首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipid droplets (LD) are the main depot of non-polar lipids in all eukaryotic cells. In the present study we describe isolation and characterization of LD from the industrial yeast Pichia pastoris. We designed and adapted an isolation procedure which allowed us to obtain this subcellular fraction at high purity as judged by quality control using appropriate marker proteins. Components of P. pastoris LD were characterized by conventional biochemical methods of lipid and protein analysis, but also by a lipidome and proteome approach. Our results show several distinct features of LD from P. pastoris especially in comparison to Saccharomyces cerevisiae. P. pastoris LD are characterized by their high preponderance of triacylglycerols over steryl esters in the core of the organelle, the high degree of fatty acid (poly)unsaturation and the high amount of ergosterol precursors. The high phosphatidylinositol to phosphatidylserine of ~ 7.5 ratio on the surface membrane of LD is noteworthy. Proteome analysis revealed equipment of the organelle with a small but typical set of proteins which includes enzymes of sterol biosynthesis, fatty acid activation, phosphatidic acid synthesis and non-polar lipid hydrolysis. These results are the basis for a better understanding of P. pastoris lipid metabolism and lipid storage and may be helpful for manipulating cell biological and/or biotechnological processes in this yeast.  相似文献   

2.
In the yeast Saccharomyces cerevisiae three pathways lead to the formation of phosphatidylethanolamine (PE), namely decarboxylation of phosphatidylserine (PS) (i) by Psd1p in mitochondria, and (ii) by Psd2p in a Golgi/vacuolar compartment; and (iii) synthesis via CDP–ethanolamine pathway in the endoplasmic reticulum. To determine the contribution of these pathways to the supply of PE to peroxisomes, we subjected mutants bearing defects in the respective metabolic routes to biochemical and cell biological analysis. Despite these defects in PE formation mutants were able to grow on oleic acid indicating induction of peroxisome proliferation. Biochemical analysis revealed that PE formed through all three pathways was supplied to peroxisomes. These analyses also demonstrated that selective as well as equilibrium interorganelle flux of PE appear to be equally important for cellular homeostasis of this phospholipid. Electron microscopic inspection confirmed that defects in PE synthesis still allowed formation of peroxisomes, although these organelles from strains lacking PSD1 were significantly smaller than wild type. The fact that peroxisomes were always found in close vicinity to mitochondria, ER and lipid particles supported the view that membrane contact may play a role in lipid traffic between these organelles.  相似文献   

3.
Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production.  相似文献   

4.
The concentration-dependent metabolism of 1-14C-labelled precursors of 22:5n-6 and 22:6n-3 was compared in rat testis cells. The amounts of [14C]22- and 24-carbon metabolites were measured by HPLC. The conversion of [1-14C]20:5n-3 to [3-14C]22:6n-3 was more efficient than that of [1-14C]20:4n-6 to [3-14C]22:5n-6. At low substrate concentration (4 μM) it was 3.4 times more efficient, reduced to 2.3 times at high substrate concentration (40 μM). The conversion of [1-14C]22:5n-3 to [1-14C]22:6n-3 was 1.7 times more efficient than that of [1-14C]22:4n-6 to [1-14C]22:5n-6 using a low, but almost equally efficient using a high substrate concentration. When unlabelled 20:5n-3 was added to a cell suspension incubated with [1-14C]20:4n-6 or unlabelled 22:5n-3 to a cell suspension incubated with [1-14C]22:4n-6, the unlabelled n-3 fatty acids strongly inhibited the conversion of [1-14C]20:4n-6 or [1-14C]22:4n-6 to [14C]22:5n-6. In the reciprocal experiment, unlabelled 20:4n-6 and 22:4n-6 only weakly inhibited the conversion of [1-14C]20:5n-3 and [1-14C]22:5n-3 to [14C]22:6n-3. The results indicate that if both n-6 and n-3 fatty acids are present, the n-3 fatty acids are preferred over the n-6 fatty acids in the elongation from 20- to 22- and from 22- to 24-carbon atom fatty acids. In vivo the demand for 22-carbon fatty acids for spermatogenesis in the rat may exceed the supply of n-3 precursors and thus facilitate the formation of 22:5n-6 from the more abundant n-6 precursors.  相似文献   

