首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In spontaneously breathing subjects, intrathoracic expiratory flow limitation can be detected by applying a negative expiratory pressure (NEP) at the mouth during tidal expiration. To assess whether NEP might increase upper airway resistance per se, the interrupter resistance of the respiratory system (Rint,rs) was computed with and without NEP by using the flow interruption technique in 12 awake healthy subjects, 6 nonsnorers (NS), and 6 nonapneic snorers (S). Expiratory flow (V) and Rint,rs were measured under control conditions with V increased voluntarily and during random application of brief (0.2-s) NEP pulses from -1 to -7 cmH(2)O, in both the seated and supine position. In NS, Rint,rs with spontaneous increase in V and with NEP was similar [3.10 +/- 0.19 and 3.30 +/- 0.18 cmH(2)O x l(-1) x s at spontaneous V of 1.0 +/- 0.01 l/s and at V of 1.1 +/- 0.07 l/s with NEP (-5 cmH(2)O), respectively]. In S, a marked increase in Rint,rs was found at all levels of NEP (P < 0.05). Rint,rs was 3.50 +/- 0.44 and 8.97 +/- 3.16 cmH(2)O x l(-1) x s at spontaneous V of 0.81 +/- 0.02 l/s and at V of 0.80 +/- 0.17 l/s with NEP (-5 cmH(2)O), respectively (P < 0.05). With NEP, Rint,rs was markedly higher in S than in NS both seated (F = 8.77; P < 0.01) and supine (F = 9.43; P < 0.01). In S, V increased much less with NEP than in NS and was sometimes lower than without NEP, especially in the supine position. This study indicates that during wakefulness nonapneic S have more collapsible upper airways than do NS, as reflected by the marked increase in Rint,rs with NEP. The latter leads occasionally to an actual decrease in V such as to invalidate the NEP method for detection of intrathoracic expiratory flow limitation.  相似文献   

2.
The application of negative expiratory pressure(NEP) at end expiration has been shown to cause reflex-mediatedactivation of the genioglossus muscle in awake humans. To test whethera reflex contraction of pharyngeal dilator muscles also occurs in response to NEP applied in early expiration, the effect on genioglossus muscle reflex activity of NEP pulses of 500 ms, given 0.2 s after theonset of expiration and during the end-expiratory pause, was assessedin 10 normal awake subjects at rest. The raw and integrated surfaceelectromyogram of the genioglossus (EMGgg) was recorded with airflowand mouth pressure under control conditions and with NEP ranging from3 to 10 cmH2O.Intraoral EMGgg was also recorded under the same experimentalconditions in two subjects. The application of NEP at theend-expiratory pause elicited a consistent reflex response of EMGgg inseven subjects with a mean latency of 68 ± 5 ms. In contrast, whenNEP was applied at the onset of expiration, EMGgg reflex activity wasinvariably observed in only one subject. No relationship was foundbetween steady increase or abrupt fall in expiratory flow and thepresence or the absence of a reflex activity of genioglossus duringsudden application of NEP at the beginning of expiration. Our resultsshow that a reflex activity of genioglossus is elicited much morecommonly during application of NEP at the end rather than at the onsetof expiration. These findings also suggest that when NEP is applied inearly expiration to detect intrathoracic flow limitation the absence ofupper airways narrowing does not imply the occurrence of areflex-mediated activation of genioglossus and vice versa.

  相似文献   

3.
To study the mechanism of generation of respiratory wheezes we examined the relationships between forced expiratory wheezes (FEW) and flow limitation in the lung. Tracheal lung sounds were measured in six healthy subjects during forced expiration through a flow-limiting valve in series with a high-impedance suction pump. Mouth pressure, esophageal pressure, transpulmonary pressure (Ptp), flow (V), and volume were also measured. For any flow rate, V was constant until the subject became flow limited. The onset of flow limitation was documented by a small change in V and a sudden change in Ptp, which was previously found by Olafsson and Hyatt to correspond to the beginning of the flow plateau of the isovolume pressure-flow curve (J. Clin. Invest. 48: 564-573, 1969). FEW started 107 +/- 45 ml (SD) after the onset of flow limitation. Additional 79 +/- 65 ml were exhaled between the onset of FEW to the final sharp drop in V. The frequency spectra of FEW were the same as those of respiratory wheezes found in obstructive airway diseases. Administration of inhaled bronchodilator (isoproterenol) did not eliminate the FEW, nor did it change their relationship to flow limitation. The sequence of events around the onset of FEW, and the tight correlation with the onset of flow limitation correspond well to recent experimental observations on the onset of flutter in collapsible, thick-walled latex tubes.  相似文献   

