首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同水层下水稻对无芒稗的干扰控制作用研究表明,水稻化感作用品种吓一跳、谷梅2号和中156对无芒稗的株高抑制作用比无化感作用品种秀水63和春江11呈显著性差异.随盆栽水稻密度增加,水稻对无芒稗的干扰控制作用加大.在每盆4株栽植密度下,水稻化感作用品种鸡早籼、谷梅2号显著抑制无芒稗植株株高;在每盆32株密度时,水稻化感作用品种吓一跳、PI312777、TN1等对受控无芒稗的干扰控制与无化感作用品种春江11相比,呈显著性水平.  相似文献   

2.
He HB  Wang HB  Fang CX  Lin ZH  Yu ZM  Lin WX 《PloS one》2012,7(5):e37201
Plant-plant interference is the combined effect of allelopathy, resource competition, and many other factors. Separating allelopathy from resource competition is almost impossible in natural systems but it is important to evaluate the relative contribution of each of the two mechanisms on plant interference. Research on allelopathy in natural and cultivated plant communities has been hindered in the absence of a reliable method that can separate allelopathic effect from resource competition. In this paper, the interactions between allelopathic rice accession PI312777, non-allelopathic rice accession Lemont and barnyardgrass were explored respectively by using a target (rice)-neighbor (barnyardgrass) mixed-culture in hydroponic system. The relative competitive intensity (RCI), the relative neighbor effect (RNE) and the competitive ratio (CR) were used to quantify the intensity of competition between each of the two different potentially allelopathic rice accessions and barnyardgrass. Use of hydroponic culture system enabled us to exclude any uncontrolled factors that might operate in the soil and we were able to separate allelopathy from resource competition between each rice accession and barnyardgrass. The RCI and RNE values showed that the plant-plant interaction was positive (facilitation) for PI312777 but that was negative (competition) for Lemont and barnyardgrass in rice/barnyardgrass mixed-cultures. The CR values showed that one PI312777 plant was more competitive than 2 barnyardgrass plants. The allelopathic effects of PI312777 were much more intense than the resource competition in rice/barnyardgrass mixed cultures. The reverse was true for Lemont. These results demonstrate that the allelopathic effect of PI312777 was predominant in rice/barnyardgrass mixed-cultures. The most significant result of our study is the discovery of an experimental design, target-neighbor mixed-culture in combination with competition indices, can successfully separate allelopathic effects from competition.  相似文献   

3.
Despite increasing knowledge of jasmonic acid (JA) and salicylic acid (SA) as signaling compounds involved in the defense of rice against attacking microbes and insect predators, relatively little is known about their levels in the growth media and their interactions with other plant competitors. In present study we quantified JA and SA in a rice-barnyardgrass coexistence system followed by correlation analysis to access rice allelochemicals. Both rice and barnyardgrass biosynthesized JA and SA, but their contents varied greatly with species, tissues and coexistence. There was a positive correlation in contents between rice allelochemicals and JA in roots or SA in shoots. Endogenous JA was exuded from barnyardgrass roots eliciting the production of rice allelochemicals. SA was not detected in growth media as an exogenous signaling compound in a rice-barnyardgrass coexistence system, but SA content in rice shoots was an indicator for distinguishing the allelopathic rice traits from the non-allelopathic ones.  相似文献   

4.
不同供氮条件下水稻的化感抑草作用与资源竞争分析   总被引:11,自引:3,他引:11  
为探讨化感水稻在不同氮素水平下的生物干扰现象,提出了一种新的测试方法———化感竞争分离法(allelopathyandcompetitionseparation basedbioassay,ACS),成功地区分了在稻/稗共生系统中水稻化感作用与资源竞争及其在不同N条件下的反应特性.结果表明,水稻PI312777具有较强的生物干扰能力.在不同N水平下,其资源竞争能力较强且表现稳定,但化感作用潜力则随供N水平的下降而明显增强.水稻Lemont不具化感作用潜力,在供N水平正常或充足条件下,其资源竞争能力减弱,但在N胁迫下却明显增强.这是在环境资源贫乏时,稻/稗共生系统中生态位竞争加剧的结果.  相似文献   

