBOA and BOA increased. These results suggest that DIMBOA, DIBOA, MBOA and BOA may inhibit the germination of barley seeds by inhibiting the gibberellin-induced process, leading to alpha-amylase production. The inhibitory activities of germination and alpha-amylase induction of DIMBOA and DIBOA were greater than those of their degraded substances MBOA and BOA, respectively, and the inhibitory activities of DIMBOA and MBOA were greater than those of their demethoxylated analogues DIBOA and BOA, respectively.  相似文献   

8.
Isolation and identification of an allelopathic substance in Pisum sativum   总被引:3,自引:0,他引:3  
Kato-Noguchi H 《Phytochemistry》2003,62(7):1141-1144
The residue of peas (Pisum sativum L.) has allelopathic activity and the putative compound causing this inhibitory effect was isolated from a methanol extract of pea shoots. Chemical structure of this compound was determined by high-resolution MS, IR and 1H NMR spectral data as pisatin. Pisatin inhibited growth of cress (Lepidium sativum L.) and lettuce (Lactuca sativa L.) seedlings at concentrations greater than 10 and 30 microM, respectively. The doses required for 50% growth inhibition of roots and hypocotyls of cress were 61 and 91 microM, respectively, and those of lettuce were 78 and 115 microM, respectively. The concentration of pisatin in the pea shoots was 32.7 nmol x g(-1) fresh weight. The effectiveness of pisatin on growth inhibition in cress and lettuce, and its occurrence in pea shoots suggest that it may contribute to the growth inhibitory effect of pea residue, and may play an important role in pea allelopathy.  相似文献   

9.
2(3)-Benzoxazolinone (BOA), 6-methoxy-2(3)-benzoxazolinone (MBOA) and 6,7-dimethoxy-2(3)-benzoxazolinone (dimethoxy-BOA) could be separated by GC. The identity of these components was verified by combined GC-MS. BOA and MBOA were determined quantitatively in 0·1 g samples of corn seedling. The presence of analogs not previously reported was demonstrated in seedlings of wheat, rye and in leaves of Job's tears. Seedlings of rice, barley, oat and sorghum did not contain any detectable amount of benzoxazolinones.  相似文献   

10.
《Phytochemistry》1987,26(5):1385-1390
Residues and aqueous extracts of rye (Secale cereale L. ‘Wheeler’) shoot herbage were previously shown to contain phytotoxic compounds. Sequential partitioning of aqueous extracts against a series of solvents of increasing polarity separated the most active compounds in the Et2O fraction based on a cress (Lepidium sativum L. ‘Curly’) root growth assay. Bioassays after TLC indicated two major zones of toxicity. Further separation of the Et2O extract revealed two new phytotoxic compounds in rye. The compounds were identified as 2,4-dihydroxy-1,4(2H)-benzoxazin-3-one (DIBOA) and a breakdown product 2(3H)-benzoxazolinone (BOA). In the cress bioassay, DIBOA and BOA inhibited root growth 50% or more at concentrations of ca 0.37 and 1.05 mM, respectively. Only DIBOA showed significant activity on barnyardgrass (Echinochloa crusgalli L. Beauv.). Neither compound inhibited seed germination at concentrations tested. DIBOA stimulated root and shoot growth of cress at the lowest concentration tested (0.09 mM).  相似文献   

11.
In order to test the stress hypothesis of allelopathy of Reigosa et al. (1999, 2002) , the combined action of a well-established allelochemical compound (2-3 H -benzoxazolinone, BOA) and a common abiotic stress (salt stress) were investigated in lettuce ( Lactuca sativa L.). In a previous study ( Baerson et al. 2005 ), we demonstrated that the primary effects of BOA are related to the expression of genes involved in detoxification and stress responses, which might serve to simultaneously alleviate biotic and abiotic stresses. Through analysis of the same physiological and biochemical parameters previously studied for BOA alone ( Sánchez-Moreiras & Reigosa 2005 ), we observed specific effects of salt stress alone, as well as for the two stresses together (BOA and salt). This paper demonstrates that plants showing tolerance to salt stress (reduced stomatal density, increased proline content, higher K+ concentration, etc .) become salt sensitive (markedly low Ψw values, high putrescine content, increased lipid peroxidation, etc .) when simultaneously treated with the allelochemical BOA. We also report additional information on the mechanisms of action of BOA, and general stress responses in this plant species.  相似文献   