4.
We hypothesized that contractions of the expiratory muscles carried out to the point of task failure would cause an increase in muscle sympathetic nerve activity (MSNA). We measured MSNA directly in six healthy men during resisted expiration (60% maximal expiratory pressure) leading to task failure with long [breathing frequency (f(b)) = 15 breaths/min; expiratory time (TE)/total respiratory cycle duration (TT) = 0.7] and short (f(b) = 30 breaths/min; TE/TT = 0.4) TE. Both of these types of expiratory muscle contractions elicited time-dependent increases in MSNA burst frequency that averaged +139 and +239%, respectively, above baseline at end exercise. The increased MSNA coincided with increases in mean arterial pressure (MAP) for both the long-TE (+28 +/- 6 mmHg) and short-TE (+22 +/- 14 mmHg) trials. Neither MSNA nor MAP changed when the breathing patterns and increased tidal volume of the task failure trials were mimicked without resistance or task failure. Furthermore, very high levels of expiratory motor output (95% maximal expiratory pressure; f(b) = 12 breaths/min; TE/TT = 0.35) and high rates of expiratory flow and expiratory muscle shortening without task failure (no resistance; f(b) = 45 breaths/min; TE/TT = 0.4; tidal volume = 1.9 x eupnea) had no effect on MSNA or MAP. Within-breath analysis of the short-expiration trials showed augmented MSNA at the onset of and throughout expiration that was consistent with an influence of high levels of central expiratory motor output. Thus high-intensity contractions of expiratory muscles to the point of task failure caused a time-dependent sympathoexcitation; these effects on MSNA were similar in their time dependency to those caused by high-intensity rhythmic contractions of the diaphragm and forearm muscles taken to the point of task failure. The evidence suggests that these effects are mediated primarily via a muscle metaboreflex with a minor, variable contribution from augmented central expiratory motor output.  相似文献   

5.
Detection of expiratory flow limitation during exercise in COPD patients   总被引:7,自引:0,他引:7  
Koulouris, Nickolaos G., Ioanna Dimopoulou, PäiviValta, Richard Finkelstein, Manuel G. Cosio, and J. Milic-Emili.Detection of expiratory flow limitation during exercise in COPDpatients. J. Appl. Physiol. 82(3):723-731, 1997.The negative expiratory pressure (NEP) method wasused to detect expiratory flow limitation at rest and at differentexercise levels in 4 normal subjects and 14 patients with chronicobstructive pulmonary disease (COPD). This method does not requireperformance of forced expirations, nor does it require use of bodyplethysmography. It consists in applying negative pressure (5cmH2O) at the mouth during early expiration and comparing the flow-volume curve of the ensuing expiration with that of the preceding control breath. Subjects in whomapplication of NEP does not elicit an increase in flow during part orall of the tidal expiration are considered flow limited. The fournormal subjects were not flow limited up to 90% of maximal exercisepower output(max).Five COPD patients were flow limited at rest, 9 were flow limited atone-third max, and 12 were flow limited at two-thirdsmax. Whereasin all patients who were flow limited at rest the maximalO2 uptake was below the normallimits, this was not the case in most of the other patients. Inconclusion, NEP provides a rapid and reliable method to detectexpiratory flow limitation at rest and during exercise.

  相似文献   

6.
Regional expiratory flow limitation studied with Technegas in asthma.   总被引:1,自引:0,他引:1  
Regional expiratory flow limitation (EFL) may occur during tidal breathing without being detected by measurements of flow at the mouth. We tested this hypothesis by using Technegas to reveal sites of EFL. A first study (study 1) was undertaken to determine whether deposition of Technegas during tidal breathing reveals the occurrence of regional EFL in induced bronchoconstriction. Time-activity curves of Technegas inhaled during 12 tidal breaths were measured in four asthmatic subjects at control conditions and after exposure to inhaled methacholine at a dose sufficient to abolish expiratory flow reserve near functional residual capacity. A second study (study 2) was conducted in seven asthmatic subjects at control and after three increasing doses of methacholine to compare the pattern of Technegas deposition in the lung with the occurrence of EFL. The latter was assessed at the mouth by comparing tidal with forced expiratory flow or with the flow generated on application of a negative pressure. Study 1 documented enhanced and spotty deposition of Technegas in the central lung regions with increasing radioactivity during tidal expiration. This is consistent with increased impaction of Technegas on the airway wall downstream from the flow-limiting segment. Study 2 showed that both methods based on analysis of flow at the mouth failed to detect EFL at the time spotty deposition of Technegas occurred. We conclude that regional EFL occurs asynchronously across the lung and that methods based on mouth flow measurements are insensitive to it.  相似文献   