5.
低钾胁迫对水稻(Oryza sativa L.)化感潜力变化的影响   总被引:4,自引:0,他引:4  
研究以国际公认的化感水稻P1312777和非化感水稻Lemont为供体,稗草(Echinochloa cru-galli L.)为受体,采用稻/稗共培体系,研究低钾胁迫对水稻化感潜力变化的影响及其机制。受体稗草的形态指标分析结果表明,低钾胁迫促使化感水稻P1312777对共培稗草的根长、株高和干重的抑制率均升高,增幅远大于非化感水稻Lemont。受体稗草生理生化指标分析结果表明,低钾胁迫下化感与非化感水稻对受体稗草保护酶系(SOD、POD、CAT)及根系活力的抑制作用增强,但化感水稻P1312777比非化感水稻Lemont的抑制程度大,且达极显著差异。实时荧光定量PCR分析结果表明,低钾胁迫下,化感水稻P1312777根部与叶部中酚类代谢的关键酶——苯丙氨酸解氨酶、肉桂酸-4-羟化酶、羟化酶、O-甲基转移酶的基因均上调表达,而非化感水稻根部相应酶均下调表达,叶部除苯丙氨酸解氨酶上调,其余酶也下调表达。而萜类代谢途径关键酶——HMG—CoA还原酶、角鲨烯合酶、单萜烯环化酶、倍半萜烯环化酶、二萜烯环化酶的基因,在两种水稻根部中呈现出相同或相似的表达方式(上调或下调),即HMG—CoA还原酶上调表达,角鲨烯合酶、单萜烯环化酶、倍半萜烯环化酶、二萜烯环化酶下调表达;而在水稻叶部,非化感水稻Lmont相应酶基因表达方式仍然不变,化感水稻P1312777除了角鲨烯合酶下调表达,其余4个酶均上调表达。水稻根系分泌物中酚类物质的HPLC分析结果表明,低钾胁迫下,化感水稻P1312777根系分泌物中,所检出的酚酸类物质总量是正常营养条件下的2.30倍,而非化感水稻Lemont则是正常营养条件下的0.91倍。综合分析认为低钾胁迫下,化感水稻P1312777抑草能力增强主要是由于酚类代谢途径关键酶基因表达上调,导致酚类代谢途径旺盛,分泌出更多的酚类物质,进而破坏受体稗草保护酶系统,抑制了稗草的正常生长。  相似文献   

6.
通过田间试验,研究了FACE(开放式空气CO2浓度升高)条件下C3作物水稻(Oryza sativa)和C4杂草稗草(Echinochloa crusgalli)的生长和竞争关系.结果表明,FACE条件下C3植物水稻生物量和产量增加,叶片数增加,分蘖数增加,叶面积系数(LAI)增大;而C4植物稗草相反.FACE条件下水稻和稗草叶面积均减少,而净同化率(NAR)均增加.FACE条件下水稻稗草比例为1:1时,水稻与稗草的生物量比率、产量比率、LAI比率、茎蘖比率和NAR比率均增加,水稻稗草的竞争关系发生变化,水稻(C3植物)竞争能力增加,稗草(C4植物)竞争能力下降.  相似文献   

7.
通过田间试验,研究了FACE(开放式空气CO2浓度升高)条件下C3作物水稻(Oryza sativa)和C4杂草稗草(Echinochloa crusgalli)的生长和竞争关系,结果表明,FACE条件下C3植物水稻生物量和产量增加,吉片数增加,分蘖数增加,叶面积系数(LAI)增大;而C4植物稗草相反,FACE条件下水稻和稗草中面积均减少,而净同化率(NAR)均增加;FACE条件下水稻-稗草比例为1:1时,水稻与稗草的生物量比率、产量比率、LAI比率、茎蘖比率和NAR比率均增加,水稻-稗草的竞争关系发生变化,水稻(C3植物)竞争能力增加,稗草(C4植物)竞争能力下降。  相似文献   

8.
Abstract

A total of 73 different varietal groups and cultivars of Vietnamese rice (Oryza sativa L.) were evaluated for the allelopathic potential on barnyardgrass (Echinochloa crus-galli) in laboratory, greenhouse and field screenings. In a bioassay, Y1, U17, Nep Thom and Lua Huong, cultivars showed the highest weed-suppressing ability against the length of shoot and root of barnyardgrass. Y-1, Nhi Uu and Khau Van exerted significant inhibitory effects in greenhouse screening. In the field study, Phuc Tien obtained the highest weed-suppressing potential. The allelopathic activity of Vietnamese rice showed cultivar-dependence and varietal group-dependence, of which hybrid group cultivars (H) showed the highest inhibition, followed by the local non-sticky cultivars (LNS), foreign (F), traditional sticky (TS), and traditional upland sticky (TUS), while the least were the local upland non-sticky (LUNS) cultivars. The inhibition exerted in both bioassay and greenhouse was lower than the observed weed suppression in the field by 15–20%; however, rice cultivars against the growth of barnyardgrass in greenhouse screening showed more correlation to the results obtained in the field than that of the laboratory, but both laboratory and greenhouse screenings may arduously reflect the actual weed-suppressing ability of rice exhibited in the field. The obtained data might be useful for the enhancement of the weed-suppressing ability of rice in this country.  相似文献   

