首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To distinguish the lithogenic effect of the classical estrogen receptor α (ERα) from that of the G protein-coupled receptor 30 (GPR30), a new estrogen receptor, on estrogen-induced gallstones, we investigated the entire spectrum of cholesterol crystallization pathways and sequences during the early stage of gallstone formation in gallbladder bile of ovariectomized female wild-type, GPR30(−/−), ERα(−/−), and GPR30(−/−)/ERα(−/−) mice treated with 17β-estradiol (E2) at 6 µg/day and fed a lithogenic diet for 12 days. E2 disrupted biliary cholesterol and bile salt metabolism through ERα and GPR30, leading to supersaturated bile and predisposing to the precipitation of cholesterol monohydrate crystals. In GPR30(−/−) mice, arc-like and tubular crystals formed first, followed by classical parallelogram-shaped cholesterol monohydrate crystals. In ERα(−/−) mice, precipitation of lamellar liquid crystals, typified by birefringent multilamellar vesicles, appeared earlier than cholesterol monohydrate crystals. Both crystallization pathways were accelerated in wild-type mice with the activation of GPR30 and ERα by E2. However, cholesterol crystallization was drastically retarded in GPR30(−/−)/ERα(−/−) mice. We concluded that E2 activates GPR30 and ERα to produce liquid crystalline versus anhydrous crystalline metastable intermediates evolving to cholesterol monohydrate crystals from supersaturated bile. GPR30 produces a synergistic lithogenic action with ERα to enhance E2-induced gallstone formation.  相似文献   

2.
3.
4.
Aihara M  Yamamoto S  Nishioka H  Inoue Y  Hamano K  Oka M  Mizukami Y 《Gene》2012,501(2):118-126
G protein-coupled receptor 30/G protein estrogen receptor-1 (GPR30/GPER-1) is a novel membrane receptor for estrogen whose mRNA is expressed at high levels in estrogen-dependent cells such as breast cancer cell lines. However, mutations in GRP30 related to diseases remain unreported. To detect unknown mutations in the GPR30 open reading frame (ORF) quickly, the experimental conditions for high-resolution melting (HRM) analysis were examined for PCR primers, Taq polymerases, saturation DNA binding dyes, Mg(2+) concentration, and normalized temperatures. Nine known SNPs and 13 artificial point mutations within the GPR30 ORF, as well as single nucleotide variants in DNA extracted from subjects with breast cancers were tested under the optimal experimental conditions. The combination of Expand High Fidelity(PLUS) and SYTO9 in the presence of 2.0 mM MgCl(2) produced the best separation in melting curves of mutations in all regions of the GPR30 ORF. Under these experimental conditions, the mutations were clearly detected in both heterozygotes and homozygotes. HRM analysis of GPR30 using genomic DNA from subjects with breast cancers showed a novel single nucleotide variant, 111C>T in GPR30 and 4 known SNPs. The experimental conditions determined in this study for HRM analysis are useful for high throughput assays to detect unknown mutations within the GPR30 ORF.  相似文献   

5.
G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane   总被引:11,自引:0,他引:11  
Recently, GPR30 was reported to be a novel estrogen receptor; however, its intracellular localization has remained controversial. To investigate the intracellular localization of GPR30 in vivo, we produced four kinds of polyclonal antibodies for distinct epitopes on GPR30. Immunocytochemical observations using anti-GPR30 antibody and anti-FLAG antibody show that FLAG-GPR30 localizes to the plasma membrane 24 h after transfection. Treatment with estrogen (17beta-estradiol or E2) causes an elevation in the intracellular Ca2+ concentration ([Ca2+]i) within 10 s in HeLa cells expressing FLAG-GPR30. In addition, E2 induces the translocation of GPR30 from the plasma membrane to the cytoplasm by 1 h after stimulation. Immunohistochemical analysis shows that GPR30 exists on the cell surface of CA2 pyramidal neuronal cells. The images on transmission electron microscopy show that GPR30 is localized to a particular region associated with the plasma membranes of the pyramidal cells. These data indicate that GPR30, a transmembrane receptor for estrogen, is localized to the plasma membrane of CA2 pyramidal neuronal cells of the hippocampus in rat brain.  相似文献   