7.
During recent yearsit has been suggested that forced expiratory measurements, derived froma lung volume set by a standardized inflation pressure, are morereproducible than those attained during tidal breathing when the rapidthoracoabdominal compression technique is used in infants. The aim ofthis study was to evaluate the feasibility of obtaining measurementsfrom raised lung volumes in unsedated preterm infants. Measurementswere made in 18 infants (gestational age 26-35 wk, postnatal age1-10 wk, test weight 1.4-3.5 kg). Several inflations[1.5-2.5 kPa (15-25cmH2O)] were used to brieflyinhibit respiratory effort before the rapid thoracoabdominal compression was performed. Conventional analysis of flows and volumesat fixed times and percentages of the forced expiration resulted in arelatively high variability in this population. However, by using theelastic equilibrium point (i.e., the passively determined lung volume,derived from passive expirations before the forced expiration) as avolume landmark, it was feasible to achieve reproducible results inunsedated preterm infants, despite their strong respiratory reflexesand rapid respiratory rates. Because this approach is independent ofchanges in expiratory time, expired volume, or applied pressures, itmay facilitate investigation of the effects of growth, development, anddisease on airway function in infants, particularly during the firstweeks of life, when conventional analysis of forced expirations may be inappropriate.

  相似文献   

8.
We undertook the present investigation to establish whether narrowing/closure of the upper airway occurs during spontaneous and provoked respiratory rhythm disturbances and whether pharyngeal constrictor muscle recruitment occurs coincident with upper airway occlusion during prolonged expiratory periods. Upper airway pressure-flow relationships and middle pharyngeal constrictor (mPC) EMG activities were recorded in 11 adult female goats during spontaneous and provoked prolongations in expiratory time (Te). A total of 213 spontaneous prolongations of expiration were recorded. Additionally, 169 prolonged expiratory events preceded by an augmented breath were included in the analyses. In separate trials on different days, Te was prolonged by systemic administration of dopamine, by raising the inspired fraction of O(2) from 0.10 to 1.00 during poikilocapnic conditions or by systemic administration of clonidine. Continuous tonic activation of the mPC EMG was observed during each prolonged Te period regardless of the duration or initiating cause. However, significant increases in subglottic tracheal pressure, with expiratory airflow braking indicative of upper airway narrowing or closure, was only observed during spontaneous events without a preceding augmented breath and during clonidine-induced events. Tonic mPC activation proved an unreliable indicator of airway occlusion. Furthermore, mPC muscle activation alone is not sufficient to induce pharyngeal occlusion during prolonged expiration. Our data suggest that airway closure is not a common occurrence during provoked respiratory disturbances in awake goats. We propose that airway closure, when present during prolonged Te, is more likely dependent on activation of laryngeal adductor muscles with glottic braking independent of pharyngeal narrowing.  相似文献   

9.
Increases in functional residual capacity (FRC) decrease inspiratory muscle efficiency; the present experiments were designed to determine the effect of FRC change on the ventilatory response to exercise. Six well-trained adults were exposed to expiratory threshold loads (ETL) ranging from 5 to 40 cmH2O during steady-state exercise on a bicycle ergometer at 40-95% VO2max. Inspiratory capacity (IC) was measured and changes of IC interpreted as changes of FRC. ETL did not consistently limit exercise performance. At heavy work (greater than 92% VO2max) minute ventilation decreased with increasing ETL; at moderate work (less than 58% VO2max) it did not. Decreases in ventilation were due to decreases in respiratory frequency with prolongation of the duration of expiration being the most consistent change in breathing pattern. At moderate work levels, FRC increased with ETL; at maximum work it did not. Changes in FRC were dictated by constancy of tidal volume and a fixed maximum end-inspiratory volume of 80-90% of the inspiratory capacity. When tidal volume was such that end-inspiratory volume was less than this value, FRC increased with ETL. Mouth pressure measured during the first 0-1 s of inspiratory effort against an occluded airway (P0-1) was increased by ETL equals 30 cmH2O, in spite of the fact that ventilation was decreased. We concluded that changes in FRC due to ETL had no effect on the ventilatory response to exercise and that changes in P0-1 induced by ETL did not reflect changes of inspiratory drive so much as changes of the pattern of inspiration.  相似文献   