9.
尿囊素的合成及其对作物的生化他感作用   总被引:1,自引:0,他引:1  
本文通过乙醛酸和尿素反应人工合成尿囊素,以及对小麦、水稻、萝卜、番茄、黄瓜和大豆等作物的生化他感作用。研究表明:尿囊素对作物的生化他感作用与其浓度有直接关系,10mmol/L浓度对所有受体均表现出强烈的抑制作用,特别是水稻和萝卜种子的萌发完全被抑制。降低浓度则有不同结果,其中对小麦、黄瓜、番茄、萝卜均表现抑制作用,而水稻,尤其是大豆在中低浓度表现为促进作用。进一步对大豆、绿豆和红豆等豆料作物的研究证实:尿囊素对大豆和红豆的幼苗生长均有促进作用,尤其在0.5mmol/L浓度时最为显著。  相似文献   

10.
水稻化感生物测试方法的比较及应用   总被引:7,自引:1,他引:6  
选用8个化感作用潜力各异的水稻品种(系):PI312777、Lemont、Moroberekan、IAC25、IACA7、IAC120、Batatais、Iguape Cateto为供试材料,以田间伴生稗草为受体材料,比较分析了目前较为通用的3种生物测试方法:琼脂迟播共培法(RSA)、石英砂迟播共培法(RSS)和根系分泌物培养法(SRE)对水稻化感潜力的测试效果.结果表明,RSA法应用于测试水稻化感作用潜力的效果最好,RSS法和SRE法的测试结果虽较为一致,但两者都存在不足.据此,运用RSA法对57个水稻材料进行了化感抗草种质资源的初步筛选,从中获得5个强化感作用潜力的水稻材料:Iguape Cateto、PI312777、Azucena、Taichung Native 1和IAC25.  相似文献   