5.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and is estimated to be present in about 15% of eubacteria. It can be synthesized in bacteria by either of two pathways, the phospholipid N-methylation pathway or the phosphatidylcholine synthase (Pcs) pathway. Pcs belongs to the CDP-alcohol phosphotransferase superfamily and synthesizes PC and CMP in one step from CDP-diacylglycerol and choline. In this study, we aligned sequences of characterized Pcs enzymes to identify conserved amino acid residues. Alanine scanning mutagenesis was performed on 55 of these conserved residues. The mutation of nine residues caused a drastic to complete loss (< 20% of wild type activity) of Pcs activity. Six of these essential residues were subjected to further mutagenesis studies replacing them by amino acids with similar properties or size. A topological analysis of sinorhizobial Pcs showed the presence of eight transmembrane helices, with the C- and N-terminus located in the cytoplasm. The majority of the conserved residues is predicted to be either located within the cytoplasmic loops or on the cytoplasmic side of the membrane which can be expected for an enzyme using one membrane-associated and one soluble substrate.  相似文献   

6.
Phosphatidylserine decarboxylase 1 (Psd1p) catalyzes the formation of the majority of phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae. Psd1p is localized to mitochondria, anchored to the inner mitochondrial membrane (IMM) through membrane spanning domains and oriented towards the mitochondrial intermembrane space. We found that Psd1p harbors at least two inner membrane-associated domains, which we named IM1 and IM2. IM1 is important for proper orientation of Psd1p within the IMM (Horvath et al., J. Biol. Chem. 287 (2012) 36744–55), whereas it remained unclear whether IM2 is important for membrane-association of Psd1p. To discover the role of IM2 in Psd1p import, processing and assembly into the mitochondria, we constructed Psd1p variants with deletions in IM2. Removal of the complete IM2 led to an altered topology of the protein with the soluble domain exposed to the matrix and to decreased enzyme activity. Psd1p variants lacking portions of the N-terminal moiety of IM2 were inserted into IMM with an altered topology. Psd1p variants with deletions of C-terminal portions of IM2 accumulated at the outer mitochondrial membrane and lost their enzyme activity. In conclusion we showed that IM2 is essential for full enzymatic activity, maturation and correct integration of yeast Psd1p into the inner mitochondrial membrane.  相似文献   

7.
Cardiolipin (CL) is a unique lipid component of mitochondria in all eukaryotes. It is important for the architecture of mitochondrial membranes and for mitochondrial dynamics. CL also creates a highly specific microenvironment of mitochondrial protein machineries. CL biosynthetic pathway is, however, only partially characterized in the fission yeast Schizosaccharomyces pombe. Here we show that CL synthase is an essential protein in S. pombe. It is encoded by the ORF SPAC22A12.08c as a C terminal part of a tandem fusion protein together with a mitochondrial hydrolase of unknown function. Expression of S. pombe CL synthase is able to complement deletion of the CRD1 gene of Saccharomyces cerevisiae and, vice versa, S. cerevisiae CRD1 gene complements deletion of S. pombe SPAC22A12.08c. The proper expression of CL synthase and its partner in the tandem protein, the mitochondrial hydrolase, is regulated at the level of alternate intron splicing. The first part of the SPAC22A12.08c fusion protein could be translated from both major SPAC22A12.08c derived mRNAs, with and without intron IV. Functional CL synthase, however, is produced only from the minor SPAC22A12.08c derived mRNA that has intron IV retained. Thus, intron retention is a novel mechanism for the differential expression of two proteins that evolved as a fusion protein and are under the control of the same promoter.  相似文献   

8.
Mitochondria are central players in programmed cell death and autophagy. While phosphoinositides are well established regulators of membrane traffic, cellular signalling and the destiny of certain organelles, their presence and role for mitochondria remain elusive. In this study we show that removal of PtdIns(4,5)P2 by phosphatases or masking the lipid with PH domains leads to fission of mitochondria and increased autophagy. Induction of general autophagy by amino acid starvation also coincides with the loss of mitochondrial PtdIns(4,5)P2, suggesting an important role for this lipid in the processes that govern mitophagy. Our findings reveal that PKCα can rescue the removal or masking of PtdIns(4,5)P2, indicating that the inositol lipid is upstream of PKC.  相似文献   

