首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In hepatitis C virus infection, replication of the viral genome and virion assembly are linked to cellular metabolic processes. In particular, lipid droplets, which store principally triacylglycerides (TAGs) and cholesterol esters (CEs), have been implicated in production of infectious virus. Here, we examine the effect on productive infection of triacsin C and YIC-C8-434, which inhibit synthesis of TAGs and CEs by targeting long-chain acyl-CoA synthetase and acyl-CoA:cholesterol acyltransferase, respectively. Our results present high resolution data on the acylglycerol and cholesterol ester species that were affected by the compounds. Moreover, triacsin C, which blocks both triglyceride and cholesterol ester synthesis, cleared most of the lipid droplets in cells. By contrast, YIC-C8-434, which only abrogates production of cholesterol esters, induced an increase in size of droplets. Although both compounds slightly reduced viral RNA synthesis, they significantly impaired assembly of infectious virions in infected cells. In the case of triacsin C, reduced stability of the viral core protein, which forms the virion nucleocapsid and is targeted to the surface of lipid droplets, correlated with lower virion assembly. In addition, the virus particles that were released from cells had reduced specific infectivity. YIC-C8-434 did not alter the association of core with lipid droplets but appeared to decrease production of infectious virus particles, suggesting a block in virion assembly. Thus, the compounds have antiviral properties, indicating that targeting synthesis of lipids stored in lipid droplets might be an option for therapeutic intervention in treating chronic hepatitis C virus infection.  相似文献   

2.
The mechanisms underlying hepatitis C virus (HCV) morphogenesis remain elusive, but lipid droplets have recently been shown to be important organelles for virus production. We investigated the interaction between HCV-like particles and lipid droplets by three-dimensional reconstructions of serial ultrathin electron microscopy sections of cells producing the HCV core protein. The budding of HCV-like particles was mostly initiated at membranes close to the lipid droplets rather than at membranes directly apposed to the lipid droplets. This may have important implications for our understanding of the complex relationship between HCV and lipids and may make easier to dissect out the HCV life cycle.  相似文献   

3.
Hepatitis C virus (HCV) core protein is essential for virus assembly. HCV core protein was expressed and purified. Aptamers against core protein were raised through the selective evolution of ligands by the exponential enrichment approach. Detection of HCV infection by core aptamers and the antiviral activities of aptamers were characterized. The mechanism of their anti-HCV activity was determined. The data showed that selected aptamers against core specifically recognize the recombinant core protein but also can detect serum samples from hepatitis C patients. Aptamers have no effect on HCV RNA replication in the infectious cell culture system. However, the aptamers inhibit the production of infectious virus particles. Beta interferon (IFN-β) and interferon-stimulated genes (ISGs) are not induced in virally infected hepatocytes by aptamers. Domains I and II of core protein are involved in the inhibition of infectious virus production by the aptamers. V31A within core is the major resistance mutation identified. Further study shows that the aptamers disrupt the localization of core with lipid droplets and NS5A and perturb the association of core protein with viral RNA. The data suggest that aptamers against HCV core protein inhibit infectious virus production by disrupting the localization of core with lipid droplets and NS5A and preventing the association of core protein with viral RNA. The aptamers for core protein may be used to understand the mechanisms of virus assembly. Core-specific aptamers may hold promise for development as early diagnostic reagents and potential therapeutic agents for chronic hepatitis C.  相似文献   

4.
5.
Steatosis is a frequent complication of hepatitis C virus infection. In mice, this condition is recapitulated by the expression of a single viral protein, the nucleocapsid core. Core localizes to the surface of lipid droplets (LDs) in infected liver cells through a process dependent on host diacylglycerol acyltransferase 1 (DGAT1), an enzyme that synthesizes triglycerides in the endoplasmic reticulum. Whether DGAT1 also plays a role in core-induced steatosis is uncertain. Here, we show that mouse embryonic fibroblasts isolated from DGAT1(-/-) mice are protected from core-induced steatosis, as are livers of DGAT1(-/-) mice expressing core, demonstrating that the steatosis is DGAT1-dependent. Surprisingly, core expression did not increase DGAT1 activity or triglyceride synthesis, thus excluding the possibility that core activates DGAT1 to cause steatosis. Instead, we find that DGAT1-dependent localization of core to LDs is a prerequisite for the steatogenic properties of the core. Using biochemical and immunofluorescence microscopy techniques, we show that the turnover of lipids in core-coated droplets is decreased, providing a physiological mechanism for core-induced steatosis. Our results support a bipartite model in which core first requires DGAT1 to gain access to LDs, and then LD-localized core interferes with triglyceride turnover, thus stabilizing lipid droplets and leading to steatosis.  相似文献   