11.
The chemical cross talk between rice and barnyardgrass which is one of the most noxious weeds in rice cultivation was investigated. Allelopathic activity of rice was increased by the presence of barnyardgrass seedlings or barnyardgrass root exudates. Rice allelochemical, momilactone B, concentration in rice seedlings and momilactone B secretion level from rice were also increased by the presence of barnyardgrass seedlings or barnyardgrass root exudates. As momilactone B possesses strong growth inhibitory activity and acts as an allelochemical, barnyardgrass-induced rice allelopathy may be due to the increased momilactone B secretion. These results suggest that rice may respond to the presence of neighboring barnyardgrass by sensing the chemical components in barnyardgrass root exudates and increase allelopathic activity by elevated production and secretion levels of momilactone B. Thus, rice allelopathy may be one of the inducible defense mechanisms by chemical-mediated plant interaction between rice and barnyardgrass and the induced-allelopathy may provide a competitive advantage for rice through suppression of the growth of barnyardgrass.Key words: allelopathy, Echinochloa, chemical interaction, induced-allelopathy, momilactone, Oryza sativaThe chemical cross talk between host and symbiotic or parasitic plants is an essential process for the development of physical connections in symbiosis and parasitism.13 Barnyardgrass is one of the most common and noxious weeds in rice paddy fields.4 Although barnyardgrass is adapted rice production system due to its similarity in growth habit, the reason why barnyardgrass so often invades into the rice paddy fields is unknown. There might be some special interactions between both plant species.Plants are able to accumulate phytoalexins around infection sites of pathogens soon after sensing elicitors of pathogen origin. This accumulation of phytoalexins can protect the plants from further pathogen infection.5,6 Plants are also able to activate defense mechanisms against attacking herbivores by sensing volatile compounds, such as methacrolein and methyl jasmonate, released by herbivore-attacked plant cells. The volatile-sensed plants increase the production of phenolics, alkaloids, terpenes and defense proteins, which reduce herbivory attacks.7,8 Therefore, plants are able to elevate the defense mechanisms against several biotic stress conditions by detection of various compounds.Allelopathy is the direct influence of organic chemicals released from plants on the growth and development of other plants.911 Allelochemicals are such organic chemicals involved in the allelopathy.12,13 Allelochemicals can provide a competitive advantage for host-plants through suppression of soil microorganism and inhibition of the growth of competing plant species because of their antibacterial, antifungal and growth inhibitory activities.3,14,15Rice has been extensively studied with respect to its allelopathy as part of a strategy for sustainable weed management, such as breeding allelopathic rice strains. A large number of rice varieties were found to inhibit the growth of several plant species when these rice varieties were grown together with these plants under the field or/and laboratory conditions.1620 These findings suggest that rice may produce and release allelochemicals into the neighboring environments and may inhibit the growth of the neighboring plants by the allelochemicals.Potent allelochemical, momilactone B, was isolated from rice root exudates.21 Momilactone B inhibits the growth of typical rice weeds like barnyardgrass and Echinochloa colonum at concentrations greater than 1 µM and the toxicity of momilactone B to rice itself was very low.22 In addition, rice plants secrete momilactone B from the roots into the rhizosphere over their entire life cycle.22 The observations suggest rice allelopathy may be primarily dependant on the secretion levels of momilactone B from the rice seedlings.22,23Allelopathic activity of rice exhibited 5.3- to 6.3-fold increases when rice and barnyardgrass seedlings were grown together. Root exudates of barnyardgrass seedlings also increased allelopathic activity and momilactone B concentration in rice seedlings. The increasing the exudate concentration increased the allelopathic activity and momilactone B concentration in rice.24 Thus, the chemical components in barnyardgrass root exudates may affect gene expressions involved in momilactone B biosynthesis. However, effects of the barnyardgrass root exudates on the secretion level of mimilactone B from rice has not yet reported.Rice seedlings were incubated in the medium containing barnyardgrass root exudates for 10 d, and secretion level of momilactone B by rice was determined (Fig. 1). The root exudates increased the secretion level significantly at concentrations greater than 30 mg/L of barnyardgrass root exudates, and increasing the concentration increased the secretion level. At concentrations of 300 mg/L of the root exudates, the secretion level was 10-fold greater than that in control (0 mg of root exudate). There was no significant difference in the osmotic potential between the medium contained barnyardgrass root exudates and control medium (all about 10 mmol/kg), and pH value of the medium was maintained at 6.0 throughout the experiments.25 These results suggest that unknown chemical components in the barnyardgrass root exudates may induce the secretion of momilactone B from rice. As momilactone B possesses strong phytotoxic and allelopathic activities,2123,25 the elevated production and secretion of momilactone B in rice may provide a competitive advantage for root establishment through local suppression of pathogens and inhibition of the growth of competing plant species including barnyardgrass. Thus, barnyardgrass-induced rice allelopathy may be caused by the chemical components in the barnyardgrass root exudates.Open in a separate windowFigure 1Effects of barnyardgrass root exudates on momilactone B secretion level in rice. Rice seedlings were incubated in the medium containing barnyardgrass root exudates for 10 d, and secretion level of momilactone B was determined as described by Kato-Noguchi.24 The experiment was repeated six times with three assays for each determination. Different letters show significant difference (p < 0.01) according to Tukey''s HSD test.Although mechanisms of the exudation are not well understood, it is suggested that plants are able to secrete a wide variety of compounds from root cells by plasmalemma-derived exudation, endoplasmic-derived exudation and proton-pumping mechanisms.3,15 Through the root exudation of compounds, plants are able to regulate the soil microbial community in their immediate vicinity, change the chemical and physical properties of the soil, and inhibit the growth of competing plant species.3,14,15 The present research suggests that rice may be aware of the presence of neighboring barnyardgrass by detection of certain key in barnyardgrass root exudates, and this sensorial function may trigger a signal cascade resulting in increasing rice allelopathy through increasing production of momilactone B and secretion of momilactone B into the rhizosphere. Therefore, rice allelopathy may potentially be an inducible defense mechanism by chemical-mediated plant interactions between rice and barnyardgrass.  相似文献   