6.
Estrogen hormones are important for cartilage homeostasis, but nothing is known regarding the expression and role of the membrane G protein-coupled estrogen receptor (GPER), G protein-coupled receptor 30 (GPR30), in adult articular chondrocytes. Using immunohistochemistry of cartilage sections, quantitative real-time polymerase chain reaction and Western blot of chondrocyte extracts, we found that these cells express GPR30. Nonetheless, the pattern of bands detected by two distinct antibodies does not overlap, suggesting that the proteins detected represent partially degraded forms of the receptor. Treatment with GPR30 agonists did not induce Akt or ERK1/2 phosphorylation, two known GPR30-activated signaling pathways, suggesting that GPR30 is not functional in human chondrocytes. Therefore, the protective anti-osteoarthritic role of estrogen hormones in cartilage homeostasis is likely independent of GPR30. This study was performed using human cartilage collected from the distal femoral condyles of multiorgan donors at the Bone and Tissue Bank of the University and Hospital Center of Coimbra.  相似文献   

7.
GPR40 is G protein-coupled receptor whose endogenous ligands have recently been identified as free fatty acids (FFAs), and it has been implicated to play an important role in FFA-mediated enhancement of glucose-stimulated insulin release. We have developed a monoclonal antibody against the extracellular domain of GPR40. Specificity of the antibody was demonstrated by immunoprecipitation and cell surface staining using GPR40-transfected cells. GPR40 immunoreactivity was highly abundant in mouse pancreatic β-cells and splenocytes, THP-1 cells, and human peripheral blood mononuclear cells. The anti-GPR40 monoclonal antibody should prove valuable for further studying the function of this nutrient sensing receptor.  相似文献   

8.
Increased levels of endogenous and/or exogenous estrogens are one of the well known risk factors of endometrial cancer. Diacylglycerol kinases (DGKs) are a family of enzymes which phosphorylate diacylglycerol (DAG) to produce phosphatidic acid (PA), thus turning off and on DAG-mediated and PA-mediated signaling pathways, respectively. DGK α activity is stimulated by growth factors and oncogenes and is required for chemotactic, proliferative, and angiogenic signaling in vitro. Herein, using either specific siRNAs or the pharmacological inhibitor R59949, we demonstrate that DGK α activity is required for 17-β-estradiol (E2)-induced proliferation, motility, and anchorage-independent growth of Hec-1A endometrial cancer cell line. Impairment of DGK α activity also influences basal cell proliferation and growth in soft agar of Hec-1A, while it has no effects on basal cell motility. Moreover, we show that DGK α activity induced by E2, as well as its observed effects, are mediated by the G protein-coupled estrogen receptor GPR30 (GPER). These findings suggest that DGK α may be a potential target in endometrial cancer therapy.  相似文献   

9.
10.
Accumulated evidence shows that G protein-coupled receptor 119 (GPR119) plays a key role in glucose and lipid metabolism. Here, we explored the effect of GPR119 on cholesterol metabolism and inflammation in THP-1 macrophages and atherosclerotic plaque progression in apoE−/− mice. We found that oxidized LDL (Ox-LDL) significantly induced long intervening noncoding RNA (lincRNA)-DYNLRB2-2 expression, resulting in the upregulation of GPR119 and ABCA1 expression through the glucagon-like peptide 1 receptor signaling pathway. GPR119 significantly decreased cellular cholesterol content and increased apoA-I-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. In vivo, apoE−/− mice were randomly divided into two groups and infected with lentivirus (LV)-Mock or LV-GPR119 for 8 weeks. GPR119-treated mice showed decreased liver lipid content and plasma TG, interleukin (IL)-1β, IL-6, and TNF-α levels, whereas plasma levels of apoA-I were significantly increased. Consistent with this, atherosclerotic lesion development was significantly inhibited by infection of apoE−/− mice with LV-GPR119. Our findings clearly indicate that, Ox-LDL significantly induced lincRNA-DYNLRB2-2 expression, which promoted ABCA1-mediated cholesterol efflux and inhibited inflammation through GPR119 in THP-1 macrophage-derived foam cells. Moreover, GPR119 decreased lipid and serum inflammatory cytokine levels, decreasing atherosclerosis in apoE−/− mice. These suggest that GPR119 may be a promising candidate as a therapeutic agent.  相似文献   