6.
The hepatitis C virus (HCV) life cycle is closely associated with lipid metabolism. In particular, HCV assembly initiates at the surface of lipid droplets. To further understand the role of lipid droplets in HCV life cycle, we assessed the relationship between HCV and the adipose differentiation-related protein (ADRP), a lipid droplet-associated protein. Different steps of HCV life cycle were assessed in HCV-infected human Huh-7 hepatoma cells overexpressing ADRP upon transduction with a lentiviral vector. HCV infection increased ADRP mRNA and protein expression levels by 2- and 1.5-fold, respectively. The overexpression of ADRP led to an increase of (i) the surface of lipid droplets, (ii) the total cellular neutral lipid content (2.5- and 5-fold increase of triglycerides and cholesterol esters, respectively), (iii) the cellular free cholesterol level (5-fold) and (iv) the HCV particle production and infectivity (by 2- and 3.5-fold, respectively). The investigation of different steps of the HCV life cycle indicated that the ADRP overexpression, while not affecting the viral replication, promoted both virion egress and entry (~12-fold), the latter possibly via an increase of its receptor occludin. Moreover, HCV infection induces an increase of both ADRP and occludin expression. In HCV infected cells, the occludin upregulation was fully prevented by the ADRP silencing, suggesting a specific, ADRP-dependent mechanism. Finally, in HCV-infected human livers, occludin and ADRP mRNA expression levels correlated with each other. Alltogether, these findings show that HCV induces ADRP, which in turns appears to confer a favorable environment to viral spread.  相似文献   

7.
Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV.  相似文献   

8.
Persistent infection with the hepatitis C virus (HCV) is a major risk factor for the development of liver cirrhosis and hepatocellular carcinoma. With an estimated about 3% of the world population infected with this virus, the lack of a prophylactic vaccine and a selective therapy, chronic hepatitis C currently is a main indication for liver transplantation. The establishment of cell-based replication and virus production systems has led to first insights into the functions of HCV proteins. However, the role of nonstructural protein 5A (NS5A) in the viral replication cycle is so far not known. NS5A is a membrane-associated RNA-binding protein assumed to be involved in HCV RNA replication. Its numerous interactions with the host cell suggest that NS5A is also an important determinant for pathogenesis and persistence. In this study we show that NS5A is a key factor for the assembly of infectious HCV particles. We specifically identify the C-terminal domain III as the primary determinant in NS5A for particle formation. We show that both core and NS5A colocalize on the surface of lipid droplets, a proposed site for HCV particle assembly. Deletions in domain III of NS5A disrupting this colocalization abrogate infectious particle formation and lead to an enhanced accumulation of core protein on the surface of lipid droplets. Finally, we show that mutations in NS5A causing an assembly defect can be rescued by trans-complementation. These data provide novel insights into the production of infectious HCV and identify NS5A as a major determinant for HCV assembly. Since domain III of NS5A is one of the most variable regions in the HCV genome, the results suggest that viral isolates may differ in their level of virion production and thus in their level of fitness and pathogenesis.  相似文献   

9.
Complete maturation of hepatitis C virus (HCV) core protein requires coordinate cleavage by signal peptidase and an intramembrane protease, signal peptide peptidase. We show that reducing the intracellular levels of signal peptide peptidase lowers the titer of infectious virus released from cells, indicating that it plays an important role in virus production. Proteolysis by the enzyme at a signal peptide between core and the E1 glycoprotein is needed to permit targeting of core to lipid droplets. From mutagenesis studies, introducing mutations into the core-E1 signal peptide delayed the appearance of signal peptide peptidase-processed core until between 48 and 72 h after the beginning of the infectious cycle. Accumulation of mature core at these times coincided with its localization to lipid droplets and a rise in titer of infectious HCV. Therefore, processing of core by signal peptide peptidase is a critical event in the virus life cycle. To study the stage in virus production that may be blocked by interfering with intramembrane cleavage of core, we examined the distribution of viral RNA in cells harboring the core-E1 signal peptide mutant. Results revealed that colocalization of core with HCV RNA required processing of the protein by signal peptide peptidase. Our findings provide new insights into the sequence requirements for proteolysis by signal peptide peptidase. Moreover, they offer compelling evidence for a function for an intramembrane protease to facilitate the association of core with viral genomes, thereby creating putative sites for assembly of nascent virus particles.  相似文献   