12.
P. Wang  C. H. Kong  F. Hu  X. H. Xu 《Plant and Soil》2007,296(1-2):43-51
Allantoin (5-ureidohydantoin) plays an essential role in the assimilation, metabolism, transport, and storage of nitrogen in numerous higher plants, but its ecological implications are largely unknown. In this study allantoin was found in tissues of 11 rice (Oryza sativa) varieties tested, and its structure was characterised by X-ray diffraction analysis to confirm the fact that allantoin was actually obtained from the rice plants. Furthermore, the endogenous allantoin was exuded from the rice roots into the rhizosphere soils and had a great diversity of biological effects on associated weeds and microbes by soil interactions once released. However, allantoin levels in tissues or soils could not be distinguished between the allelopathic and non-allelopathic rice varieties. Field experiments showed that levels of allantoin released from rice varieties varied with their growth stages and reached the maximal levels at the stem elongation or panicle initiation to booting stages and then decreased dramatically. Allantoin could significantly stimulate the germination and growth of Echinochloa crus-galli and populations of soil bacteria and actinomycetes at selected test concentrations (30–500 μg/g), but had no effect on soil fungi. The half-life (t 1/2 ) of allantoin in autoclaved soil (20.2 ± 2.5 h, r 2 = 0.95) was almost three-times longer than in non-autoclaved soil (7.3 ± 1.9 h, r 2 = 0.92), indicating that rapid biodegradation or transformation of allantoin occurs in paddy soil. The results suggest that not only may allantoin play a role in the transport and storage of nitrogen in rice tissues but it may also participate in species interactions between rice and other organisms in paddy soil.  相似文献   

13.
不同类型稻种资源对稗草化感潜力差异评价   总被引:1,自引:0,他引:1  
以120份不同类型稻种资源为研究对象,将田间鉴定和室内叶浸提液处理鉴定方法相结合,对其化感作用差异进行了鉴定评价.结果表明,在田间不同类型稻种资源对稗草生长的抑制效果大小趋势为地方品种>选育品种(系)>引进品种(系)>杂交水稻(恢复系和不育系),对稗草苗鲜重和苗干重的抑制效果大于对苗高的抑制效果.室内叶浸提液处理鉴定结果,不同类型稻种资源间化感作用差异相对较小,但仍以地方品种较强,并对稗草根长的抑制效果大于对稗草苗高的抑制效果.地方品种中具有较强化感作用的种质资源频率高于其他类型品种,今后要加强对地方品种资源的化感潜力鉴定和评价.  相似文献   

14.
化感水稻不同组织水浸提液对稗草的化感作用   总被引:15,自引:2,他引:13  
本研究利用HG1和HG2两个化感水稻品种和稗草为材料,研究了化感水稻品种的叶、叶鞘、根组织的水浸提液对稗草幼苗的化感作用。结果表明:HG1不论是对稗草幼苗的株高还是对稗草幼苗的根都有极强的化感作用,而HG2只对稗草的根有极强的化感作用。在不同组织之间,叶和叶鞘的水浸提液对稗草的抑制作用显著大于根的水浸提液和对照。两个化感水稻对稗草幼苗根的抑制更强于对苗高的抑制。随着稗草密度的增加,稗草受抑程度减少,这可能与单株吸收化感物质的量减少有关。  相似文献   

15.
16.
水稻化感材料控制稗草的基因定位研究   总被引:6,自引:2,他引:6  
徐正浩  何勇  崔绍荣  赵明  张旭  李迪 《应用生态学报》2003,14(12):2258-2260
利用中156/谷梅2号建立的重组自交系(RILs)所构建的包括168个DNA标记,全长为1447.9cM。基本覆盖水稻基因组12条染色体的连锁图,用差时播种共培法的改进方法对134个该群体的株系及其亲本对无芒稗进行了化感作用评价,用无芒稗的植株干重作为表型定位水稻化感控制稗草的基因,用QTL Mapper 1.01b软件进行区间作图,检测到1个与化感作用有关的主效应QTL。该QTL位于第7条染色体上,解释了32.30%的表型变化;检测到6对上位QTL,解释了47.83%的无芒稗干重抑制的变化,主效应和上位效应QTL共解释了80.13%的表型变化。  相似文献   

