首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider an interaction of prey and predator species where prey species have the ability of group defence. Thresholds, equilibria and stabilities are determined for the system of ordinary differential equations. Taking carrying capacity as a bifurcation parameter, it is shown that a Hopf bifurcation can occur implying that if the carrying capacity is made sufficiently large by enrichment of the environment, the model predicts the eventual extinction of the predator providing strong support for the so-called ‘paradox of enrichment’.  相似文献   

2.
Intraguild predation, a form of omnivory that can occur in simple food webs when one species preys on and competes for limiting resources with another species, can have either a stabilizing effect (McCann and Hastings in Proc. R. Soc. Lond. B 264:1249-1254, 1997) or a destabilizing effect (Holt and Polis in Am. Nat. 149:745-764, 1997), depending on the assumptions of the system. Another type of behavior that has been observed in simple food web experiments (Murdoch in Ecol. Monogr. 39:335-354, 1969) is prey switching. Prey switching can occur when the predator prefers the most abundant prey. This has also been shown to be capable of having either a stabilizing effect or a destabilizing effect and even possibly lead to predator extinction (VanLeeuwen et al. in Ecology 88:1571-1581, 2007). Therefore, it is clear that incorporating prey switching into an intraguild predation model could lead to unexpected consequences. In this paper, we propose and explore such a model.  相似文献   

3.
Flexible architecture of inducible morphological plasticity   总被引:1,自引:0,他引:1  
1. Predator-induced morphological defences are produced in response to an emergent predator regime. In natural systems, prey organisms usually experience temporal shifting of the composition of the predator assemblage and of the intensity of predation risk from each predator species. Although, a repetitive morphological change in response to a sequential shift of the predator regime such as alteration of the predator species or diminution of the predation risk may be adaptive, such flexible inducible morphological defences are not ubiquitous. 2. We experimentally addressed whether a flexible inducible morphological defence is accomplished in response to serial changes in the predation regime, using a model prey species which adopt different defensive morphological phenotypes in response to different predator species. Rana pirica (Matsui) tadpoles increased body depth and tail depth against the predatory larval salamander Hynobius retardatus (Dunn); on the other hand, they only increased tail depth against the predatory larval dragonfly Aeshna nigroflava (Martin). 3. Rana pirica tadpoles with the predator-specific phenotypes were subjected to removal or exchange of the predator species. After removal of the predator species, tadpoles with each predator-specific phenotype changed their phenotype to the nondefensive basic one, suggesting that both predator-specific phenotypes are costly to maintain. After an exchange of the predator species, tadpoles with each predator-specific phenotype reciprocally, flexibly shifted their phenotype to the now more suitable predator-specific one only by modifying their body part. The partial modification can effectively reduce time and energy expenditures involved in repetitive morphological changes, and therefore suggest that the costs of the flexible morphological changes are reduced.  相似文献   

4.
The escalation of defensive/offensive arms is ubiquitous in prey-predator evolutionary interactions. However, there may be a geographically varying imbalance in the armaments of participating species that affects the outcome of local interactions. In a system involving the Japanese camellia (Camellia japonica) and its obligate seed predator, the camellia weevil (Curculio camelliae), we investigated the geographic variation in physical defensive/offensive traits and that in natural selection on the plant's defense among 17 populations over a 700-km-wide area in Japan. The sizes of the plant defensive apparatus (pericarp thickness) and the weevil offensive apparatus (rostrum length) clearly correlated with each other across populations. Nevertheless, the balance in armaments between the two species was geographically structured. In the populations for which the balance was relatively advantageous for the plant's defense, natural selection on the trait was stronger because in the other populations, most plant individuals were too vulnerable to resist the attacks of the weevil, and their seeds were infested independent of pericarp thickness. We also found that the imbalance between the defensive/offensive armaments and the intensity of natural selection showed clear latitudinal clines. Overall, our results suggest that the imbalance of armament between sympatric prey and predator could determine the strength of local selection and that climatic conditions could affect the local and overall trajectory of coevolutionary arms races.  相似文献   