10.
Hepatitis C virus core protein is the viral nucleocapsid of hepatitis C virus. Interaction of core with cellular membranes like endoplasmic reticulum (ER) and lipid droplets (LD) appears to be involved in viral assembly. However, how these interactions with different cellular membranes are regulated is not well understood. In this study, we investigated how palmitoylation, a post-translational protein modification, can modulate the targeting of core to cellular membranes. We show that core is palmitoylated at cysteine 172, which is adjacent to the transmembrane domain at the C-terminal end of core. Site-specific mutagenesis of residue Cys172 showed that palmitoylation is not involved in the maturation process carried out by the signal peptide peptidase or in the targeting of core to LD. However, palmitoylation was shown to be important for core association with smooth ER membranes and ER closely surrounding LDs. Finally, we demonstrate that mutation of residue Cys172 in the J6/JFH1 virus genome clearly impairs virion production.  相似文献   

11.
Dengue virus is responsible for the highest rates of disease and mortality among the members of the Flavivirus genus. Dengue epidemics are still occurring around the world, indicating an urgent need of prophylactic vaccines and antivirals. In recent years, a great deal has been learned about the mechanisms of dengue virus genome amplification. However, little is known about the process by which the capsid protein recruits the viral genome during encapsidation. Here, we found that the mature capsid protein in the cytoplasm of dengue virus infected cells accumulates on the surface of ER-derived organelles named lipid droplets. Mutagenesis analysis using infectious dengue virus clones has identified specific hydrophobic amino acids, located in the center of the capsid protein, as key elements for lipid droplet association. Substitutions of amino acid L50 or L54 in the capsid protein disrupted lipid droplet targeting and impaired viral particle formation. We also report that dengue virus infection increases the number of lipid droplets per cell, suggesting a link between lipid droplet metabolism and viral replication. In this regard, we found that pharmacological manipulation of the amount of lipid droplets in the cell can be a means to control dengue virus replication. In addition, we developed a novel genetic system to dissociate cis-acting RNA replication elements from the capsid coding sequence. Using this system, we found that mislocalization of a mutated capsid protein decreased viral RNA amplification. We propose that lipid droplets play multiple roles during the viral life cycle; they could sequester the viral capsid protein early during infection and provide a scaffold for genome encapsidation.  相似文献   

12.
LDs (lipid droplets) are probably the least well-characterized cellular organelles. Having long been considered simple lipid storage depots, they are now considered to be dynamic organelles involved in many biological processes. However, most of the mechanisms driving LDs biogenesis, growth and intracellular movement remain largely unknown. As for other cellular mechanisms deciphered through the study of viral models, HCV (hepatitis C virus) is an original and relevant model for investigations of the birth and life of these organelles. Recent studies in this model have raised the hypothesis that the HCV core protein induces the redistribution of LDs through the regression and regeneration of these organelles in specific intracellular domains.  相似文献   

13.
Most clinical studies suggest that the prevalence and severity of liver steatosis are higher in patients infected with hepatitis C virus (HCV) genotype 3 than in patients infected with other genotypes. This may reflect the diversity and specific intrinsic properties of genotype 3 virus proteins. We analyzed the possible association of particular residues of the HCV core and NS5A proteins known to dysregulate lipid metabolism with steatosis severity in the livers of patients chronically infected with HCV. We used transmission electron microscopy to quantify liver steatosis precisely in a group of 27 patients, 12 of whom were infected with a genotype 3 virus, the other 15 being infected with viruses of other genotypes. We determined the area covered by lipid droplets in liver tissues and analyzed the diversity of the core and NS5A regions encoded by the viral variants circulating in these patients. The area covered by lipid droplets did not differ significantly between patients infected with genotype 3 viruses and those infected with other genotypes. The core and NS5A protein sequences of the viral variants circulating in patients with mild or severe steatosis were evenly distributed throughout the phylogenic trees established from all the collected sequences. Thus, individual host factors seem to play a much greater role than viral factors in the development of severe steatosis in patients chronically infected with HCV, including those infected with genotype 3 viruses.  相似文献   

