首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Phospholipid transfer protein (PLTP) is associated with HDL particles in plasma, where it transfers phospholipids between lipoproteins and remodels HDL particles. Tangier disease patients, with a mutated ABCA1 transporter, have extremely low plasma HDL concentration and reduced PLTP activity levels, a phenotype that is also observed in mice lacking ABCA1. We investigated whether low HDL levels and low PLTP activity are mechanistically related. Firstly, we studied PLTP expression and distribution among lipoproteins in mice lacking ABCA1 (ABCA1−/−). Parallel to the strong reduction in PLTP activity in plasma of ABCA1−/− mice, decreased PLTP protein levels were observed. Neither PLTP synthesis in liver or macrophages nor the ability of the macrophages to secrete PLTP were impaired in ABCA1−/− mice. However, the PLTP activity level in the medium of cultured macrophages was determined by HDL levels in the medium. PLTP was associated with HDL particles in wild type mice, whereas in ABCA1−/− mice, PLTP was associated with VLDL and LDL particles. Secondly, we treated different mouse models with varying plasma HDL and PLTP levels (wild type, ABCA1−/−, apoE−/− and PLTPtg mice, overexpressing human PLTP) with a synthetic LXR ligand, and investigated the relationship between LXR-mediated PLTP induction and HDL levels in plasma. Plasma PLTP activity in wild type mice was induced 5.6-fold after LXR activation, whereas in ABCA1−/−, apoE−/− and PLTPtg mice, all having reduced HDL levels, induction of PLTP activity was 2.4- , 3.2- and 2.0-fold, respectively. The less pronounced PLTP induction in these mice compared to wild type mice was not caused by a decreased PLTP gene expression in the liver or macrophages. Our findings indicate that the extent of LXR-mediated PLTP induction depends on plasma HDL levels. In conclusion, we demonstrate that ABCA1 deficiency in mice affects plasma PLTP level and distribution through an indirect effect on HDL metabolism. In addition, we show that the extent of LXR-mediated PLTP induction is HDL-dependent. These findings indicate that plasma HDL level is an important regulator of plasma PLTP and might play a role in the stabilization of PLTP in plasma.  相似文献   

2.
Two lipid transfer proteins are active in human plasma, cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP). Mice by nature do not express CETP. Additional inactivation of the PLTP gene resulted in reduced secretion of VLDL and subsequently in decreased susceptibility to diet-induced atherosclerosis. The aim of this study is to assess possible effects of differences in PLTP expression on VLDL secretion in mice that are proficient in CETP and PLTP. We compared human CETP transgenic (huCETPtg) mice with mice expressing both human lipid transfer proteins (huCETPtg/huPLTPtg). Plasma cholesterol in huCETPtg mice was 1.5-fold higher compared with huCETPtg/huPLTPtg mice (P < 0.001). This difference was mostly due to a lower HDL level in the huCETPtg/huPLTPtg mice, which subsequently could lead to the somewhat decreased CETP activity and concentration that was found in huCETPtg/huPLTPtg mice (P < 0.05). PLTP activity was 2.8-fold increased in these animals (P < 0.001). The human PLTP concentration was 5 microg/ml. Moderate overexpression of PLTP resulted in a 1.5-fold higher VLDL secretion compared with huCETPtg mice (P < 0.05). The composition of nascent VLDL was similar in both strains. These results indicate that elevated PLTP activity in huCETPtg mice results in an increase in VLDL secretion. In addition, PLTP overexpression decreases plasma HDL cholesterol as well as CETP.  相似文献   