17.
To explore the molecular mechanism of allelopathic rice in response to low nitrogen (N) supply or accompanying weed stress, allelopathic rice PI 312777 and its counterpart Lemont were grown under low N supply or co-cultured with barnyardgrass [Echinochloa crus-galli (L.) Beauv.] in hydroponics. The suppression subtractive hybridization (SSH) technique was employed to isolate the up-regulated genes in the treated rice accession. The results indicated that the expression of the genes associated with N utilization was significantly up-regulated in allelopathic rice PI 312777, and the higher efficiency of N uptake and its utilization were also detected in PI 312777 than that in Lemont when the two rice accessions were exposed to low N supply. This result suggested that the allelopathic rice had higher ability to adapt to low N stress than its non-allelopathic counterpart. However, a different response was observed when the allelopathic rice was exposed to accompanying weed (barnyardgrass) co-cultured in full Hoagland solution (normal N supply). It showed that the expression of the genes associated with allelochemical synthesis and its detoxification were all up-regulated in the allelopathic rice when co-cultured with the target weed under normal N supply. The results suggested that the allelopathic rice should be a better competitor in the rice-weed co-culture system, which could be attributed to increasing de novo biosynthesis and detoxification of allelochemicals in rice, consequently resulting in enhanced allelopathic effect on the target and preventing the autotoxicity in this process. These findings suggested that the accompanying weed, barnyardgrass is not only the stressful factor, but also one of the triggers in activating allelopathy in rice. This implies that the allelopathic rice is sensible of the existing target in chemical communication.  相似文献   

18.
Abstract

The growth inhibitory activity of seven rice (Oryza sativa L.) cultivars and the secretion level of momilactone B from these rice cultivars were determined to understand chemical basis of the interaction of rice with other plant species. All rice cultivars inhibited the growth of hypocotyls and roots of lettuce (Lactuca sativa L.) seedlings when the lettuce was grown together with the rice, and showed different range of the inhibitory activity. These results suggest that all rice cultivars may possess allelopathic activity and the activity may be cultivar dependent. Momilactone B, which is a potent growth inhibitor, was found in root exudates of all rice cultivars, and the momilactone B concentration was also cultivar-dependent. The allelopathic activity of each rice cultivar was closely correlated with momilactone B concentration in the root exudates. The present results suggest that rice cultivars possess various allelopathic activities and their allelopathic activity may depend on the secretion level of momilactone B. Therefore, momilactone B may play an important role in rice allelopathy and in the chemical interactions of rice with other plant species.  相似文献   

19.
Allelopathy has been considered not only as an environmentally friendly approach for weed control but also a potential reason causing autotoxicity in crop production. In this study, the responses of seeds of lettuce, wheat, rice, clover broomrape (CB), and sunflower broomrape (SB) to the root exudates of rice cultivars were studied. Lettuce germination was promoted by root exudates of Yliangyou 3218 and I-Kung-Pao. Wheat seedling growth was inhibited by all nine rice species. I-Kung-Pao and Ganxin 203 exerted greater autotoxicity than other cultivars. Yongyou 15 and I-Kung-Pao induced the highest germination rate of CB, while Yongyou 13, Zhongzao 22, and I-Kung-Pao induced the highest germination rate of SB. A significantly correlation was noted between germination-inducing ability on broomrape seeds and allelopathic effects on target plants. It is suggested that using broomrape seeds germination is a better receptor for the identification of rice allelopathic potential.  相似文献   

20.
水稻和稗草共生土壤微生物生物量碳及酶活性的变化   总被引:8,自引:0,他引:8  
李海波  孔垂华 《应用生态学报》2008,19(10):2234-2238
以稻田稗草、化感水稻PI312777和普通水稻辽粳9为试材,研究了田间稗草和水稻1∶1共生条件下,土壤微生物生物量碳及脱氢酶、脲酶和转化酶活性的变化.结果表明:在稗草 的干扰下,化感水稻PI312777根区土壤微生物生物量碳含量比单作减少了 50.52%(P<0.01),而行间土壤微生物生物量碳含量增加;普通水稻辽粳9根区土壤 微生物生物量碳含量比单作减少了38.99%(P<0.01),但其行间土壤微生物生物量碳含量无明显变化.两个水稻品种根区土壤脱氢酶活性均被显著抑制(P<0.05),下降率都在20%以上;PI312777根区土壤脲酶和转化酶活性均被显著促进(P<0.01);而辽粳9根区土壤转化酶活性也被显著抑制(P<0.01),但脲酶活性无明显变化.化感水稻根区土壤微生物生物量碳含量的显著减少及脲酶、转化酶活性的增加是其化感特性的表现,表明土壤微生物和酶均参与了水稻和稗草的种间作用,化感水稻具有抗稗草干扰的明显优势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号