5.
D Mukherjee  A B Roy 《Bio Systems》1992,27(3):171-178
This paper deals with a complex prey-predator system, consisting of two prey species and two types of predator (dominant and mutant of the same species) with predatory switching. We derived conditions for existing polymorphism with respect to a switching property and found a condition for feasible equilibrium to be globally asymptotically stable. We have shown parameter regions for a stable and an unstable feasible equilibrium.  相似文献   

6.
Inducible defenses of prey and inducible offenses of predators are drastic phenotypic changes activated by the interaction between a prey and predator. Inducible defenses occur in many taxa and occur more frequently than inducible offenses. Recent empirical studies have reported reciprocal phenotypic changes in both predator and prey. Here, we model the coevolution of inducible plasticity in both prey and predator, and examine how the evolutionary dynamics of inducible plasticity affect the population dynamics of a predator-prey system. Under a broad range of parameter values, the proportion of predators with an offensive phenotype is smaller than the proportion of prey with a defensive phenotype, and the offense level is relatively lower than the defense level at evolutionary end points. Our model also predicts that inducible plasticity evolves in both species when predation success depends sensitively on the difference in the inducible trait value between the two species. Reciprocal phenotypic plasticity may be widespread in nature but may have been overlooked by field studies because offensive phenotypes are rare and inconspicuous.  相似文献   

7.
Invasive species cause deep impacts on ecosystems worldwide, contributing to the decline and extinction of indigenous species. Effective defences against native biological threats in indigenous species, whether structural or inducible, often seem inoperative against invasive species. Here, we show that tadpoles of the Iberian green frog detect chemical cues from indigenous predators (dragonfly nymphs) and respond by reducing their activity and developing an efficient defensive morphology against them (increased tail depth and pigmentation). Those defensive responses, however, were not activated against a highly damaging invasive predator (red swamp crayfish). Induced defences increased tadpole survival when faced against either indigenous dragonflies or invasive crayfish, so its inactivation in the presence of the invasive predator seems to be due to failure in cue recognition. Furthermore, we tested for local adaptation to the invasive predator by comparing individuals from ponds either exposed to or free from crayfish. In both cases, tadpoles failed to express inducible defences against crayfish, indicating that ca 30 years of contact with the invasive species (roughly 10-15 frog generations) have been insufficient for the evolution of recognition of invasive predator cues.  相似文献   

8.
Man has become the main predator of many animal species. Because the characteristics of humans are quite distinct with respect to other terrestrial predators, the cost and benefits of defence behaviour may also differ. In this paper, we study the factors affecting nest defence behaviour of the Eurasian Kestrel ( Falco tinnunculus canariensis ) against a potential human predator throughout the reproductive cycle, as well as the balance of cost and benefits of this behaviour. The study population inhabits the island of Tenerife, and the nests are located on cliffs. The intensity of the defensive behaviour was unrelated to the frequency of human visits, prey abundance (Orthoptera, Coleoptera, lizards, birds and rodents), laying date, or number of offspring in the nest. Both males and females increased their defensive behaviour as the nesting period advanced, particularly when the chicks were older than 15 days. Moreover, the intensity of the defensive behaviour, especially of males, decreased when nests were more inaccessible. Although nest defence behaviour against humans appeared to be similar to those against other predators, the benefits are not clear because the probability of nest robbing was greater for these more aggressive pairs.  相似文献   