9.
The distribution of carbon tetrachloride-induced alterations of membrane lipids in various fractions of liver microsomal lipids was studied. The chromatographic spot (referred to as the “D” spot in the previous paper [1]) which has been shown to contain the compounds responsible for the diene conjugation absorption [1], was found in the fatty acid methyl esters prepared from the fraction containing phosphatidylethanolamine (PE) and also in those obtained from the fraction containing phosphatidylserine (PS) and phosphatidylinositol (PI). The absorption of conjugated dienes was very marked in PE and less intense in PS and PI. The fatty acid methyl esters prepared from the fraction containing phosphatidylcholine (PC) showed no presence of the “D” spot and minimal absorption of conjugated dienes.A decrease in arachidonic acid content was found in the fraction containing PE, while no change in content of this fatty acid was found in the fraction containing PC. Results similar to those observed for PC were also found for neutral lipids (NL).Analysis of the fatty acid methyl esters of the various lipid fractions by gas-liquid chromatography (GLC) with an electron capture detector (ECD) gave a qualitative index of the free radical attack by CCl4 metabolites. Quantitative estimation was attained by study of the irreversible binding of 14C from 14CCl4 to the various lipid fractions. It was found that the fraction containing PS had the highest specific activity, while the fraction containing PC had the lowest specific activity of all the phospholipids. Thin layer chromatography (TLC) of the fraction containing PS revealed that only 11% of the radioactivity was associated with the pure PS moiety, while the remainder was associated with uncharacterized lipids (probably oxidation products).The possible relevance of the alterations induced by carbon tetrachloride in the various phospholipid fractions of liver microsomes to functional changes is discussed.  相似文献   

10.
Rat liver 60-kDa lysophospholipase-transacylase catalyzes not only the hydrolysis of 1-acyl-sn-glycero-3-phosphocholine, but also the transfer of its acyl chain to a second molecule of 1-acyl-sn-glycero-3-phosphocholine to form phosphatidylcholine (H. Sugimoto, S. Yamashita, J. Biol. Chem. 269 (1994) 6252–6258). Here we report the detailed characterization of the transacylase activity of the enzyme. The enzyme mediated three types of acyl transfer between donor and acceptor lipids, transferring acyl residues from: (1) the sn-1 to -1(3); (2) sn-1 to -2; and (3) sn-2 to -1 positions. In the sn-1 to -1(3) transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1(3) positions of glycerol and 2-acyl-sn-glycerol, producing 1(3)-acyl-sn-glycerol and 1,2-diacyl-sn-glycerol, respectively. In the sn-1 to -2 transfer, the sn-1 acyl residue of 1-acyl-sn-glycero-3-phosphocholine was transferred to not only the sn-2 positions of 1-acyl-sn-glycero-3-phosphocholine, but also 1-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. 1-Acyl-sn-glycero-3-phospho-myo-inositol and 1-acyl-sn-glycero-3-phosphoserine were much less effectively transacylated by the enzyme. In the sn-2 to -1 transfer, the sn-2 acyl residue of 2-acyl-sn-glycero-3-phosphocholine was transferred to the sn-1 position of 2-acyl-sn-glycero-3-phosphocholine and 2-acyl-sn-glycero-3-phosphoethanolamine, producing phosphatidylcholine and phosphatidylethanolamine, respectively. Consistently, the enzyme hydrolyzed the sn-2 acyl residue from 2-acyl-sn-glycero-3-phosphocholine. By the sn-2 to -1 transfer activity, arachidonic acid was transferred from the sn-2 position of donor lipids to the sn-1 position of acceptor lipids, thus producing 1-arachidonoyl phosphatidylcholine. When 2-arachidonoyl-sn-glycero-3-phosphocholine was used as the sole substrate, diarachidonoyl phosphatidylcholine was synthesized at a rate of 0.23 μmol/min/mg protein. Thus, 60-kDa lysophospholipase-transacylase may play a role in the synthesis of 1-arachidonoyl phosphatidylcholine needed for important cell functions, such as anandamide synthesis.  相似文献   