3.
Plasma phospholipid transfer protein (PLTP) has atherogenic properties in genetically modified mice. PLTP stimulates hepatic triglyceride secretion and reduces plasma levels of high density lipoproteins (HDL). The present study was performed to relate the increased atherosclerosis in PLTP transgenic mice to one of these atherogenic effects. A humanized mouse model was used which had decreased LDL receptor expression and was transgenic for human cholesterylester transfer protein (CETP) in order to obtain a better resemblance to the plasma lipoprotein profile present in humans. It is well known that female mice are more susceptible to atherosclerosis than male mice. Therefore, we compared male and female mice expressing human PLTP. The animals were fed an atherogenic diet and the effects on plasma lipids and lipoproteins, triglyceride secretion and the development of atherosclerosis were measured. The development of atherosclerosis was sex-dependent. This effect was stronger in PLTP transgenic mice, while PLTP activity levels were virtually identical. Also, the rates of hepatic secretion of triglycerides were similar. In contrast, plasma levels of HDL were about 2-fold lower in female mice than in male mice after feeding an atherogenic diet. We conclude that increased atherosclerosis caused by overexpression of PLTP is related to a decrease in HDL, rather than to elevated hepatic secretion of triglycerides.  相似文献   

4.
Plasma phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) are homologous molecules that mediate neutral lipid and phospholipid exchange between plasma lipoproteins. Biochemical experiments suggest that only CETP can transfer neutral lipids but that there could be overlap in the ability of PLTP and CETP to transfer or exchange phospholipids. Recently developed PLTP gene knock-out (PLTP0) mice have complete deficiency of plasma phospholipid transfer activity and markedly reduced high density lipoprotein (HDL) levels. To see whether CETP can compensate for PLTP deficiency in vivo, we bred the CETP transgene (CETPTg) into the PLTP0 background. Using an in vivo assay to measure the transfer of [(3)H]PC from VLDL into HDL or an in vitro assay that determined [(3)H]PC transfer from vesicles into HDL, we could detect no phospholipid transfer activity in either PLTP0 or CETPTg/PLTP0 mice. On a chow diet, HDL-PL, HDL-CE, and HDL-apolipoprotein AI in CETPTg/PLTP0 mice were significantly lower than in PLTP0 mice (45 +/- 7 versus 79 +/- 9 mg/dl; 9 +/- 2 versus 16 +/- 5 mg/dl; and 51 +/- 6 versus 100 +/- 9, arbitrary units, respectively). Similar results were obtained on a high fat, high cholesterol diet. These results indicate 1) that there is no redundancy in function of PLTP and CETP in vivo and 2) that the combination of the CETP transgene with PLTP deficiency results in an additive lowering of HDL levels, suggesting that the phenotype of a human PLTP deficiency state would include reduced HDL levels.  相似文献   

5.
Lipoprotein lipase (LPL) and hepatic lipase (HL) are enzymatic activities involved in lipoprotein metabolism. The purpose of this study was to analyze the physicochemical modifications of plasma lipoproteins produced by LPL activation in two patients with apoC-II deficiency syndrome and by HL activation in two patients with LPL deficiency. LPL activation was achieved by the infusion of normal plasma containing apoC-II and HL was released by the injection of heparin. Lipoproteins were analyzed by ultracentrifugation in a zonal rotor under rate flotation conditions before and after lipase activation. The LPL activation resulted in: a reduction of plasma triglycerides; a reduction of fast-floating very low density lipoprotein (VLDL) concentration; an increase of intermediate density lipoprotein (IDL), which maintained unaltered flotation properties; an increase of low density lipoproteins (LDL) accompanied by modifications of their flotation rates and composition; no significant variations of high density lipoprotein (HDL) levels; and an increase of the HDL flotation rate. The HL activation resulted in: a slight reduction of plasma triglycerides; a reduction of the relative triglyceride content of slow-floating VLDL, IDL, LDL2, and HDL3 accompanied by an increase of phospholipid in VLDL and by an increase of cholesteryl ester in IDL; and a reduction of the HDL flotation rate. These experiments in chylomicronemic patients provide in vivo evidence that LPL and HL are responsible for plasma triglyceride hydrolysis of different lipoproteins, and that LPL is particularly involved in determining the levels and physicochemical properties of LDL. Moreover, in these patients, the LPL activation does not directly change the HDL levels, and LPL or HL does not produce a step-wise conversion of HDL3 to HDL2 (or vice versa) but rather modifies the flotation rates of all the HDL molecules present in plasma.  相似文献   