9.
Prey species gain protection by imitating signals of unpalatable models in defensive mimicry. Mimics have been traditionally classified as Batesian (palatable mimic resembling an unpalatable model) or Müllerian (unpalatable mimic resembling a similarly unpalatable model). However, recent studies suggest that rather than discrete categories, the phenomenon of mimicry can be better understood as a continuum. The level of unpalatability of defended prey is a key factor in determining the type of mimetic relationship. Herein, we used insects (ladybugs and true bugs) from a putative European “red–black” mimetic complex as experimental models of defended species and crickets as a control prey. We offered the prey to two species of sympatric invertebrate predators (praying mantis and spider) and video recorded the interactions. We tested three alternative hypotheses, namely (i) the three red–black species tested are similarly defended against both predators; (ii) some red–black species are better defended than others against both predator species, and (iii) the effectiveness of the red–black species defenses is predator dependent. Both predators attacked all prey types with a similar frequency. But while all three red–black species similarly elicited aversive behaviors in spiders, the mantises' aversive reactions varied depending on the prey species. Our results provide support to the third hypothesis, suggesting that the same prey species can fall into different parts of the spectrum of palatability–unpalatability depending on the type of predator.  相似文献   

10.
We consider the effect of a top predator on the stability of a system of competing prey species. In the first instance, this is done in detail for two prey species where the predators either behave in a completely random way, interfere with each other or switch to the more abundant prey at any time. The analysis is then extended to the case of n similar prey species, either competing equally or competing with their two nearest neighbours in exploiting a one-dimensional resource spectrum. It is found that predator switching can produce local stability when the prey species overlap completely and even when the competition coefficients are greater than one. This, however, is more difficult to attain for nearest neighbour competition. In either case switching is advantageous to the predators, since it allows them to coexist successfully with their prey over a wider range of conditions.  相似文献   

11.
Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has “top down” regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.  相似文献   

12.
Inducible defenses of prey and inducible offenses of predators are examples of adaptive phenotypic plasticity. Although evolutionary ecologists have paid considerable attention to the adaptive significances of these strategies, they have rarely focused on their evolutionary impacts on the interacting species. Because the functional phenotypes of predator and prey determine strength of interactions between the species, the inducible plasticity can modify selective pressure on trait distribution and, ultimately, trait evolution in the interacting species. We experimentally tested this hypothesis in a predator–prey system composed of salamander larvae (Hynobius retardatus) and frog tadpoles (Rana pirica) capable of expressing antagonistic inducible offensive or defensive traits, an enlarged gape in the salamander larvae and a bulgy body in the tadpoles, when predator–prey interactions are strong. We examined selection strength on the tadpole’s defensive trait by comparing survival rates of tadpoles with different defensive levels under predation pressure from offensive or non-offensive salamander larvae. Survival rates of more-defensive tadpoles were greater than those of less-defensive tadpoles only when the tadpoles were exposed to offensive salamander larvae; thus, the predator’s offensive phenotype could select for an amplified defensive phenotype in their prey. As the expression of inducible offenses by H. retardatus larvae depends greatly on the composition of its ecological community, the inducible defensive bulgy morph of R. pirica tadpoles might have evolved in response to the variable expression of the H. retardatus offensive larval phenotype.  相似文献   

13.
The turnip sawfly, Athalia rosae Linnaeus, is a pest on cruciferous crops. Larvae sequester secondary plant compounds, namely glucosinolates, in their haemolymph. When attacked, their integument is easily disrupted and a droplet of haemolymph is exuded ('easy bleeding'). This has been shown to be an effective, chemical-based, defence against invertebrate predators. The efficiency of this proposed defence was tested against a vertebrate predator, using groups of the iguanid lizard Anolis carolinensis Voigt as a model predator. Caterpillars of Pieris rapae Linnaeus and Pieris brassicae Linnaeus served as control prey species that do not sequester glucosinolates. Lizards attacked far fewer sawfly larvae than pierid caterpillars. Several of the sawfly larvae were rejected after an initial attack, demonstrating unpalatability to the lizards, while the Pieris larvae were not rejected. However, P. rapae larvae topically treated with extracts of haemolymph of A. rosae had no deterrent effect on the lizards and no avoidance learning occurred over a period of two weeks. Adult sawflies do not easy bleed but have glucosinolates carried over from the larval stage. Lizards attacked them at a higher rate than larvae and they were never rejected. The results suggest that for the defensive effectiveness of the pest sawfly species against vertebrates the chemical cue is not necessarily sufficient. Movement and colour may be important additional factors triggering the behaviour of vertebrate predators.  相似文献   

