共查询到20条相似文献,搜索用时 15 毫秒
1.
Simple patch-occupancy models of competitive metacommunities have shown that coexistence is possible as long as there is a competition-colonization tradeoff such as that of superior competitors and dispersers. In this paper, we present a model of competition between three species in a dynamic landscape, where patches are being created and destroyed at a different rate. In our model, species interact according to a linear non-transitive hierarchy, such that species Y(3) outcompetes and can invade patches occupied by species Y(2) and this species in turn can outcompete and invade patches occupied by the inferior competitor Y(1). In this hierarchy, inferior competitors cannot invade patches of species with higher competitive ability. Analytical results show that there are regions in the parameter space where coexistence can occur, as well as regions where each of the species exists in isolation depending on species' life-history traits associated with their colonization abilities and extinction proneness as well as with the dynamics of habitat patches. In our model, the condition for coexistence depends explicitly on patch dynamics, which in turn modulate the limiting similarity for species coexistence. Coexistence in metacommunities inhabiting dynamic landscapes although possible is harder to attain than in static ones. 相似文献
2.
Ecological theory provides explanations for exclusion or coexistence of competing species. Most theoretical works on competition dynamics that have shaped current perspectives on coexistence assume a simple life cycle. This simplification, however, may omit important realities. We present a simple two-stage structured competition model to investigate the effects of life-history characteristics on coexistence. The achievement and the stability of coexistence depend not only on competition coefficients but also on a set of life-history parameters that reflect the viability of an individual, namely, adult death rate, maturation rate, and birth rate. High individual viability is necessary for a species to persist, but it does not necessarily facilitate coexistence. Intense competition at the juvenile or adult stage may require higher or lower viability, respectively, for stable coexistence to be possible. The stability mechanism can be explained by the refuge effect of the less competitive stage, and the birth performance, which preserves the less competitive stage as a refuge. Coexistence might readily collapse if the life-history characteristics, which together constitute individual viability, change, even though two species have an inherent competitive relation conducive to stable coexistence. 相似文献
3.
4.
Coexistence of plant species with similar niches 总被引:14,自引:0,他引:14
5.
The outcome of competition among species is influenced by the spatial distribution of species and effects such as demographic stochasticity, immigration fluxes, and the existence of preferred habitats. We introduce an individual-based model describing the competition of two species and incorporating all the above ingredients. We find that the presence of habitat preference—generating spatial niches—strongly stabilizes the coexistence of the two species. Eliminating habitat preference—neutral dynamics—the model generates patterns, such as distribution of population sizes, practically identical to those obtained in the presence of habitat preference, provided an higher immigration rate is considered. Notwithstanding the similarity in the population distribution, we show that invasibility properties depend on habitat preference in a non-trivial way. In particular, the neutral model results more invasible or less invasible depending on whether the comparison is made at equal immigration rate or at equal distribution of population size, respectively. We discuss the relevance of these results for the interpretation of invasibility experiments and the species occupancy of preferred habitats. 相似文献
6.
We report a novel mechanism for species coexistence that does not invoke a trade-off relationship in the case of outbreeding flowering plants. Competition for pollination services may lead to interspecific segregation of the timing of flowering among plants. This, in turn, sets limits on the pollination services, which restrain the population growth of a competitively superior species, thereby allowing an inferior species to sustain its population in the habitat. This explains the often-observed tendency for interspecific differentiation in the timing of flowering between coexisting plants. It also predicts that the introduction of an efficient pollinator to a habitat may cause the extinction of competitively inferior plant species. 相似文献
7.
Thomas J. Gush Barbara L. Bentley Glenn D. Prestwich Barbara L. Thorne 《Biochemical Systematics and Ecology》1985,13(3):329-336
Nineteen monoterpenes and 13 diterpenes were distinguished in soldier defensive secretions of four species of Nasutitermes. Samples of N. columbicus, N. corniger, N. ephratae and N. nigriceps were collected in Costa Rica and Panama. Interspecifically, these species can be differentiated by monoterpenes, which exhibit a complex pattern. Intraspecifically, there is detectable variation in monoterpenes and diterpenes, each of which allows discrimination of four populations of N. corniger. Similarity between two Pacific populations of N. corniger from different environments, a tropical dry forest and a rainforest, suggests there is no climatic influence on chemical compositions of defensive secretions. In addition, results from Costa Rica provide evidence that the Atlantic population of N. corniger is derived from Pacific populations. 相似文献
8.
9.
