首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Integrin-linked kinase-associated phosphatase (ILKAP) is a serine/threonine (S/T) phosphatase that belongs to the protein phosphatase 2C (PP2C) family. Many previous studies have demonstrated that ILKAP plays key roles in the regulation of cell survival and apoptosis. Researchers have thus far considered ILKAP a cytoplasmic protein that negatively regulates integrin signaling by interacting with and phosphorylating integrin-linked kinase 1 (ILK1). In this study, we found that both endogenous and tagged ILKAP mainly localize to the nucleus and that the nuclear transport of ILKAP is nuclear localization signal (NLS) importin-mediated. The ILKAP protein interacts directly with importin α1, α3, and α5. The NLS in ILKAP is located in the N-terminal region between amino acids 71 and 86, and the NLS-deleted ILKAP protein was distributed in the cytoplasm. In addition, we show that Lys-78 and Arg-79 are critical for the binding of ILKAP to importin α. We also found that nuclear ILKAP interacts with ribosomal protein S6 kinase-2 (RSK2) and induces apoptosis by inhibiting RSK2 activity and down-regulating the expression level of the RSK2 downstream substrate cyclin D1. These results indicate that ILKAP is a nuclear protein that regulates cell survival and apoptosis through the regulation of RSK2 signaling.  相似文献   

2.
In prion diseases cellular prion protein (PrPC) undergoes conformational transition into the β-sheet-rich form (PrPSc). PrPC consists of the disordered N-terminal part and a C-terminal globular domain containing three α-helices (H1, H2, H3) and an antiparallel beta sheet (B1, B2). B2–H2 loop, which has a focal role in the species barrier, contains the highest density of asparagine (N) and glutamine (Q) residues in the whole sequence. Q/N-rich domains are essential for the conversion of yeast prions. We investigated the role of Q/N residues in the B2–H2 loop in PrP conversion. We prepared mouse PrP mutants with increasing number of consecutive Q/N residues in the B2–H2 loop. Stability of the mutants decreased with the increasing number of inserted glutamines. In vitro conversion of mutants yielded fibrils of similar morphology as the wild-type PrP. Q/N mutants accelerated fibrillization in comparison to the wild-type PrP, with mutant containing the most glutamines having the shortest lag phase. The effect of Q/N residues was specific for the B2–H2 loop and was not due to simple increase in flexibility as the introduction of Gly-Ser or Ala residues slowed the conversion despite their decreased stability. Our results thus suggest that Q/N residues in the B2–H2 loop of PrP promote protein conversion and may represent a link to conversion of Q/N-rich prions.  相似文献   

3.
Apolipoprotein A-I (apoA-I) accepts cholesterol and phospholipids from ATP-binding cassette transporter A1 (ABCA1)-expressing cells to form high-density lipoprotein (HDL). Human apoA-I has two tertiary structural domains and the C-terminal domain (approximately amino acids 190–243) plays a key role in lipid binding. Although the high lipid affinity region of the C-terminal domain of apoA-I (residues 223–243) is essential for the HDL formation, the function of low lipid affinity region (residues 191–220) remains unclear. To evaluate the role of residues 191–220, we analyzed the structure, lipid binding properties, and HDL formation activity of Δ191–220 apoA-I, in comparison to wild-type and Δ223–243 apoA-I. Although deletion of residues 191–220 has a slight effect on the tertiary structure of apoA-I, the Δ191–220 variant showed intermediate behavior between wild-type and Δ223–243 regarding the formation of hydrophobic sites and lipid interaction through the C-terminal domain. Physicochemical analysis demonstrated that defective lipid binding of Δ191–220 apoA-I is due to the decreased ability to form α-helix structure which provides the energetic source for lipid binding. In addition, the ability to form HDL particles in vitro and induce cholesterol efflux from ABCA1-expressing cells of Δ191–220 apoA-I was also intermediate between wild-type and Δ223–243 apoA-I. These results suggest that despite possessing low lipid affinity, residues 191–220 play a role in enhancing the ability of apoA-I to bind to and solubilize lipids by forming α-helix upon lipid interaction. Our results demonstrate that the combination of low lipid affinity region and high lipid affinity region of apoA-I is required for efficient ABCA1-dependent HDL formation.  相似文献   

4.
Cdc6 is cleaved at residues 442 and 290 by caspase-3 during apoptosis producing p49-tCdc6 and p32-tCdc6, respectively. While p32-tCdc6 is unable to translocate into the cytoplasm, p49-tCdc6 retains cytoplasmic translocation activity, but it has a lower efficiency than wild-type Cdc6. We hypothesized that a novel nuclear export signal (NES) sequence exists between amino acids 290 and 442. Cdc6 contains a novel NES in the region of amino acids 300–315 (NES2) that shares sequence similarity with NES1 at residues 462–476. In mutant versions of Cdc6, we replaced leucine with alanine in NES1 and NES2 and co-expressed the mutant constructs with cyclin A. We observed that the cytoplasmic translocation of these mutants was reduced in comparison to wild-type Cdc6. Moreover, the cytoplasmic translocation of a mutant in which all four leucine residues were mutated to alanine was significantly inhibited in comparison to the translocation of wild-type Cdc6. The Crm1 binding activities of Cdc6 NES mutants were consistent with the efficiency of its cytoplasmic translocation. Further studies have revealed that L468 and L470 of NES1 are required for cytoplasmic translocation of Cdc6 phosphorylated at S74, while L311 and L313 of NES2 accelerate the cytoplasmic translocation of Cdc6 phosphorylated at S54. These results suggest that the two NESs of Cdc6 work cooperatively and distinctly for the cytoplasmic translocation of Cdc6 phosphorylated at S74 and S54 by cyclin A/Cdk2.  相似文献   