12.
The hypothesis that inoculation of transplants with vesicular-arbuscular mycorrhizal (VAM) fungi before planting into saline soils alleviates salt effects on growth and yield was tested on lettuce (Lactuca sativa L.) and onion (Allium cepa L.). A second hypothesis was that fungi isolated from saline soil are more effective in counteracting salt effects than those from nonsaline soil. VAM fungi from high- and low-salt soils were trap-cultured, their propagules quantified and adjusted to a like number, and added to a pasteurized soil mix in which seedlings were grown for 3–4 weeks. Once the seedlings were colonized by VAM fungi, they were transplanted into salinized (NaCl) soil. Preinoculated lettuce transplants grown for 11 weeks in the saline soils had greater shoot mass compared with nonVAM plants at all salt levels [2 (control), 4, 8 and 12 dS m–1] tested. Leaves of VAM lettuce at the highest salt level were significantly greener (more chlorophyll) than those of the nonVAM lettuce. NonVAM onions were stunted due to P deficiency in the soil, but inoculation with VAM fungi alleviated P deficiency and salinity effects; VAM onions were significantly larger at all salt levels than nonVAM onions. In a separate experiment, addition of P to salinized soil reduced the salt stress effect on nonVAM onions but to a lesser extent than by VAM inoculation. VAM fungi from the saline soil were not more effective in reducing growth inhibition by salt than those from the nonsaline site. Colonization of roots and length of soil hyphae produced by the VAM fungi decreased with increasing soil salt concentration. Results indicate that preinoculation of transplants with VAM fungi can help alleviate deleterious effects of saline soils on crop yield.  相似文献   

13.
The preformed antimicrobial compounds produced by maize, 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one and its desmethoxy derivative 2,4-dihydroxy-2H-1,4-benzoxazin-3-one, are highly reactive benzoxazinoids that quickly degrade to the antimicrobials 6-methoxy-2-benzoxazolinone (MBOA) and 2-benzoxazolinone (BOA), respectively. Fusarium verticillioides (= F. moniliforme) is highly tolerant to MBOA and BOA and can actively transform these compounds to nontoxic metabolites. Eleven of 29 Fusarium species had some level of tolerance to MBOA and BOA; the most tolerant, in decreasing order, were F. verticillioides, F. subglutinans, F. cerealis (= F. crookwellense), and F. graminearum. The difference in tolerance among species was due to their ability to detoxify the antimicrobials. The limited number of species having tolerance suggested the potential utility of these compounds as biologically active agents for inclusion within a semiselective isolation medium. By replacing the pentachloronitrobenzene in Nash-Snyder medium with 1.0 mg of BOA per ml, we developed a medium that resulted in superior frequencies of isolation of F. verticillioides from corn while effectively suppressing competing fungi. Since the BOA medium provided consistent, quantitative results with reduced in vitro and taxonomic efforts, it should prove useful for surveys of F. verticillioides infection in field samples.  相似文献   

14.
Penetration of cover crop roots through compacted soils   总被引:3,自引:0,他引:3  
Tap-rooted species may penetrate compacted soils better than fibrous-rooted species and therefore be better adapted for use in “biological tillage”. We evaluated penetration of compacted soils by roots of three cover crops: FR (forage radish: Raphanus sativus var. longipinnatus, cv. ‘Daikon’), rapeseed (Brassica napus, cv. ‘Essex’), two tap-rooted species in the Brassica family, and rye (cereal rye: Secale cereale L., cv. ‘Wheeler’), a fibrous-rooted species. Three compaction levels (high, medium and no compaction) were created by wheel trafficking. Cover crop roots were counted by the core-break method. At 15–50 cm depth under high compaction, FR had more than twice and rapeseed had about twice as many roots as rye in experiment 1; FR had 1.5 times as many roots as rye in experiment 2. Under no compaction, little difference in root vertical penetration among three cover crops existed. Rapeseed and rye root counts were negatively related to soil strength by linear and power functions respectively, while FR roots showed either no (Exp.1) or positive (Exp. 2) relationship with soil strength. We conclude that soil penetration capabilities of three cover crops were in the order of FR > rapeseed > rye.  相似文献   