14.
In mammalian tissue culture cells, the core protein of hepatitis C virus (HCV) is located at the surface of lipid droplets, which are cytoplasmic structures that store lipid. The critical amino acid sequences necessary for this localization are in a region of core protein that is absent in flavi- and pestiviruses, which are related to HCV. From our sequence comparisons, this region in HCV core was present in the corresponding protein of GBV-B, another virus whose genomic sequence has significant similarity to HCV. Expression of the putative GBV-B core protein revealed that it also was directed to lipid droplets. By extending the comparisons to cellular proteins, there were amino acid sequence similarities between the domains for lipid droplet association in HCV core and plant oleosin proteins. To determine whether these similarities were related functionally, an oleosin encoded by the Brassica napus bniii gene was expressed in different mammalian cell lines, where it retained the capacity to bind to lipid droplets. Analysis of deletion mutants indicated that the critical region within the protein required for this localization was the same for both plant and mammalian cells. A common feature in the viral and plant sequences was a motif containing proline residues. Mutagenesis of these residues in HCV core and plant oleosin abolished lipid droplet association. Finally, the domain within HCV core required for binding to lipid droplets could substitute for the equivalent domain in oleosin, further indicating the functional relatedness between the viral and plant sequences. These studies identify common features in disparate proteins that are required for lipid droplet localization.  相似文献   

15.
Replication and assembly of hepatitis C virus (HCV) depend on the host's secretory and lipid-biosynthetic machinery. Viral replication occurs on endoplasmic reticulum (ER)-derived modified membranes, while viral assembly is thought to occur on lipid droplets (LDs). A physical association and coordination between the viral replication and assembly complexes are prerequisites for efficient viral production. Nonstructural protein 5A (NS5A), which localizes both to the ER and LDs, is an ideal candidate for this function. Here, the interaction of NS5A with host cell membranes and binding partners was characterized in living cells. The binding of NS5A to LDs is apparently irreversible, both in HCV-infected cells and when ectopically expressed. In HCV-infected cells, NS5A fluorescence was observed around the LDs and in perinuclear structures that were incorporated into a highly immobile platform superimposed over the ER membrane. Moreover, TBC1D20 and its cognate GTPase Rab1 are recruited by NS5A to LDs. The NS5A-TBC1D20 interaction was shown to be essential for the viral life cycle. In cells, expression of the Rab1 dominant negative (Rab1DN) GTPase mutant abolished steady-state LDs. In infected cells, Rab1DN induced the elimination of NS5A from viral replication sites. Our results demonstrate the significance of the localization of NS5A to LDs and support a model whereby its interaction with TBC1D20 and Rab1 affects lipid droplet metabolism to promote the viral life cycle.  相似文献   

16.
Analysis of the serum of duck hepatitis B virus (DHBV)-infected ducks has revealed the presence of C-terminally truncated viral core proteins (e antigens). These proteins are glycosylated and therefore were not released from infected cells by lysis but rather by active secretion, indicating that the DHBV core protein can be synthesized alternatively as a cytoplasmic or a secretory protein. Transient expression of cloned wild-type DHBV DNA and of a specifically designed viral mutant in a human hepatoma cell line (Hep-G2) showed that the DHBV core gene promoter is active in differentiated human liver cells and that synthesis and secretion of the processed core proteins are dependent on the expression of the pre-C region, a small open reading frame which precedes the core gene. In addition, these experiments showed that the mechanism of core protein processing and secretion is conserved between DHBV and the human hepatitis B virus and therefore might be important for the hepatitis B virus life cycle in general. In spite of this, intrahepatic injection of the pre-C mutant into uninfected ducks resulted in viremia without concomitant e-antigen synthesis, indicating that virus formation is independent of pre-C expression.  相似文献   