6.
To gain further insights into the relationship between plasma phospholipid transfer protein (PLTP) and lipoprotein particles, PLTP mass and phospholipid transfer activity were measured, and their associations with the level and size of lipoprotein particles examined in 39 healthy adult subjects. No bivariate correlation was observed between PLTP activity and mass. PLTP activity was positively associated with cholesterol, triglyceride, apo B and VLDL particle level (rs = 0.40–0.56, p ≤ 0.01) while PLTP mass was positively associated with HDL-C, large HDL particles, and mean LDL and HDL particle sizes (rs = 0.44–0.52, p < 0.01). Importantly, plasma PLTP specific activity (SA) was significantly associated with specific lipoprotein classes, positively with VLDL, IDL, and small LDL particles (rs = 0.42–0.62, p ≤ 0.01) and inversely with large LDL, large HDL, and mean LDL and HDL particle size (rs = − 0.42 to − 0.70, p ≤ 0.01). After controlling for triglyceride levels, the correlation between PLTP mass or SA and HDL size remained significant. In linear models, HDL size explained 45% of the variability of plasma PLTP SA while triglyceride explained 34% of the PLTP activity. Thus, in healthy adults a significant relationship exists between HDL size and plasma PLTP SA (rs = − 0.70), implying that HDL particle size may modulate PLTP SA in the vascular compartment.  相似文献   

7.
Studies have been performed to determine the involvement of very-low-density lipoproteins (VLDL), cholesteryl ester transfer protein (CETP) and hepatic lipase (HL) in the formation of very small HDL particles. Human whole plasma has been incubated for 6 h at 37 degrees C in the absence and in the presence of various additions. There was minimal formation of very small HDL in incubations of non-supplemented plasma or in plasma supplemented with either VLDL, CETP or HL alone; nor were small HDL prominent after incubating plasma supplemented with mixtures of VLDL plus CETP, VLDL plus HL or CETP plus HL. By contrast, when plasma was supplemented with a mixture containing all three of VLDL, CETP and HL, incubation resulted in an almost total conversion of the HDL fraction into very small particles of radius 3.7 nm. The appearance of these very small HDL was independent of activity of lecithin: cholesterol acyltransferase. It was, however, dependent on both duration of incubation and on the concentrations of the added VLDL, CETP and HL. The effects of these incubations was also assessed in terms of changes to the concentration and distribution of lipid constituents across the lipoprotein spectrum. It was found that not only did lipid transfers and HL exhibit a marked synergism in promoting a reduction in HDL particle size but also that HL, although deficient in intrinsic transfer activity, enhanced the CETP-mediated transfers of cholesteryl esters from HDL to other lipoprotein fractions.  相似文献   

8.
Plasma phospholipid transfer protein (PLTP) transfers phospholipids between lipoproteins and mediates HDL conversion. PLTP-overexpressing mice have increased atherosclerosis. However, mice do not express cholesteryl ester transfer protein (CETP), which is involved in the same metabolic pathways as PLTP. Therefore, we studied atherosclerosis in heterozygous LDL receptor-deficient (LDLR(+/-)) mice expressing both human CETP and human PLTP. We used two transgenic lines with moderately and highly elevated plasma PLTP activity. In LDLR(+/-)/huCETPtg mice, cholesterol is present in both LDL and HDL. Both are decreased in LDLR(+/-)/huCETPtg/huPLTPtg mice (>50%). An atherogenic diet resulted in high levels of VLDL+LDL cholesterol. PLTP expression caused a strong PLTP dose-dependent decrease in VLDL and LDL cholesterol (-26% and -69%) and a decrease in HDL cholesterol (-70%). Surprisingly, atherosclerosis was increased in the two transgenic lines with moderately and highly elevated plasma PLTP activity (1.9-fold and 4.4-fold, respectively), indicating that the adverse effect of the reduction in plasma HDL outweighs the beneficial effect of the reduction in apolipoprotein B (apoB)-containing lipoproteins. The activities of the antiatherogenic enzymes paraoxonase and platelet-activating factor acetyl hydrolase were both PLTP dose-dependently reduced ( approximately -33% and -65%, respectively). We conclude that expression of PLTP in this animal model results in increased atherosclerosis in spite of reduced apoB-containing lipoproteins, by reduction of HDL and of HDL-associated antioxidant enzyme activities.  相似文献   