11.
Heavy isotope-labeled ethanolamine and serine as well as exogenous PE and PS species were used to study trafficking of phosphatidylethanolamine (PE) and -serine (PS) molecular species between the endoplasmic reticulum (ER) and mitochondria in HeLa cells. Import of both endogenous and exogenous PS to IMM was a relatively slow process (T1/2 = several hours), but depended on the acyl chains. In particular, the 38:4 and 38:5 species were imported more efficiently compared to the other PS species. Knock-down of Mitofusin 2 or Mitostatin had no detectable effect on PS import to mitochondria, suggesting that the ER–mitochondria contacts regulated by these proteins are not essential. Knock-down of PS synthase 1 inhibited PS decarboxylation, suggesting that import of PS to mitochondria is coupled to its synthesis. Also the export of PE from IMM to microsomes is a relatively slow process, but again depends markedly on the acyl chain structure. Most notably, the polyunsaturated 38:4 and 38:5 PE species were less efficiently exported, which together with rapid import of the PS precursors most probably explains their enrichment in IMM. PE synthesized via the CDP-ethanolamine was also imported to IMM, but most of the PE in this membrane derives from imported PS. In contrast to PS, all PC species made in Golgi/ER translocated similarly and rapidly to IMM. In conclusion, selective translocation of PS species and PS-derived PE species between ER and mitochondria plays a major role in phospholipid homeostasis of these organelles.  相似文献   

12.
When the lysoglycerophospholipid (GPL) acyltransferase At1g78690 from Arabidopsis thaliana is over-expressed in Escherichiacoli a headgroup acylated GPL, acyl phosphatidylglycerol (PG), accumulates despite that in vitro this enzyme catalyzes the transfer of an acyl chain from acyl-CoA to the sn-2 position of 1-acyl phosphatidylethanolamine (PE) or 1-acyl PG to form the sn-1, sn-2, di acyl PE and PG respectively; it does not acylate PG to form acyl PG. To begin to understand why the overexpression of a lyso GPL acyltransferase leads to the accumulation of a headgroup acylated GPL in E. coli we investigated the headgroup specificity of At1g78690. Using membranes prepared from E. coli overexpressing At1g78690, we assessed the ability of At1g78690 to catalyze the transfer of acyl chains from acyl-coenzyme A to a variety of lyso GPL acyl acceptors including lyso-phosphatidic acid (PA), -phosphatidylcholine (PC), -phosphatidylserine (PC), -phosphatidylinositol (PI) and three stereoisoforms of bis(monoacylglycero)phosphate (BMP). The predicted products were formed when lyso PI and lyso PC were used as the acyl acceptor but not with lyso PC or lyso PA. In addition, At1g78690 robustly acylates two BMP isoforms with sn-2 and/or sn-2′ hydroxyls in the R-stereoconfiguration, but not the BMP isoform with the sn-2 and sn-2′ hydroxyls in the S-stereoconfiguration. This strongly suggests that At1g78690 is stereoselective for hydroxyls with R-stereochemistry. In addition, this robust acylation of BMPs by At1g78690, which yields acyl PG like molecules, may explain the mechanism by which At1g78690 so strikingly alters the lipid composition of E. coli.  相似文献   

13.
Phospholipid remodeling involves phospholipase activity to remove acyl chains and acyltransferases to replace acyl chains. We here describe the characterization of a lysophospholipid acyltransferase in the opportunistic fungal pathogen, Candida albicans. Expression of this gene, C.a. LPT1, complemented the lysophospholipid acyltransferase defect in Saccharomyces cerevisiae strains lacking the homologous LPT1 gene. In vitro, lysophospholipid acyltransferase activity in these strains showed acyl-CoA substrate specificity, as measured by apparent Vmax/Km ratios, to be linolenoyl-CoA > oleoyl-CoA > linoleoyl-CoA > stearoyl-CoA. To address the physiological importance of C.a. LPT1, homozygous deletion strains were generated. Lysophospholipid acyltransferase activity with amine containing lysophospholipids was dramatically reduced while lysophosphatidylinositol and lysophosphatidic acid esterification was not significantly lowered. However, C.a. LPT1 over-expression yielded an increased amount of lysophosphatidic acyltransferase activity, suggesting a role in de novo phospholipid synthesis. LPT1 deletion strains showed slightly slowed growth in standard liquid media but no phenotype in media containing three antifungals that target sterols. To assess the role of C.a. Lpt1 in phospholipid remodeling, an in vivo, pulse–chase assay utilizing polysorbitan palmitate and mass spectrometry was developed. Cellular phospholipid composition became atypical with the provision of palmitate and gradually returned to the typical distribution when palmitate was removed. Deletion of C.a. LPT1 showed a modest yet significant effect on remodeling under these conditions.  相似文献   