11.
Identified and cloned in 1996 for the first time, G protein-coupled oestrogen receptor (ER) 30 (GPR30/GPER) has been a hot spot in the field of sex hormone research till now. In the present study, we examined the effects of low-dose oestradiol (E2) combined with G15, a specific antagonist of GPR30 on ovariectomy (OVX)-induced osteoporosis in rats. Female Sprague–Dawley (SD) rats undergoing OVX were used to evaluate the osteoprotective effect of the drugs. Administration of E2 [35 μg/kg, intraperitoneally (ip), three times/week) combining G15 (160 μg/kg, ip, three times/week) for 6 weeks was found to have prevented OVX-induced effects, including increase in bone turnover rate, decrease in bone mineral content (BMC) and bone mineral density (BMD), damage of bone structure and the aggravation in biomechanical properties of bone. The therapeutic effect of these two drugs in combination was better than that of E2 alone. Meanwhile, the administration of G15 prevented body weight increase or endometrium proliferation in the rats. In conclusion, administration of low-dose E2 combining G15 had a satisfactory bone protective effect for OVX rats, without significant influence on body weight or the uterus. This combination therapy may be an effective supplement of drugs in prevention and treatment for postmenopausal osteoporosis.  相似文献   

12.
Estrogen inhibition of oocyte maturation (OM) and the role of GPER (formerly known as GPR30) were investigated in zebrafish. Estradiol-17β (E2) and G-1, a GPER-selective agonist, bound to zebrafish oocyte membranes suggesting the presence of GPER which was confirmed by immunocytochemistry using a specific GPER antibody. Incubation of follicle-enclosed oocytes with an aromatase inhibitor, ATD, and enzymatic and manual removal of the ovarian follicle cell layers significantly increased spontaneous OM which was partially reversed by co-treatment with either 100 nM E2 or G-1. Incubation of denuded oocytes with the GPER antibody blocked the inhibitory effects of estrogens on OM, whereas microinjection of estrogen receptor alpha (ERα) antisense oligonucleotides into the oocytes was ineffective. The results suggest that endogenous estrogens produced by the follicle cells inhibit or delay spontaneous maturation of zebrafish oocytes and that this estrogen action is mediated through GPER. Treatment with E2 and G-1 also attenuated the stimulatory effect of the teleost maturation-inducing steroid, 17,20β-dihyroxy-4-pregnen-3-one (DHP), on OM. Moreover, E2 and G-1 down-regulated the expression of membrane progestin receptor alpha (mPRα), the intermediary in DHP induction of OM. Conversely DHP treatment caused a > 50% decline in GPER mRNA levels. The results suggest that estrogens and GPER are critical components of the endocrine system controlling the onset of OM in zebrafish. A model is proposed for the dual control of the onset of oocyte maturation in teleosts by estrogens and progestins acting through GPER and mPRα, respectively, at different stages of oocyte development.  相似文献   

13.
Context/objective: Cell lines used to study the role of the G protein-coupled receptor 30 (GPR30) or G protein-coupled estrogen receptor (GPER) as a mediator of estrogen responses have yielded conflicting results. This work identified a simple assay to predict cell line competence for pharmacological studies of GPR30.

Materials and methods: The phosphorylation or expression levels of ERK1/2, Akt, c-Fos and eNOS were evaluated to assess GPR30 activation in response to known agonists (17β-estradiol and G-1) in MCF-7 and T-47D breast cancer cell lines and in bovine aortic endothelial cells. GPR30 expression was analyzed by qRT-PCR and Western blot with two distinct antibodies directed at its carboxy and amino terminals.

Results: None of the agonists, at any of the concentrations tested, activated any of those target proteins. Additional experiments excluded the disruption of the signaling pathway, interference of phenol red in the culture medium and constitutive proteasome degradation of GPR30 as possible causes for the lack of response of the three cell lines. Analysis of receptor expression showed the absence of clearly detectable GPR30 species of 44 and 50–55?kDa previously identified in cell lines that respond to 17β-estradiol and G-1.