9.
Plasma phospholipid transfer protein (PLTP) interacts with HDL particles and facilitates the transfer of phospholipids from triglyceride (TG)-rich lipoproteins to HDL. Overexpressing human PLTP in mice increases the susceptibility to atherosclerosis. In human plasma, high-active and low-active forms of PLTP exist. To elucidate the contribution of phospholipid transfer activity to changes in lipoprotein metabolism and atherogenesis, we developed mice expressing mutant PLTP, still able to associate with HDL but lacking phospholipid transfer activity. In mice heterozygous for the LDL receptor, effects of the mutant and normal human PLTP transgene (mutPLTP tg and PLTP tg, respectively) were compared. In PLTP tg mice, plasma PLTP activity was increased 2.9-fold, resulting in markedly reduced HDL lipid levels. In contrast, in mutPLTP tg mice, lipid levels were not different from controls. Furthermore, hepatic VLDL-TG secretion was stimulated in PLTP tg mice, but not in mutPLTP tg mice. When mice were fed a cholesterol-enriched diet, atherosclerotic lesion size in PLTP tg mice was increased more than 2-fold compared with control mice, whereas in mutPLTP tg mice, there was no change. Our findings demonstrate that PLTP transfer activity is essential for the development of atherosclerosis in PLTP transgenic mice, identifying PLTP activity as a possible target to prevent atherogenesis, independent of plasma PLTP concentration.  相似文献   

10.
In addition to hepatic expression, cholesteryl ester transfer protein (CETP) and hepatic lipase (HL) are expressed by human macrophages. The combined actions of these proteins have profound effects on HDL structure and function. It is not known how these HDL changes influence atherosclerosis. To elucidate the role of leukocyte-derived HL on atherosclerosis in a background of CETP expression, we studied low density lipoprotein receptor-deficient mice expressing human CETP (CETPtgLDLr(-/-)) with a leukocyte-derived HL deficiency (HL(-/-) BM). HL(-/-) bone marrow (BM), CETPtgLDLr(-/-) mice were generated via bone marrow transplantation. Wild-type bone marrow was transplanted into CETPtgLDLr(-/-) mice to generate HL(+/+) BM, CETPtgLDLr(-/-) controls. The chimeras were fed a high-fat, high-cholesterol diet for 14 weeks to promote atherosclerosis. In female HL(-/-) BM, CETPtgLDLr(-/-) mice plasma HDL-cholesterol concentration during high-fat feeding was decreased 27% when compared with HL(+/+) BM, CETPtgLDLr(-/-) mice (P < 0.05), and this was associated with a 96% increase in en face aortic atherosclerosis (P < 0.05). In male CETPtgLDLr(-/-) mice, leukocyte-derived HL deficiency was associated with a 16% decrease in plasma HDL-cholesterol concentration and a 25% increase in aortic atherosclerosis. Thus, leukocyte-derived HL in CETPtgLDLr(-/-) mice has an atheroprotective role that may involve increased HDL levels.  相似文献   

11.
The impact of apolipoprotein C-I (apoC-I) deficiency on hepatic lipid metabolism was addressed in mice in the presence or the absence of cholesteryl ester transfer protein (CETP). In addition to the expected moderate reduction in plasma cholesterol levels, apoCIKO mice showed significant increases in the hepatic content of cholesteryl esters (+58%) and triglycerides (+118%) and in biliary cholesterol concentration (+35%) as compared with wild-type mice. In the presence of CETP, hepatic alterations resulting from apoC-I deficiency were enforced, with up to 58% and 302% increases in hepatic levels of cholesteryl esters and triglycerides in CETPTg/apoCIKO mice versus CETPTg mice, respectively. Biliary levels of cholesterol, phospholipids, and bile acids were increased by 88, 77, and 20%, respectively, whereas total cholesterol, HDL cholesterol, and triglyceride concentrations in plasma were further reduced in CETPTg/apoCIKO mice versus CETPTg mice. Finally, apoC-I deficiency was not associated with altered VLDL production rate. In line with the previously recognized inhibition of lipoprotein clearance by apoC-I, apoC-I deficiency led to decreased plasma lipid concentration, hepatic lipid accumulation, and increased biliary excretion of cholesterol. The effect was even greater when the alternate reverse cholesterol transport pathway via VLDL/LDL was boosted in the presence of CETP.  相似文献   