14.
In nature, prey and predator species are embedded in complex networks of ecological interactions. As a consequence, organism level reactions such as predator-induced prey defenses will not only influence the dynamics of both the prey exhibiting the response and its inducer predator, but also that of a wider set of populations that interact directly or indirectly with them.In this work our aim is to determine the consequences of community-level side effects, defense specificity, and timing of inducible defenses for the stability of model ecological communities. We shall consider small webs of two and three trophic levels, containing one to three species per level. The model food webs include well-known community motifs that will be studied by means of qualitative analyses of the community matrix. Our results show that side effects that suppress non-focal interactions were able to decrease community stability, particularly when defensive responses were delayed. Conversely, side effects that increase the strength of non-focal interactions stabilized communities. This work also shows that as the defensive response became more specific, it is more likely to obtain a stable community. In general terms, our results revealed that delayed responses decrease the likelihood of system stability. Our results highlight the importance of the underlying biology of species interactions for the definition of the proper topology, and consequently dynamics, of complex ecological networks.  相似文献   

15.
Many organisms use inducible defenses as protection against predators. In animals, inducible defenses may manifest as changes in behavior, morphology, physiology, or life history, and prey species can adjust their defensive responses based on the dangerousness of predators. Analogously, prey may also change the composition and quantity of defensive chemicals when they coexist with different predators, but such predator‐induced plasticity in chemical defenses remains elusive in vertebrates. In this study, we investigated whether tadpoles of the common toad (Bufo bufo) adjust their chemical defenses to predation risk in general and specifically to the presence of different predator species; furthermore, we assessed the adaptive value of the induced defense. We reared tadpoles in the presence or absence of one of four caged predator species in a mesocosm experiment, analyzed the composition and quantity of their bufadienolide toxins, and exposed them to free‐ranging predators. We found that toad tadpoles did not respond to predation risk by upregulating their bufadienolide synthesis. Fishes and newts consumed only a small percentage of toad tadpoles, suggesting that bufadienolides provided protection against vertebrate predators, irrespective of the rearing environment. Backswimmers consumed toad tadpoles regardless of treatment. Dragonfly larvae were the most voracious predators and consumed more predator‐naïve toad tadpoles than tadpoles raised in the presence of dragonfly cues. These results suggest that tadpoles in our experiment had high enough toxin levels for an effective defense against vertebrate predators even in the absence of predator cues. The lack of predator‐induced phenotypic plasticity in bufadienolide synthesis may be due to local adaptation for constantly high chemical defense against fishes in the study population and/or due to the high density of conspecifics.  相似文献   

16.
One of the most important questions in biological control is whether multiple natural enemies can provide greater suppression of agricultural pests than a single best enemy. Intraguild predation (IGP) among natural enemies has often been invoked to explain failure of biological control by multiple enemies, and classical theoretical studies on IGP have supported this view. However, empirical studies are inconclusive and have yielded both positive and negative results. We extend classical models by considering anti-predator behavior of pests and diet switching of omnivorous natural enemies, and examine their effects on pest control. We assume that the pest can adaptively allocate effort toward the specific defense against each predator, and that the omnivorous natural enemy can consume disproportionately more of the relatively abundant prey (switching predation) by type III functional responses to prey items. The model predicts that adaptive defense augments pests but favors introduction of multiple natural enemies for controlling pests if IGP is weak. In contrast, switching predation does not make pest control by multiple natural enemies advantageous as in classical studies, in the absence of adaptive defense. However, switching predation reduces the necessity of defense by the pest against the omnivore and offsets the effect of adaptive defense. Thus, it makes the introduction of multiple natural enemies advantageous for pest control when the pest employs adaptive defense even if IGP is strong. These results suggest that types and combinations of behavior of prey and predators may greatly affect qualitative outcomes of biological control by multiple natural enemies.  相似文献   