Discussion and conclusion: Cells that do not express the 44 and 50–55?kDa species do not respond to GPR30 agonists. Thus, the presence or absence of these GPR30 species is a simple and rapid manner to determine whether a given cell line is suitable for pharmacological or molecular studies of GPR30 modulation.  相似文献   

14.
Huang H  Deng X  He X  Yang W  Li G  Shi Y  Shi L  Mei L  Gao J  Zhou N 《Cellular signalling》2011,23(9):1455-1465
Neuropeptides of the adipokinetic hormone (AKH) family play important roles in insect hemolymph sugar homeostasis, larval lipolysis and storage-fat mobilization. Our previous studies have shown that the adipokinetic hormone receptor (AKHR), a Gs-coupled receptor, induces intracellular cAMP accumulation, calcium mobilization and ERK1/2 phosphorylation upon agonist stimulation. However, the underlying molecular mechanisms that regulate the internalization and desensitization of AKHR remain largely unknown. In the current study we made a construct to express AKHR fused with enhanced green fluorescent protein (EGFP) at its C-terminal end to further characterize AKHR internalization. In stable AKHR-EGFP-expressing HEK-293 cells, AKHR-EGFP was mainly localized at the plasma membrane and was rapidly internalized in a dose- and time-dependent manner via the clathrin-coated pit pathway upon agonist stimulation, and internalized receptors were slowly recovered to the cell surface after the removal of AKH peptides. The results derived from RNA interference and arrestin translocation demonstrated that G protein-coupled receptor kinase 2 and 5 (GRK2/5) and β-arrestin2 were involved in receptor phosphorylation and internalization. Furthermore, experiments using deletion and site-directed mutagenesis strategies identified the three residues (Thr356, Ser359 and Thr362) responsible for GRK-mediated phosphorylation and internalization and the C-terminal domain from residue-322 to residue-342 responsible for receptor export from ER. This is the first detailed investigation of the internalization and trafficking of insect G protein-coupled receptors.  相似文献   

15.
Many of the beneficial and adverse effects of niacin are mediated via a G protein receptor, G protein-coupled receptor 109A/hydroxycarboxylic acid 2 receptor (GPR109A/HCA2), which is highly expressed in adipose tissue and macrophages. Here we demonstrate that immune activation increases GPR109A/HCA2 expression. Lipopolysaccharide (LPS), TNF, and interleukin (IL) 1 increase GPR109A/HCA2 expression 3- to 5-fold in adipose tissue. LPS also increased GPR109A/HCA2 mRNA levels 5.6-fold in spleen, a tissue rich in macrophages. In peritoneal macrophages and RAW cells, LPS increased GPR109A/HCA2 mRNA levels 20- to 80-fold. Zymosan, lipoteichoic acid, and polyinosine-polycytidylic acid, other Toll-like receptor activators, and TNF and IL-1 also increased GPR109A/HCA2 in macrophages. Inhibition of the myeloid differentiation factor 88 or TIR-domain-containing adaptor protein inducing IFNβ pathways both resulted in partial inhibition of LPS stimulation of GPR109A/HCA2, suggesting that LPS signals an increase in GPR109A/HCA2 expression by both pathways. Additionally, inhibition of NF-κB reduced the ability of LPS to increase GPR109A/HCA2 expression by ∼50% suggesting that both NF-κB and non-NF-κB pathways mediate the LPS effect. Finally, preventing the LPS-induced increase in GPR109A/HCA2 resulted in an increase in TG accumulation and the expression of enzymes that catalyze TG synthesis. These studies demonstrate that inflammation stimulates GPR109A/HCA2 and there are multiple intracellular signaling pathways that mediate this effect. The increase in GPR109A/HCA2 that accompanies macrophage activation inhibits the TG accumulation stimulated by macrophage activation.  相似文献   

16.
GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane.  相似文献   

17.
Free fatty acids (FFAs) are energy-generating nutrients that act as signaling molecules in various cellular processes. Several orphan G protein-coupled receptors (GPCRs) that act as FFA receptors (FFARs) have been identified and play important physiological roles in various diseases. FFA ligands are obtained from food sources and metabolites produced during digestion and lipase degradation of triglyceride stores. FFARs can be grouped according to ligand profiles, depending on the length of carbon chains of the FFAs. Medium- and long-chain FFAs activate FFA1/GPR40 and FFA4/GPR120. Short-chain FFAs activate FFA2/GPR43 and FFA3/GPR41. However, only medium-chain FFAs, and not long-chain FFAs, activate GPR84 receptor. A number of pharmacological and physiological studies have shown that these receptors are expressed in various tissues and are primarily involved in energy metabolism. Because an impairment of these processes is a part of the pathology of obesity and type 2 diabetes, FFARs are considered as key therapeutic targets. Here, we reviewed recently published studies on the physiological functions of these receptors, primarily focusing on energy homeostasis.  相似文献   