17.
The triglyceride-synthesizing enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) plays a critical role in hepatitis C virus (HCV) infection by recruiting the HCV capsid protein core onto the surface of cellular lipid droplets (LDs). Here we find a new interaction between the non-structural protein NS5A and DGAT1 and show that the trafficking of NS5A to LDs depends on DGAT1 activity. DGAT1 forms a complex with NS5A and core and facilitates the interaction between both viral proteins. A catalytically inactive mutant of DGAT1 (H426A) blocks the localization of NS5A, but not core, to LDs in a dominant-negative manner and impairs the release of infectious viral particles, underscoring the importance of DGAT1-mediated translocation of NS5A to LDs in viral particle production. We propose a model whereby DGAT1 serves as a cellular hub for HCV core and NS5A proteins, guiding both onto the surface of the same subset of LDs, those generated by DGAT1. These results highlight the critical role of DGAT1 as a host factor for HCV infection and as a potential drug target for antiviral therapy.  相似文献   

18.
Cytosolic lipid droplets are central organelles in the Hepatitis C Virus (HCV) life cycle. The viral capsid protein core localizes to lipid droplets and initiates the production of viral particles at lipid droplet–associated ER membranes. Core is thought to encapsidate newly synthesized viral RNA and, through interaction with the two envelope proteins E1 and E2, bud into the ER lumen. Here, we visualized the spatial distribution of HCV structural proteins core and E2 in vicinity of small lipid droplets by three-color 3D super-resolution microscopy. We observed and analyzed small areas of colocalization between the two structural proteins in HCV-infected cells with a diameter of approximately 100 nm that might represent putative viral assembly sites.  相似文献   

19.
Viral infections frequently cause endoplasmic reticulum (ER) stress in host cells leading to stimulation of the ER-associated degradation (ERAD) pathway, which subsequently targets unassembled glycoproteins for ubiquitylation and proteasomal degradation. However, the role of the ERAD pathway in the viral life cycle is poorly defined. In this paper, we demonstrate that hepatitis C virus (HCV) infection activates the ERAD pathway, which in turn controls the fate of viral glycoproteins and modulates virus production. ERAD proteins, such as EDEM1 and EDEM3, were found to increase ubiquitylation of HCV envelope proteins via direct physical interaction. Knocking down of EDEM1 and EDEM3 increased the half-life of HCV E2, as well as virus production, whereas exogenous expression of these proteins reduced the production of infectious virus particles. Further investigation revealed that only EDEM1 and EDEM3 bind with SEL1L, an ER membrane adaptor protein involved in translocation of ERAD substrates from the ER to the cytoplasm. When HCV-infected cells were treated with kifunensine, a potent inhibitor of the ERAD pathway, the half-life of HCV E2 increased and so did virus production. Kifunensine inhibited the binding of EDEM1 and EDEM3 with SEL1L, thus blocking the ubiquitylation of HCV E2 protein. Chemical inhibition of the ERAD pathway neither affected production of the Japanese encephalitis virus (JEV) nor stability of the JEV envelope protein. A co-immunoprecipitation assay showed that EDEM orthologs do not bind with JEV envelope protein. These findings highlight the crucial role of the ERAD pathway in the life cycle of specific viruses.  相似文献   

20.
M Kann  W H Gerlich 《Journal of virology》1994,68(12):7993-8000
Phosphorylation of core particles derived either from hepatitis B viruses or from livers of hepatitis B-infected individuals has been long recognized, but the nature and function of the phosphorylating enzyme remained unknown. By immunoblotting with a monoclonal antibody, we have now detected protein kinase C within the liver-derived core particles. To study the significance of the encapsidated protein kinase C for the viral life cycle, we established an in vitro assembly system consisting of Escherichia coli-expressed core protein, protein kinase C, and in vitro-synthesized hepatitis B virus RNA. Phosphorylation of the core protein led to a reduced RNA encapsidation capacity of the core particles. Furthermore, RNA and protein kinase C competed for their target sequence, which is the carboxy-terminal arginine-rich domain of the core protein. This finding implies that phosphorylation of the nucleic acid binding site in the core protein occurs within the particles after encapsidation of protein kinase C, pregenomic RNA, and viral polymerase at a later step during viral genome maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号