12.
Fibrate treatment in mice is known to modulate high density lipoprotein (HDL) metabolism by regulating apolipoprotein (apo)AI and apoAII gene expression. In addition to alterations in plasma HDL levels, fibrates induce the emergence of large, cholesteryl ester-rich HDL in treated transgenic mice expressing human apoAI (HuAITg). The mechanisms of these changes may not be restricted to the modulation of apolipoprotein gene expression, and the aim of the present study was to determine whether the expression of factors known to affect HDL metabolism (i.e. phospholipid transfer protein (PLTP), lecithin:cholesterol acyltransferase, and hepatic lipase) are modified in fenofibrate-treated mice. Significant rises in plasma PLTP activity were observed after 2 weeks of fenofibrate treatment in both wild-type and HuAITg mice. Simultaneously, hepatic PLTP mRNA levels increased in a dose-dependent fashion. In contrast to PLTP, lecithin:cholesterol acyltransferase mRNA levels in HuAITg mice were not significantly modified by fenofibrate despite a significant decrease in plasma cholesterol esterification activity. Fenofibrate did not induce any change in hepatic lipase activity. Fenofibrate significantly increased HDL size, an effect that was more pronounced in HuAITg mice than in wild-type mice. This effect in wild-type mice was completely abolished in PLTP-deficient mice. Finally, fenofibrate treatment did not influence PLTP activity or hepatic mRNA in peroxisome proliferator-activated receptor-alpha-deficient mice. It is concluded that 1) fenofibrate treatment increases plasma phospholipid transfer activity as the result of up-regulation of PLTP gene expression through a peroxisome proliferator-activated receptor-alpha-dependent mechanism, and 2) increased plasma PLTP levels account for the marked enlargement of HDL in fenofibrate-treated mice.  相似文献   

13.
In humans, fibrates are used to treat dyslipidemia, because these drugs lower plasma triglycerides and raise HDL cholesterol. Treatment with fibrates lowers plasma phospholipid transfer protein (PLTP) activity in humans, but increases PLTP activity in mice, without a consistent effect on HDL-cholesterol concentration. Earlier, we found that PLTP overexpression in transgenic mice results in decreased plasma HDL levels and increased diet-induced atherosclerosis. So it seems that the interplay between fibrates, PLTP and HDL is different in mice and man, which may be important for atherosclerosis development. In the present study, we measured the effects of fibrates on PLTP expression in cultured human hepatocytes and effects of fibrate treatment on human PLTP expression, plasma PLTP activity and HDL levels in human PLTP transgenic mice. Fibrate treatment did not influence PLTP mRNA levels in human hepatocytes. Hepatic human PLTP mRNA levels and PLTP activity were both moderately elevated by fenofibrate treatment in human PLTP transgenic mice. In wild-type mice, however, feeding fenofibrate resulted in a strong induction of PLTP mRNA in the liver and a more than 4-fold increase of plasma PLTP activity. Plasma triglycerides were reduced in all mice by 48% or more by fenofibrate treatment. HDL-cholesterol concentrations were substantially increased by fenofibrate in PLTP overexpressing mice (+72%), but unaffected in wild-type mice. We conclude that fenofibrate treatment reverses the HDL-lowering effect of PLTP overexpression in human PLTP transgenic mice.  相似文献   