17.
The evolution of defensive traits is driven both by benefits gained from protection against enemies and by costs of defence production. We tested the hypothesis that specialisation of herbivores on toxic host plants, accompanied by the ability to acquire plant defensive compounds for herbivore defence, is favoured by the lower costs of sequestration compared to de novo synthesis of defensive compounds. We measured physiological costs of chemical defence as a reduction in larval performance in response to repeated removal of secretions (simulating predator attack) and compared these costs between five species synthesising defences de novo and three species sequestering salicylic glucosides (SGs) from their host plants. Experiments simulating low predator pressure revealed no physiological costs in terms of survival, weight and duration of development in any of study species. However, simulation of high predation caused reduction in relative growth rate in Chrysomela lapponica larvae producing autogenous defences more frequently, than in larvae sequestering SGs. Still meta-analysis of combined data showed no overall difference in costs of autogenous and sequestered defences. However, larvae synthesising their defences de novo demonstrated secretion-conserving behaviour, produced smaller amounts of secretions, replenished them at considerably lower rates and employed other types of defences (regurgitation, evasion) more frequently when compared to sequestering larvae. These latter results provide indirect evidence for biosynthetic constraints for amounts of defensive secretions produced de novo, resulting in low defence effectiveness. Lifting these constraints by sequestration may have driven some leaf beetle lineages toward sequestration of plant allelochemicals as the main defensive strategy.  相似文献   

18.
Predator and prey relationships are dynamic and interrelated. Thus, any offensive behaviour will vary according to differing defensive behaviours, or vice versa, within each species in any predator–prey system. However, most studies are one‐sided as they focus on just one behaviour, that of either the predator or prey. Here, we examine both predatory behaviour of an oophagus katydid and antipredator behaviour by a frog with egg‐stage parental care. Katydid offensive behaviour and predation success was greater in females and increased with predator maturity and size. Frog defensive behaviour was sex specific, probably because only mothers provide parental care. Defensive behaviour could be active, such as charging predators, or passive, such as sheltering eggs, with greater active defence against larger predators; neither was influenced by offspring age. These results are contrary to existing theory, which argues parental investment ought to be negatively correlated with parental predation risks and affected by offspring age. This study highlights the use of antipredator behaviour to test predictions of parental investment theories in amphibians. In addition, it illustrates the need to consider factors that influence both species concurrently when examining the complex interaction between predators and parents.  相似文献   

19.
The dynamics of a predator–prey system are studied, with a comparison of discrete and continuous strategy spaces. For a \(2 \times 2\) system, the average strategies used in the discrete and continuous case are shown to be the same. It is further shown that the inclusion of constant prey switching in the discrete case can have a stabilising effect and reduce the number of available predator types through extinction.  相似文献   

20.
Roy S  Alam S  Chattopadhyay J 《Bio Systems》2005,82(2):143-153
The coexistence of competitive species with a shared predator is well established. The effect of 'food-value' on predator-prey dynamics has also received much attention. However, the study of a nutrient bound of prey, specifically on predator-mediated competitive-coexistence has not received much attention. Here we study the effects of the caloric content or a nutrient bound of prey on the dynamics of competitive-coexistence with the shared predator in a specific model. We propose and analyze a mathematical model for exploitative competition of two prey species with a shared predator. The change of dynamic stability due to the variation of a nutrient bound of each prey on predator-mediated dynamics is studied through extensive numerical experiments. Our analytical and numerical results demonstrate that variation in a nutrient bound promotes the switching of dynamics and may be treated as a driving force for the dynamics of competitive-coexistence with the shared predator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号