14.
The lipid composition of the extremely halophilic bacterium Salinibacter ruber (Bacteroidetes) was investigated by thin layer chromatography, gas chromatography, high performance liquid chromatography and electrospray ionization-mass spectrometry. Polar lipids represent about 80% of the total lipid extract. The main polar lipids are a sulfonic acid analogue of ceramide (or capnine analogue), phosphatidylcholine, phosphatidylserine, dimethylphosphatidylethanolamine, phosphatidylglycerol, cardiolipin or bisphosphatidylglycerol, and a glycolipid. The major acyl chains in the phospholipids are C16:1 Δ9cis and C18:1 Δ11cis, while the sulfonolipid contains an amide-bound iso C15:0 fatty acid. On changing the salinity of the culture medium, no significant differences were found in the lipid profile or the unsaturation of the lipid fatty acyl chains. The structure of the cardiolipin, which represents 20% of polar lipids, has been elucidated by gas chromatography and electrospray ionization mass spectrometry analysis.  相似文献   

15.
A membrane-bound phospholipase D (PLD) has been identified and isolated in a soluble form from an actinomycete, Streptoverticillium cinnamoneum. The enzyme has a monomeric structure with a molecular size of about 37 kDa, being the smallest among the enzymes so far reported. The enzyme catalyzes the hydrolysis of phosphatidylethanolamine and phosphatidylserine as preferred substrates, but not the transphosphatidylation reaction of their phospholipid groups to ethanol. Together with the absence of immunochemical cross-reactivity, these enzymatic properties demonstrate that the membrane-bound enzyme is distinct from the extracellular enzyme recently characterized and cloned from the same bacterial strain [C. Ogino et al., J. Biochem. 125 (1999) 263–269] and is therefore regarded as a novel prokaryotic PLD.  相似文献   

16.
Cellular copper overload as found in Wilson's disease may disturb mitochondrial function and integrity. Atp7b−/− mice accumulate copper in the liver and serve as an animal model for this inherited disease. The molecular mechanism of copper toxicity in hepatocytes is poorly understood. Total mitochondrial lipids from liver of wild-type mice were subjected to oxidative stress by the Cu2+/H2O2/ascorbate system. Phosphatidic acid (PA) and phosphatidylhydroxyacetone (PHA) were detected as cardiolipin fragmentation products by thin-layer chromatography combined with MALDI-TOF mass spectrometry in oxidized samples, but not in unperturbed ones. The formation of PA and PHA in copper-treated model membrane correlated well with the decrease of cardiolipin. Mitochondrial lipids from Atp7b−/− mice of different age were analyzed for the presence of PA. While 32-weeks old wild-type (control) and Atp7b−/− mice did not show any PA, there was a steady increase in the amount of this lipid in Atp7b−/− mice in contrast to control with increasing age. Hepatocytes from elder Atp7b−/−mice contained morphologically changed mitochondria unlike cells from wild-type animals of the same age. We concluded that free-radical fragmentation of cardiolipin with the formation of PA is a likely mechanism that damages mitochondria under conditions of oxidative stress due to copper overload. Our findings are relevant for better understanding of molecular mechanisms for liver damage found in Wilson's disease.  相似文献   