14.
15.
The objective of this study was to determine the combined effects of HL and cholesteryl ester transfer protein (CETP), derived exclusively from bone marrow (BM), on plasma lipids and atherosclerosis in high-fat-fed, atherosclerosis-prone mice. We transferred BM expressing these proteins into male and female double-knockout HL-deficient, LDL receptor-deficient mice (HL−/−LDLr−/−). Four BM chimeras were generated, where BM-derived cells expressed 1) HL but not CETP, 2) CETP and HL, 3) CETP but not HL, or 4) neither CETP nor HL. After high-fat feeding, plasma HDL-cholesterol (HDL-C) was decreased in mice with BM expressing CETP but not HL (17 ± 4 and 19 ± 3 mg/dl, female and male mice, respectively) compared with mice with BM expressing neither CETP nor HL (87 ± 3 and 95 ± 4 mg/dl, female and male mice, respectively, P < 0.001 for both sexes). In female mice, the presence of BM-derived HL mitigated this CETP-mediated decrease in HDL-C. BM-derived CETP decreased the cholesterol component of HDL particles and increased plasma cholesterol. BM-derived HL mitigated these effects of CETP. Atherosclerosis was not significantly different between BM chimeras. These results suggest that BM-derived HL mitigates the HDL-lowering, HDL-modulating, and cholesterol-raising effects of BM-derived CETP and warrant further studies to characterize the functional properties of these protein interactions.  相似文献   

16.
We reported that phospholipid transfer protein (PLTP) deficiency decreased atherosclerosis in mouse models. Because the decreased atherosclerosis was accompanied by a significant decrease in plasma HDL levels, we examined the properties of PLTP knockout (PLTP0) HDL and tested its ability to prevent LDL-induced monocyte chemotactic activity in human artery wall cell cocultures. We isolated HDL and LDL from LDL receptor knockout/PLTP knockout (LDLr0/PLTP0) mice and from apolipoprotein B transgenic (apoBTg)/PLTP0 mice as well as their controls. PLTP0 HDL was relatively rich in protein and depleted in phosphatidylcholine. Turnover studies revealed a 3.5- to 4.0-fold increase in the turnover of protein and cholesteryl ester in HDL from PLTP0 mice compared with control mice. The ability of HDL from LDLr0/PLTP0 and apoBTg/PLTP0 mice to prevent the induction of monocyte chemotactic activity in human artery wall cell cocultures exposed to human LDL was dramatically better than that in controls. Moreover, LDL from PLTP0 mice was markedly resistant to oxidation and induced significantly less monocyte chemotactic activity compared with that in controls. In vitro, PLTP0 HDL removed significantly more oxidized phospholipids from LDL than did control HDL. We conclude that PLTP deficiency improves the anti-inflammatory properties of HDL in mice and reduces the ability of LDL to induce monocyte chemotactic activity.  相似文献   

17.
Phospholipid transfer protein (PLTP) participates in key processes in lipoprotein metabolism, including interparticle phospholipid transfer, remodeling of HDL, cholesterol and phospholipid efflux from peripheral tissues, and the production of hepatic VLDL. The impact of PLTP on reverse cholesterol transport suggests that the gene may harbor sequence anomalies that contribute to disorders of HDL metabolism. The human PLTP gene was screened for sequence anomalies by DNA melting analysis in 276 subjects with hypoalphalipoproteinemia (HA) and 364 controls. The association with plasma lipid parameters was evaluated. We discovered 18 sequence variations, including four missense mutations and a novel polymorphism (c.-34G > C). In healthy controls, the c.-34G > C minor allele was associated with higher high density lipoprotein-cholesterol (HDL-C) and was depleted in subjects with HA. Linear regression models predict that possession of the rare allele decreases plasma triglyceride (TG) and TG/HDL-C and increases HDL-C independent of TG. Decreased PLTP activity was observed in one (p.R235W) of four (p.E72G, p.S119A, p.S124Y, and p.R235W) mutations in an in vitro activity assay. These findings indicate that PLTP gene variation is an important determinant of plasma lipoproteins and affects disorders of HDL metabolism.  相似文献   

18.

Background

Phosphatidylcholine (PC) is the predominant phospholipid associated with high density lipoproteins (HDL). Although the hepatic uptake of cholesteryl esters from HDL is well characterized, much less is known about the fate of PC associated with HDL. Thus, we investigated the uptake and subsequent metabolism of HDL-PC in primary mouse hepatocytes.