18.
Herrera JL  Fernandez C  Diaz M  Cury D  Marin R 《Steroids》2011,76(9):840-844
There is a wealth of information indicating that estradiol exerts rapid actions involved in neuroprotection and cognitive-enhancing effects. Some of these effects appear to delay onset, or even ameliorate, the neuropathology of Alzheimer's disease (AD), although some controversy exists about the beneficial brain effects of estrogen therapies. Therefore, it is crucial to better understand the mechanisms developed by 17β-estradiol to signal in the brain. At the neuronal membrane, the hormone can rapidly interact with estrogen receptors (mERs) or activate other receptors, such as G protein-coupled and ionotropic receptors. And the list of membrane signalling molecules modulated by estradiol in neurons is increasing. VDAC is a voltage-dependent anion channel, known as a mitochondrial porin which is also found at the neuronal membrane, where it appears to be involved in redox regulation, extrinsic apoptosis and amyloid beta neurotoxicity. Moreover, VDAC is present in neuronal lipid rafts, where it is associated with estrogen receptor α-like (mER), forming part of a macromolecular complex together with caveolin-1 and other signalling proteins related to neuronal preservation. Interestingly, we have recently found that 17β-estradiol rapidly promotes VDAC phosphorylation through the activation of protein kinase A (PKA) and Src-kinase, which may be relevant to maintain this channel inactivated. On the contrary, tamoxifen, a selective estrogen receptor modulator (SERM), provokes the dephosphorylation of VDAC, and eventually its opening, by activating a cascade of phosphatases, including protein phosphatase 2 (PP2A). This review will focus on the relevance of these novel findings in the alternative estrogen mechanisms to achieve neuroprotection related to AD.  相似文献   

19.
The classical view of the molecular actions of estrogen is described by its interaction with the intracellular estrogen receptor (ER), the binding of hormone receptor complex to the estrogen response element (ERE) on the DNA and followed by the alterations of gene expressions. Recently it has been reported that membrane estrogen receptor (mER) exist and it is suggested to be G protein linked receptor. In this report we show that under steroid-free culture conditions supplemented with low percentage of charcoal-stripped serum, differential estrogen treatments of human breast cancer MCF7 cells induce different responses of cyclic AMP (cAMP) productions. Treating [2-(3)H]adenine-labeled MCF7 cells with 1 nM estrogen for 30 min stimulates cAMP production by measuring the ratio of [3H]cAMP:Total [3H]adenine nucleotides (ATP+ADP+cAMP), as determined by column chromatography, when compared with the control. This short-term estrogen treatment also significantly enhanced forskolin stimulated cAMP production when compared with the ratio of cAMP/Total measured in cells stimulated with forskolin alone. Pre-treating MCF7 cells with the same concentration of estrogen for 24h before the assay, on the contrary, significantly decreased the basal cAMP level and it also suppressed cAMP production stimulated with forskolin when compared with its respective value under short-term estrogen treatment. Estrogen receptor antagonist ICI 182780 abolished both the stimulatory and suppressive effect of estrogen on cAMP synthesis indicating both effects were mediated through ER. Pre-treating cells with pertussis toxin relieved the suppression of cAMP synthesis by chronic estrogen treatment. Our data suggest that estrogen exerts differential effects on the cAMP production in MCF7 cells, involving the activations Galpha(i) and Galpha(s) family of G proteins, depending on the length of time of hormone treatment.  相似文献   

20.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)是一类重要的细胞膜表面跨膜蛋白受体超家族,具有7个跨膜螺旋结构。GPCRs的细胞内信号由G蛋白介导,可将激素、神经递质、药物、趋化因子等多种物理和化学的细胞外刺激穿过细胞膜转导到细胞内不同的效应分子,激活相应的信号级联系统进而影响恶性肿瘤的生长迁移过程。虽然目前药物市场上有很多治疗癌症的小分子药物属于G蛋白受体相关药物,但所作用的靶点集中于少数特定G蛋白偶联受体。因此,新的具有成药性的G蛋白偶联受体的开发具有很大的研究价值和市场潜力。本文主要以在癌症发生、发展中起重要作用的溶血磷脂酸(LPA),G蛋白偶联受体30(GPR30)、内皮素A受体(ETAR)等不同G蛋白偶联受体为分类依据,综述其与相关的信号通路在癌症进程中的作用,并对相应的小分子药物的临床应用和研究进展进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号