Mid-brain dopaminergic (DA) neurons display two functionally distinct modes of electrical activity: low- and high-frequency firing. The high-frequency firing is linked to important behavioral events in vivo. However, it cannot be elicited by standard manipulations in vitro. We had suggested a two-compartmental model of the DA cell that united data on firing frequencies under different experimental conditions. We now analyze dynamics of this model. The analysis was possible due to introduction of timescale separation among variables. We formulate the requirements for low and high frequencies. We found that the modulation of the SK current gating controls the frequency rise under applied depolarization. This provides a new mechanism that limits the frequency in the control conditions and allows high-frequency responses to depolarization if the SK current gating is downregulated. The mechanism is based on changing Ca2 + balance and can also be achieved by direct modulation of the balance. Interestingly, such changes do not affect the high-frequency oscillations under NMDA. Therefore, altering Ca2 + balance allows combining the high-frequency response to NMDA activation with the inability of other treatments to effectively elevate the frequency. We conclude that manipulations affecting Ca2 + balance are most effective in controlling the frequency range. This modeling prediction gives a clue to the mechanism of the high-frequency firing in the DA neuron in vivo and in vitro. 相似文献
10.
11.
Plants can adapt to grazing environments by developing defensive traits, such as spines and toxins, or having a small phenotype,
such as short and prostrate growth forms. This study examined facilitative and competitive interactions between species with
different types of grazing adaptation. We predicted that large species with defensive traits sometimes protect grazing-adapted
species without defensive traits from herbivores, but competitively suppress them overall. We conducted an experiment using
fences and removals of an unpalatable plant in the long-term deer grazing habitat of Nara Park in Nara, Japan. We evaluated
the seasonal variations in the facilitative and competitive effects of a defensive perennial, Urtica thunbergiana, on the growth, survival, reproduction, and final fitness of a small palatable annual species, Persicaria longiseta, during a growing season. The populations of the two species in the park have adapted to the grazed habitat by increasing
the density of stinging hairs (Urtica) and developing inherently short shoots and small leaves (Persicaria). We found that Urtica individuals had facilitative effects on the growth of Persicaria individuals under grazing during a few periods of the growing season, but had neutral effects on survival and plant fitness
throughout the season. In the fenced plots, Urtica had negative effects on the growth, survival, and reproduction of Persicaria. These results suggest that the relative importance of the facilitative and competitive effects of Urtica on Persicaria fluctuated due to seasonal variations in grazing pressure and vegetative productivity. Although well-defended plants often
facilitate less-defended species, we conclude that the facilitative effects of Urtica on Persicaria are limited in a plant community with a long history of intensive grazing. 相似文献
12.
Prey switching in four species of carnivorous stoneflies 总被引:1,自引:0,他引:1
J. M. Elliott 《Freshwater Biology》2004,49(6):709-720
1. Previous studies compared the functional responses to their prey, and both intraspecific and interspecific interference, in mature larvae of Dinocras cephalotes, Perla bipunctata, Isoperla grammatica and Perlodes microcephalus. The present study examines switching by larvae of the same species presented with different proportions of two contrasting prey types; larvae of Baetis rhodani and Chironomus sp. In each experiment, 200 prey were arranged in nine different combinations of the two prey types (20 : 180, 40 : 160, 60 : 140, 80 : 120, 100 : 100, 120 : 80, 140 : 60, 160 : 40, 180 : 20). Prey were replaced as they were eaten. A model predicted the functional response in the absence of switching and provided a null hypothesis against which any tendency for switching could be tested. 2. No evidence for prey switching by Dinocras and Perla was obtained, both species showing a slight preference for Baetis over Chironomus. Prey switching occurred in Isoperla and Perlodes. As the relative abundance of one prey type increased in relation to the alternative, the proportion eaten of the former prey changed from less to more than expected from its availability, the relationship being described by an S‐shaped curve. Isoperla and Perlodes switched to a preference for Baetis when its percentage of the total available prey exceeded 57 and 42%, respectively. Equivalent values for Chironomus were 43 and 58% for Isoperla and Perlodes, respectively. Switching was strongest in Perlodes. 3. Non‐switching in Dinocras and Perla was related to their feeding strategy, both species being more successful when using a non‐selective ambush strategy at dusk and dawn rather than a search strategy during the night. Both Isoperla and Perlodes used a search strategy. The smaller Isoperla fed chiefly at dusk and dawn, and preferred Chironomus larvae, whereas most of the larger Perlodes fed continuously from dusk to dawn and preferred Baetis larvae. 相似文献
13.
In this paper, we consider a model for a chemostat in which two microbial species compete for a single rate-limiting nutrient, while one of the species feeds on another. Under certain simplifying hypotheses, such a chemostat can be described by a system of three nonlinear ordinary differential equations. A theoretical study is conducted to characterize the possible types of solutions. A limit cycle solution was obtained for some parametric values of the system indicating that coexistence of the two species is possible in a significant range of the operating parameters. 相似文献
14.