10.
We investigated the effect on expiratory duration (TE) of application of graded resistive and elastic loads and total airway occlusions to single expirations in 9 full-term healthy infants studied on the 2nd or 3rd day of life. The infants breathed through a face mask and pneumotachograph, and flow, volume, airway pressure, and diaphragm electromyogram (EMG) were recorded. Loads were applied to the expiratory outlet of a two-way respiratory valve using a manifold system. Application of all loads resulted in expired volumes (VE) decreased from control (P less than 0.05), and changes were progressive with increasing loads. As VE became smaller, end-expiratory volume (EEV) became greater. TE, measured either from the pattern of airflow or airway pressure, or from diaphragm EMG activity, progressively increased with increasing loads and was greatest with total occlusions (P less than 0.05, compared with control). Resistive loading resulted in a greater accumulated VE history than elastic loading to the same EEV. For equivalent changes in EEV, TE was more prolonged with resistive than with elastic loading. Expiratory loading did not change the inspiratory duration determined from the diaphragm EMG activity of the breath immediately following each loaded expiration. These findings in infants are consistent with an integrative neural mechanism that modulates TE in response to the accumulated VE history, including both EEV and rate of lung deflation.  相似文献   

11.
The dynamic studies of the parameters of forced expiration under the conditions of a five-day dry immersion involved seven healthy male subjects aged 20 to 25 years. During forced expiration, spirometry tests were performed simultaneously with tracheal sounds being recorded by a microphone. A number of parameters, including the acoustic duration of the forced-expiration tracheal sounds, the lungs’ forced vital capacity, the 1-s forced expiration volume, the peak expiratory flow, and time of achieving the peak expiratory flow, were recorded before dry immersion, on days 1 and 4 of immersion, and the next day after the termination of immersion. There was a significant decrease (by 8.4%) in the peak expiratory flow on day 1 of immersion; however, by day 4 of immersion, the peak expiratory flow increased by 8.9%, reaching its baseline values. The lungs’ forced vital capacity and the forced expiration volume during 1 second, on the average, did not change throughout the experiment. There was a significant increase (by 17%) in the duration of the forced expiration tracheal sounds after the immersion, which suggests an increase in respiratory resistance and needs further studies. A moderate negative correlation between the duration of the forced expiration tracheal sounds and Gensler’s index (r = ?0.63) was found, whereas the correlation with other spirometry parameters was weak or absent.  相似文献   

12.
Tidal expiratory activity and the time to its peak (TEa, i.e., time of active expiration) were measured from the integration curve of external oblique muscle activity in rabbits. The rabbits were spontaneously breathing under urethan-chloralose anesthesia in the prone position. CO2 rebreathing was performed, and the changes in the temporal profile of the integrated expiratory activity were studied. Hypercapnia increased the tidal expiratory activity before and after bilateral vagotomy. Before vagotomy, the rate of rise (tidal expiratory activity/TEa) increased significantly and TEa was shortened. On the other hand, after vagotomy, the rate of rise remained unchanged and TEa was prolonged. An expiratory off-switch model is postulated according to the quantitative relationship between the time and amplitude of the tidal expiratory activity. The expiratory activity pattern in vagotomized rabbits was similar to that in humans.  相似文献   

13.
Early measurements of autopsied lungs from infants, children, and adults suggested that the ratio of peripheral to central airway resistance was higher in infants than older children and adults. Recent measurements of forced expiration suggest that infants have high flows relative to lung volume. We employed a computational model of forced expiratory flow along with physiological and anatomic data to evaluate whether the infant lung is a uniformly scaled-down version of the adult lung. First, we uniformly scaled an existing computational model of adult forced expiration to estimate forced expiratory flows (FEF) and density dependence for an 18-mo-old infant. The values obtained for FEF and density dependence were significantly lower than those reported for healthy 18-mo-old infants. Next, we modified the model for the infant lung to reproduce standard indexes of expiratory flow [forced expiratory volume in 0.5 s (FEV(0.5)), FEFs after exhalation of 50 and 75% forced vital capacity, FEF between 25 and 75% expired volume] for this age group. The airway sizes obtained for the infant lung model that produced accurate physiological measurements were similar to anatomic data available for this age and larger than those in the scaled model. Our findings indicate that the airways in the infant lung model differ from those in the scaled model, i.e., middle and peripheral airway sizes are larger than result from uniform downscaling of the adult lung model. We show that the infant lung model can be made to reproduce individual flow-volume curves by adjusting lumen area generation by generation.  相似文献   