15.
The ability of phytopathogenic fungi to overcome the chemical defense barriers of their host plants is of great importance for fungal pathogenicity. We studied the role of cyclic hydroxamic acids and their related benzoxazolinones in plant interactions with pathogenic fungi. We identified species-dependent differences in the abilities of Gaeumannomyces graminis var. tritici, Gaeumannomyces graminis var. graminis, Gaeumannomyces graminis var. avenae, and Fusarium culmorum to detoxify these allelochemicals of gramineous plants. The G. graminis var. graminis isolate degraded benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) more efficiently than did G. graminis var. tritici and G. graminis var. avenae. F. culmorum degraded BOA but not MBOA. N-(2-Hydroxyphenyl)-malonamic acid and N-(2-hydroxy-4-methoxyphenyl)-malonamic acid were the primary G. graminis var. graminis and G. graminis var. tritici metabolites of BOA and MBOA, respectively, as well as of the related cyclic hydroxamic acids. 2-Amino-3H-phenoxazin-3-one was identified as an additional G. graminis var. tritici metabolite of BOA. No metabolite accumulation was detected for G. graminis var. avenae and F. culmorum by high-pressure liquid chromatography. The mycelial growth of the pathogenic fungi was inhibited more by BOA and MBOA than by their related fungal metabolites. The tolerance of Gaeumannomyces spp. for benzoxazolinone compounds is correlated with their detoxification ability. The ability of Gaeumannomyces isolates to cause root rot symptoms in wheat (cultivars Rektor and Astron) parallels their potential to degrade wheat allelochemicals to nontoxic compounds.  相似文献   

16.
The recent success of Aristida junciformis Trin. and Rupr. and Eragrostis curvula Schrad. Nees in dominating South African grasslands has posed agricultural and ecological threats. With the objective of examining if the current success of the species is related to allelopathy, the present study assessed the allelopathic potential of five common perennial grassland species (Poaceae). Aqueous extracts prepared by soaking separately 2, 10, 25 and 40 g of leaf and root material in 100 mL of distilled-water for 36 h were bioassayed using a biotest species i.e. Grand Rapids lettuce seeds (Lactuca sativa L. cv.). Species, dilution level and plant-part had a highly significant (P < 0.001) effect on germination percentage, as well as shoot and root elongation of the biotest species. At higher concentrations, the leaf extracts of all species showed significant inhibitory activities which declined with increases in dilution level. A. junciformis, E. curvula and Megathyrsus maximus (Jacq.) BK Simon and SWL Jacobs. demonstrated the highest degree of inhibition in germination percentage and subsequent seedling length; with complete inhibition recorded at dilution levels ≥25 % w/v. At high concentration levels, root extracts of all species, except Themeda triandra Forssk. exhibited significant inhibitory effects on germination; with Hyparrhenia hirta (L.) Staph being most inhibitory. Relatively speaking, E. curvula, A. junciformis and M. maximus showed the highest degree of inhibition. These findings suggest that these three species possess strong allelopathic potential. Such an allelopathic supremacy may contribute to their dominance in natural grasslands. Further studies, however, are still required to isolate responsible phytochemicals and to better understand if allelopathic advantage is the key factor contributing to population dynamics in the field.  相似文献   

17.
The effect of allelopathy from invasive alien plants (IAPs) on native species is one of the main factors for their adaptation and diffusion. IAPs can have different degrees of invasion under natural succession and are distributed in numerous regions. Seed germination and seedling growth (SGe-SGr) play a crucial role in population recruitment. Thus, it is critical to illustrate the differences in the allelopathy caused by an IAP with different degrees of invasion in numerous regions on SGe-SGr of native species to describe the primary force behind their adaptation and diffusion. This study assessed the allelopathy of the notorious IAP horseweed (Conyza canadensis (L.) Cronq.) on SGe-SGr of the native lettuce species (Lactuca sativa L.) under different degrees of invasion (light degree of invasion and heavy degree of invasion) in three provinces (Jiangsu, Anhui, and Hubei) along the Yangtze River in China. The allelopathy of horseweed leaf extract on lettuce SGe-SGr remarkably increased with the increased degree of invasion, which may be due to the buildup of allelochemicals generated by horseweed with a heavy degree of invasion compared with a light degree of invasion. A high concentration of horseweed leaf extract resulted in noticeably stronger allelopathy on lettuce SGe-SGr compared to the extract with a low concentration. There are noticeable differences in the allelopathy of the extract of horseweed leaves from different provinces on lettuce SGe-SGr with the following order i.e. Jiangsu > Hubei > Anhui. This may be due to the high latitudes for the three sampling sites in Jiangsu compared with the latitudes for the collection sites in Hubei and Anhui. There are certain differences in the environments among the three provinces. Thus, the allelopathy of horseweed on SGe-SGr of lettuce may have a greater negative impact in Jiangsu compared to the other two provinces.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00962-y.  相似文献   