Scale-eating cichlids in Lake Tanganyika exhibit genetically determined lateral asymmetry, especially in their mouth-opening. Frequencies of the morphs oscillate due to strong frequency-dependent selection caused by the switching of prey's attention, and its delayed effect by their growth period. Two scale-eaters coexist in similar densities at south shore of the lake, with their morph frequencies oscillating in phase. We investigated the effect of the oscillation in morph frequencies to the coexistence of competing species. If the difference of two species' growth period is large, the oscillation facilitates the coexistence of the two species, while small difference of growth periods hinders their coexistence. In the latter case, the species with shorter growth period drives the other species to the extinction. 相似文献
15.
We combine stoichiometry theory and optimal foraging theory into the MacArthur consumer-resource model. This generates predictions for diet choice, coexistence, and community structure of heterotroph communities. Tradeoffs in consumer resource-garnering traits influence community outcomes. With scarce resources, consumers forage opportunistically for complementary resources and may coexist via tradeoffs in resource encounter rates. In contrast to single currency models, stoichiometry permits multiple equilibria. These alternative stable states occur when tradeoffs in resource encounter rates are stronger than tradeoffs in elemental conversion efficiencies. With abundant resources consumers exhibit partially selective diets for essential resources and may coexist via tradeoffs in elemental conversion efficiencies. These results differ from single currency models, where adaptive diet selection is either opportunistic or selective. Interestingly, communities composed of efficient consumers share many of the same properties as communities based on substitutable resources. However, communities composed of relatively inefficient consumers behave similarly to plant communities as characterized by Tilman’s consumer resource theory. The results of our model indicate that the effects of stoichiometry theory on community ecology are dependent upon both consumer foraging behavior and the nature of resource garnering tradeoffs. 相似文献
16.
Most previous models of populations mixed for reproductive mode have omitted important local interactions between sexual and asexual individuals. We propose a cellular automaton model where local rules focus on fertilization and colonization. This model produces rich sets of data which are then studied by means of spatial statistics. Results point to the fixation of one of the two reproductive modes in the landscape. However, some examples of coexistence of sexual and asexual conspecifics over long periods of time are also found. This model is an example of a CA that diverges from its mean field approximation. The formation of sexual and asexual clusters reduces effective colonization rate in the CA and may account for this behaviour. 相似文献
17.
JapaneseTetranychus urticae is highly variable in diapause traits both among populations from different localities and host plants, as well as within populations. Many southern populations have almost lost their diapause capacity, and those from central Japan (34–37°N) are a mixture of diapausing (DP) and non-diapausing (ND) individuals. A simple mathematical model was constructed for analyzing the conditions under which the ND is more favourable than the DP in a system consisting of two different microhabitats: L, in which winter is lethal for the ND, and O, in which some of the ND can overwinter successfully. The model suggests that if winter mortality is not very high for the ND, and the annual reproductive rate of the ND is higher than that of the DP in microhabitat L, then a higher dispersal rate of the mites from L to O, and an equal number of patches of the two microhabitats will favour the ND more than the DP.This study was supported in part by a Grant-in Aid (Bio Cosmos Program BCP 92-I-B-3) from the Ministry of Agriculture, Forestry and Fisheries, Japan. 相似文献
18.
19.
Coexistence of three canopy tree species in a riparian forest in the Chichibu Mountains, central Japan 总被引:1,自引:0,他引:1
Three canopy tree species (Fraxinus platypoda, Pterocarya rhoifolia, andCercidiphyllum japonicum) coexist in riparian forests in the Chichibu Mountains of central Japan. We compared the forest structure and the reproductive characteristics of these species.F. platypoda was the dominant canopy species. It produced many saplings and grew in abandoned channels and floodplains, and was able to invade both large and small disturbance sites.P. rhoifolia was a subdominant species that occurred on the deposits of large-scale landslides and grew in patches containing even-aged trees.C. japonicum was the other subdominant species that produced few saplings and invaded large disturbance sites together withP. rhoifolia. Establishment sites ofC. japonicum were restricted to fine mineral soils and fallen logs. We found tradeoffs in reproductive characteristics (seed size, seed number, irregular seed production, and sprouting) among the three canopy species.F. platypoda andP. rhoifolia had large seeds and produced fruits irregularly.C. japonicum produced many small seeds every year and sprouted prolifically around the main stem. The causes of the coexistence mechanism of the three riparian canopy tree species may be both niche- and chance-determined to varying degrees. In riparian areas, the three canopy species were well-adapted to disturbances throughout their life-history. 相似文献
20.