17.
Alpha-14 giardin (annexin E1), a member of the alpha giardin family of annexins, has been shown to localize to the flagella of the intestinal protozoan parasite Giardia lamblia. Alpha giardins show a common ancestry with the annexins, a family of proteins most of which bind to phospholipids and cellular membranes in a Ca2+-dependent manner and are implicated in numerous membrane-related processes including cytoskeletal rearrangements and membrane organization. It has been proposed that alpha-14 giardin may play a significant role during the cytoskeletal rearrangement during differentiation of Giardia. To gain a better understanding of alpha-14 giardin's mode of action and its biological role, we have determined the three-dimensional structure of alpha-14 giardin and its phospholipid-binding properties. Here, we report the apo crystal structure of alpha-14 giardin determined in two different crystal forms as well as the Ca2+-bound crystal structure of alpha-14 giardin, refined to 1.9, 1.6 and 1.65 Å, respectively. Although the overall fold of alpha-14 giardin is similar to that of alpha-11 giardin, multiwavelength anomalous dispersion phasing was required to solve the alpha-14 giardin structure, indicating significant structural differences between these two members of the alpha giardin family. Unlike most annexin structures, which typically possess N-terminal domains, alpha-14 giardin is composed of only a core domain, followed by a C-terminal extension that may serve as a ligand for binding to cytoskeletal protein partners in Giardia. In the Ca2+-bound structure we detected five bound calcium ions, one of which is a novel, highly coordinated calcium-binding site not previously observed in annexin structures. This novel high-affinity calcium-binding site is composed of seven protein donor groups, a feature rarely observed in crystal structures. In addition, phospholipid-binding assays suggest that alpha-14 giardin exhibits calcium-dependent binding to phospholipids that coordinate cytoskeletal disassembly/assembly during differentiation of the parasite.  相似文献   

18.
Ruth Hielscher  Carola Hunte  Petra Hellwig 《BBA》2009,1787(6):617-7786
Biochemical studies have shown that cardiolipin is essential for the integrity and activity of the cytochrome bc1 complex and many other membrane proteins. Recently the direct involvement of a bound cardiolipin molecule (CL) for proton uptake at center N, the site of quinone reduction, was suggested on the basis of a crystallographic study. In the study presented here, we probe the low frequency infrared spectroscopy region as a technique suitable to detect the involvement of the lipids in redox induced reactions of the protein. First the individual infrared spectroscopic features of lipids, typically present in the yeast membrane, have been monitored for different pH values in micelles and vesicles. The pKa values for cardiolipin molecule have been observed at 4.7 ± 0.3 and 7.9 ± 1.3, respectively. Lipid contributions in the electrochemically induced FTIR spectra of the bc1 complex from yeast have been identified by comparing the spectra of the as isolated form, with samples where the lipids were digested by lipase-A2. Overall, a noteworthy perturbation in the spectral region typical for the protein backbone can be reported. Interestingly, signals at 1159, 1113, 1039 and 980 cm− 1 have shifted, indicating the perturbation of the protonation state of cardiolipin coupled to the reduction of the hemes. Additional shifts are found and are proposed to reflect lipids reorganizing due to a change in their direct environment upon the redox reaction of the hemes. In addition a small shift in the alpha band from 559 to 556 nm can be seen after lipid depletion, reflecting the interaction with heme bH and heme c. Thus, our work highlights the role of lipids in enzyme reactivity and structure.  相似文献   

19.
A number of viruses contain lipid membranes, which are in close contact with capsid proteins and/or nucleic acids and have an important role in the viral infection process. In this study membrane lipids of intact viruses have been analysed by MALDI-TOF/MS with a novel methodology avoiding lipid extraction and separation steps. To validate the novel method, a wide screening of viral lipids has been performed analysing highly purified intact bacterial and archaeal viruses displaying different virion architectures. Lipid profiles reported here contain all lipids previously detected by mass spectrometry analyses of virus lipid extracts. Novel details on the membrane lipid composition of selected viruses have also been obtained. In addition we show that this technique allows the study of lipid distribution easily in subviral particles during virus fractionation. The possibility to reliably analyse minute amounts of intact viruses by mass spectrometry opens new perspectives in analytical and functional lipid studies on a wider range of viruses including pathogenic human ones, which are difficult to purify in large amounts.  相似文献   

20.
After a brief review of the early history of mitochondrial electrophysiology, the contribution of this approach to the study of the mitochondrial permeability transition (MPT) is recapitulated. It has for example provided evidence for a dimeric nature of the MPT pore, allowed the distinction between two levels of control of its activity, and underscored the relevance of redox events for the phenomenon. Single-channel recording provides a means to finally solve the riddle of the biochemical entity underlying it by comparing the characteristics of the pore with those of channels formed by candidate molecules or complexes. The possibility that this entity may be the protein import machinery of the inner mitochondrial membrane is emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号