Methods and results

The absence of scavenger receptor-BI resulted in a 30% decrease in cellular incorporation of [3H]PC whereas [3H]cholesteryl ether uptake was almost completely abolished. Although endocytosis is not involved in the uptake of cholesteryl esters from HDL, we demonstrate that HDL internalization accounts for 40% of HDL-PC uptake. Extracellular remodeling of HDL by secretory phospholipase A2 significantly enhances HDL lipid uptake. HDL-PC taken up by hepatocytes is partially converted to triacylglycerols via PC-phospholipase C-mediated hydrolysis of PC and incorporation of diacylglycerol into triacylglcyerol. The formation of triacylglcerol is independent of scavenger receptor-BI and occurs in extralysosomal compartments.

Conclusions and general significance

These findings indicate that HDL-associated PC is incorporated into primary hepatocytes via a pathway that differs significantly from that of HDL-cholesteryl ester, and shows that HDL-PC is more than a framework molecule, as evidenced by its partial conversion to hepatic triacylglycerol.  相似文献   

19.
Polyunsaturated fatty acids are known to affect plasma lipids and lipoproteins but there is no information on the effect of essential fatty acid (EFA) deficiency on lipoprotein composition. The purpose of this study was to characterize lipoproteins from 17 cystic fibrosis (CF) patients in relationship to their EFA status (eicosatrienoic/arachidonic acid ratio) and compare them with those of 10 healthy siblings (SIB) and of 10 unrelated controls. In 7 EFA-deficient (EFAD) and 10 EFA-sufficient (EFAS) patients, hypocholesterolemia was associated with a decrease of HDL-cholesterol and of LDL-cholesterol which was more marked in the EFAD group. Similarly, although triglyceride enrichment of VLDL, LDL, HDL2, and HDL3 with a concomitant reduction of cholesteryl esters from all particles except HDL2 was observed in both CF groups, it was more sizable in the EFAD patients. These changes led to an increase in the particle size of VLDL, LDL, and HDL2 whereas the distribution of HDL3 was skewed to smaller particles. Alterations in the apoprotein composition of particles were greater in EFAD than in EFAS. A decrease of total postheparin lipolytic activity was observed in the two groups of CF patients as well as in siblings. It was entirely accounted for by hepatic lipase (mumol FFA/ml per h) which was more severely diminished in EFAD (2.8 +/- 0.6) than in EFAS (4.4 +/- 0.7) and SIB (5.1 +/- 0.5). Although the two groups of CF children differed in terms of growth, severity of malabsorption, and vitamin E status, these data suggest that disturbance of lipoprotein concentration, composition, size, and metabolism (hepatic lipase) may be in part related to EFA deficiency. Further studies are necessary to explore the effect of EFA deficiency on hepatic lipase activity.  相似文献   

20.
In addition to efficiently decreasing VLDL-triglycerides (TGs), fenofibrate increases HDL-cholesterol levels in humans. We investigated whether the fenofibrate-induced increase in HDL-cholesterol is dependent on the expression of the cholesteryl ester transfer protein (CETP). To this end, APOE*3-Leiden (E3L) transgenic mice without and with the human CETP transgene, under the control of its natural regulatory flanking regions, were fed a Western-type diet with or without fenofibrate. Fenofibrate (0.04% in the diet) decreased plasma TG in E3L and E3L.CETP mice (-59% and -60%; P < 0.001), caused by a strong reduction in VLDL. Whereas fenofibrate did not affect HDL-cholesterol in E3L mice, fenofibrate dose-dependently increased HDL-cholesterol in E3L.CETP mice (up to +91%). Fenofibrate did not affect the turnover of HDL-cholesteryl ester (CE), indicating that fenofibrate causes a higher steady-state HDL-cholesterol level without altering the HDL-cholesterol flux through plasma. Analysis of the hepatic gene expression profile showed that fenofibrate did not differentially affect the main players in HDL metabolism in E3L.CETP mice compared with E3L mice. However, in E3L.CETP mice, fenofibrate reduced hepatic CETP mRNA (-72%; P < 0.01) as well as the CE transfer activity in plasma (-73%; P < 0.01). We conclude that fenofibrate increases HDL-cholesterol by reducing the CETP-dependent transfer of cholesterol from HDL to (V)LDL, as related to lower hepatic CETP expression and a reduced plasma (V)LDL pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号