14.
In five anesthetized paralyzed cats, mechanically ventilated with tidal volumes of 36-48 ml, the isovolume pressure-flow relationships of the lung and respiratory system were studied. The expiratory pressure was altered between 3 and -12 cmH2O for single tidal expirations. Isovolume pressure-flow plots for three lung volumes showed that the resistive pressure-flow relationships were curvilinear in all cases, fitting Rohrer's equation: P = K1V + K2V2, where P is the resistive pressure loss, K1 and K2 are Rohrer's coefficients, and V is flow. Values of K1 and K2 declined with lung inflation, consistent with the volume dependence of pulmonary (RL) and respiratory system resistances (Rrs). During lung deflation against atmospheric pressure, RL and Rrs tended to remain constant through most of expiration, resulting in a nearly linear volume-flow relationship. In the presence of a fixed respiratory system elastance, the shape of the volume-flow profile depended on the balance between the volume and the flow dependence of RL and Rrs. However, the flow dependence of RL and Rrs indicates that their measured values will be affected by all factors that modify expiratory flow, e.g., respiratory system elastance, equipment resistance, and the presence of respiratory muscle activity.  相似文献   

15.
OBJECTIVES: To determine the effect of regular prophylactic inhaled corticosteroids on wheezing episodes associated with viral infection in school age children. DESIGN: Randomised, double blind, placebo controlled trial. SETTING: Community based study in Southampton. SUBJECTS: 104 children aged 7 to 9 years who had had wheezing in association with symptoms of upper and lower respiratory tract infection in the preceding 12 months. INTERVENTIONS: After a run in period of 2-6 weeks children were randomly allocated twice daily inhaled beclomethasone dipropionate 200 micrograms or placebo through a Diskhaler for 6 months with a wash out period of 2 months. Children were assessed monthly. MAIN OUTCOME MEASURES: Forced expiratory volume in 1 second (FEV1); bronchial responsiveness to methacholine (PD20); percentage of days with symptoms of upper and lower respiratory tract infection with frequency, severity, and duration of episodes of upper and lower respiratory symptoms and of reduced peak expiratory flow rate. RESULTS: During the treatment period there was a significant increase in mean FEV1 (1.63 v 1.53 1; adjusted difference 0.09 1 (95% confidence interval 0.04 to 0.14); P = 0.001) and methacholine PD20 12.8 v 7.2 mumol/l; adjusted ratio of means 1.7 (1.2 to 2.4); P = 0.007) in children receiving beclomethasone dipropionate compared with placebo. There were, however, no significant differences in the percentage of days with symptoms or in the frequency, severity, or duration of episodes of upper or lower respiratory symptoms or of reduced peak expiratory flow rate during the treatment period between the two groups. CONCLUSIONS: Although lung function is improved with regular beclomethasone dipropionate 400 micrograms/day, this treatment offers no clinically significant benefit in school age children with wheezing episodes associated with viral infection.  相似文献   

16.
In adult anaesthetized rats the respiratory reactions to microinjections of GABA (10(-5) M) and baclofen (10(-6) M) into Botzinger complex (BC) and pre-Botzinger complex (PBC) were investigated. It was shown, that GABA microinjections into BC shortened inspiratory time and extended expiratory time while respiratory rate was not changed essentially, under this conditions the tidal volume and ventilation were increased. GABA microinjections into PBC significantly inhibited respiratory rhythm due to inspiratory and expiratory time prolongations and reduced tidal volume. The microinjections of baclofen into BC reduced expiration time and ventilation, and increased respiratory frequency whereas microinjections into PBC increased tidal volume without respiratory rate and expiratory time changes. It is suggested that the reactions observed demonstrate the various contribution of GABAergic mechanisms, including GABA(B)-receptors within BC and PBC, in control of respiratory pattern parameters.  相似文献   