18.
Invasive species may leave behind legacies that persist even after removal, inhibiting subsequent restoration efforts. We examined the soil legacy of Cytisus scoparius, a nitrogen-fixing, putatively allelopathic shrub invading the western US. We tested the hypothesis that allelopathy plays a critical role in the depressive effect of Cytisus on the key native Douglas-fir, both directly on tree growth and indirectly via effects on its ectomycorrhizal fungi (EMF). In a greenhouse factorial experiment, we used activated carbon to inhibit Cytisus-produced allelochemicals and sucrose to reduce elevated nitrogen (N). We found that: (1) Cytisus-invaded soils depressed Douglas-fir growth compared to uninvaded forest soils. The effect of adding Cytisus litter was positive (possibly reflecting an N fertilization effect) only in the presence of activated carbon, providing evidence for a role of allelopathic compounds. Activated carbon did not increase growth in the absence of Cytisus litter. Finally, sucrose addition provided weak support for a nitrogen effect of Cytisus litter. (2) Seedlings grown in Cytisus soils had lower EMF abundance compared to those in uninvaded forest soils. In forest soil from one site, adding Cytisus litter also decreased EMF abundance. Douglas-fir growth increased significantly with EMF across sites and soils suggesting that changes in EMF were linked to tree growth. The fungal taxon Cenococcum geophilum was significantly depressed in Cytisus soils compared to forest soils, while Rhizopogon rogersii abundance was similar across soil types. These results together suggest an overall negative effect of Cytisus on the growth of a dominant native tree and its fungal symbionts. Our study suggests how the role of allelopathy in ecological restoration may play out on two time scales: through immediate, direct impacts on native plants as well as through long-term, persistent impacts mediated by the collapse or transformation of microbial communities.  相似文献   

19.
三种根系分泌脂肪酸对花生生长和土壤酶活性的影响   总被引:4,自引:0,他引:4  
刘苹  赵海军  仲子文  孙明  庞亚群  马征  万书波 《生态学报》2013,33(11):3332-3339
为了探讨花生连作后土壤中脂肪酸类物质的累积与花生连作障碍间的关系,为花生连作障碍机理的研究提供新的理论依据,以田间土壤为介质,采用盆栽试验的方法研究了花生根系分泌物中3种长链脂肪酸,即:豆蔻酸、软脂酸和硬脂酸的混合物,对花生植株生长、产量和土壤酶活性的影响。结果表明,当土壤中脂肪酸的初始含量较低时(80 mg/kg土),对花生植株的生长和产量有微弱的促进作用(P>0.05),当土壤中脂肪酸的初始含量较高时(160 mg/kg土和240 mg/kg土),显著抑制了花生植株的生长和产量(P<0.05)。叶片叶绿素含量、根系活力、土壤酶(蔗糖酶、脲酶、磷酸酶)活性在低脂肪酸含量处理下升高,在高脂肪酸含量处理下显著降低(P<0.001)。光合产物、根际有效养分的减少和根系养分吸收能力的降低,可能是导致花生植株生长和产量降低的原因之一。花生连作土壤中豆蔻酸、软脂酸和硬脂酸的累积与花生的连作障碍有着密切关系。  相似文献   

20.
Germination of lettuce seeds was inhibited by 6-methoxy-2-benzoxazolinone (MBOA) at concentrations greater than 0.03 mmol/L. MBOA also inhibited the induction of α-amylase activity in the lettuce seeds at concentrations greater than 0.03 mmol/L. These two concentration–response curves for the germination and α-amylase indicate that the percentage of the germination was positively correlated with the activity of α-amylase in the seeds. Lettuce seeds germinated around 18 h after incubation and inhibition of α-amylase by MBOA occurred within 6 h after seed incubation. These results show that MBOA may inhibit the germination of lettuce seeds by inhibiting the induction of α-amylase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号