17.
Changes of respiratory input impedance during breathing in humans.   总被引:4,自引:0,他引:4  
Changes of total respiratory resistance (Rrs) and reactance (Xrs) were studied between 8 and 32 Hz at five moments during the respiratory cycle in healthy adults (group A) and children (group B) and in patients with chronic obstructive lung disease (group C) and with upper airway obstruction (group D). Two forced oscillation techniques were used: the conventional one and the head generator, with the oscillations applied at the mouth and around the head of the subject, respectively. Both techniques yielded similar results. Rrs is lowest during the transition from inspiration to expiration and highest in the course of expiration, except in group D. Mean Xrs is highest at the transitions from inspiration to expiration or vice versa and lowest during expiration, except in group D. In groups C and D, the increases of Rrs are accompanied by a more pronounced negative frequency dependence of Rrs. The variations of Rrs and Xrs appear to be markedly flow dependent and may be a consequence of the interaction of breathing with oscillatory flows.  相似文献   

18.
We examined the effects of external mechanical loading on glottic dimensions in 13 normal subjects. When flow-resistive loads of 7, 27, and 48 cmH2O X l-1 X s, measured at 0.2 l/s, were applied during expiration, glottic width at the mid-tidal volume point in expiration (dge) was 2.3 +/- 12, 37.9 +/- 7.5, and 38.3 +/- 8.9% (means +/- SE) less than the control dge, respectively. Simultaneously, mouth pressure (Pm) increased by 2.5 +/- 4, 3.0 +/- 0.4, and 4.6 +/- 0.6 cmH2O, respectively. When subjects were switched from a resistance to a positive end-expiratory pressure at comparable values of Pm, both dge and expiratory flow returned to control values, whereas the level of hyperinflation remained constant. Glottic width during inspiration (unloaded) did not change on any of the resistive loads. There was a slight inverse relationship between the ratio of expiratory to inspiratory glottic width and the ratio of expiratory to inspiratory duration. Our results show noncompensatory glottic narrowing when subjects breathe against an expiratory resistance and suggest that the glottic dimensions are influenced by the time course of lung emptying during expiration. We speculate that the glottic constriction is related to the increased activity of expiratory medullary neurons during loaded expiration and, by increasing the internal impedance of the respiratory system, may have a stabilizing function.  相似文献   

19.
The maximal expiratory-flow volume (MEFV) curve in normal subjects is thought to be relatively effort independent over most of the vital capacity (VC). We studied seven normal males and found positive effort dependence of maximal expiratory flow between 50 and 80% VC in five of them, as demonstrated by standard isovolume pressure-flow (IVPF) curves. We then attempted to distinguish the effects of chest wall conformational changes from possible mechanisms intrinsic to the lungs as an explanation for positive effort dependence. IVPF curves were repeated in four of the subjects who had demonstrated positive effort dependence. Transpulmonary pressure was varied by introducing varied resistances at the mouth but effort, as defined by pleural pressure, was maintained constant. By this method, chest wall conformation at a given volume would be expected to remain the same despite changing transpulmonary pressures. When these four subjects were retested in this way, no increases in flow with increasing transpulmonary pressure were found. In further studies, voluntarily altering the chest wall pattern of emptying (as defined by respiratory inductive plethysmography) did however alter maximal expiratory flows, with transpulmonary pressure maintained constant. We conclude that maximal expiratory flow can increase with effort over a larger portion of the vital capacity than is commonly recognized, and this effort dependence may be the result of changes in central airway mechanical properties that occur in relation to changes in chest wall shape during forced expiration.  相似文献   

20.
Phrenic nerve stimulation (PNS) applied at end-expiration allows the investigation of passive upper airway (UA) dynamic during wakefulness. Assuming that phasic UA dilating/stabilizing forces should modify the UA properties when twitches are applied during inspiration, we compared the UA dynamic responses to expiratory and inspiratory twitches (2 s and 200 ms after expiratory and inspiratory onset, respectively) in nine men (mean age 28 yr). This procedure was repeated with a 2-cm mouth opening provided with a closed mouthpiece. The percentage of flow-limited (FL) twitches was significantly higher when PNS was realized during expiration than during inspiration. Maximal inspiratory flow (Vi(max)) of FL twitches was significantly higher for inspiratory twitches (1,383 +/- 42 and 1,185 +/- 40 ml/s). With mouth aperture, Vi(max) decreased with an increase in the corresponding pharyngeal resistance values, and the percentage of twitch with a FL regimen increased but only for inspiratory twitches. We conclude that 1) UA dynamics are significantly influenced by the inspiratory/expiratory timing at which PNS is applied, 2) the improvement in UA dynamic properties observed from expiratory to inspiratory PNS characterizes the overall inspiratory stabilizing effects, and 3) mouth aperture alters the stability of UA structures during inspiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号