5.
Zhang H  Mak S  Cui W  Li W  Han R  Hu S  Ye M  Pi R  Han Y 《Neurochemistry international》2011,59(7):981-988
Oxidative stress is closely related to the pathogenesis of neurodegenerative disorders such as Parkinson’s disease (PD). In this study, we investigated the neuroprotective effect of tacrine–ferulic acid dimers linked by an alkylenediamine side chain (TnFA, n = 2−7), a series of novel acetylcholinesterase inhibitors, against 6-hydroxydopamine (6-OHDA)-induced apoptosis in PC12 cells. Among these dimers, pre-treatment of tacrine(2)–ferulic acid (T2FA, 3−30 μM) attenuated 6-OHDA-induced apoptosis in a concentration-dependent manner. The activations of glycogen synthase kinase 3β (GSK3β) and extracellular signal-regulated kinase (ERK) were observed after the treatment of 6-OHDA. Both SB415286 (an inhibitor of GSK3β) and PD98059 (an inhibitor of ERK kinase) reduced the neurotoxicity induced by 6-OHDA, indicating that GSK3β and ERK are involved in 6-OHDA-induced apoptosis. T2FA was able to inhibit the activation of GSK3β, but not ERK, in an Akt-dependent manner. Furthermore, LY294002, a phosphoinositide 3-kinase inhibitor, abolished the neuroprotective effect of T2FA. Collectively, these results suggest that T2FA prevents 6-OHDA-induced apoptosis possibly by activating the Akt pathway in PC12 cells.  相似文献   

6.
In important and severe neurodegenerative pathologies, 7-ketocholesterol, mainly resulting from cholesterol autoxidation, may contribute to dys- or demyelination processes. On various cell types, 7-ketocholesterol has often been shown to induce a complex mode of cell death by apoptosis associated with phospholipidosis. On 158N murine oligodendrocytes treated with 7-ketocholesterol (20 μg/mL corresponding to 50 μM, 24–48 h), the induction of a mode of cell death by apoptosis characterised by the occurrence of cells with condensed and/or fragmented nuclei, caspase activation (including caspase-3) and internucleosomal DNA fragmentation was observed. It was associated with a loss of transmembrane mitochondrial potential (ΔΨm) measured with JC-1, with a dephosphorylation of Akt and GSK3 (especially GSK3β), and with degradation of Mcl-1. With α-tocopherol (400 μM), which was capable of counteracting 7-ketocholesterol-induced apoptosis, Akt and GSK3β dephosphorylation were inhibited as well as Mcl-1 degradation. These data underline that the potential protective effects of α-tocopherol against 7-ketocholesterol-induced apoptosis do not depend on the cell line considered, and that the cascade of events (Akt/GSK3β/Mcl-1) constitutes a link between 7-ketocholesterol-induced cytoplasmic membrane dysfunctions and mitochondrial depolarisation leading to apoptosis.  相似文献   

7.
We have previously characterized the effects of 2,6-diisopropylphenyl–docosahexaenoamide (DIP–DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP–DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP–DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP–DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP–DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP–DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP–DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.  相似文献   

8.
Low density lipoproteins (LDL) of human blood, once oxidized, provoke cholesterol accumulation in cells of arterial wall, which favors the development of atherosclerosis. Oxidative modification of LDL can result from their interaction with hypochlorous acid produced in the halogenation cycle of myeloperoxidase (MPO). On account that MPO is able to form complexes with LDL it seems important to learn the forces promoting such contacts and to spot the likely binding sites for the enzyme on the surface of LDL particles. In this study affinity chromatography on MPO-Sepharose showed that MPO-LDL complexes are uncoupled at ionic strength above 0.3 M NaCl or when pH of solution goes below 3.6. This is an evidence of ionic interaction between MPO and LDL. We used spin probes of lipid nature embedded in phospholipid monolayer so that a variety of distances between the surface of an LDL particle and the paramagnetic center of a spin probes was provided. Since MPO interaction with labeled LDL caused no alteration of EPR spectra it was concluded that lipid components of LDL are not involved in MPO binding. Analysis of Mn2+ distribution between LDL surface and the aqueous milieu showed that the surface negative charge of LDL is not considerably changed upon interaction with MPO. It can be suggested that interaction of LDL with MPO does not involve phospholipids that are the principal carriers of the surface charge. Among synthetic oligopeptides with amino acid sequences mimicking those of apoB-100 fragments – 1EEEMLEN7, 53VELEVPQ59 and 445EQIQDDCTGDED456 – only the latter could replace MPO in the complex with LDL. It is concluded that the likely site of interaction with MPO is the amino acid stretch 445–456 of apoB-100 in LDL.  相似文献   

9.
Gamma-linolenic acid (GLA, 18:3 n6) is an essential polyunsaturated fatty acid of the omega-6 family and is found to be effective in prevention and/or treatment of various health problems. In this study, we evaluated the possibility of increasing γ-linolenic acid contents in mammalian cells using the delta-6 gene from Borago officinalis. The borage Δ6-desaturase gene (sDelta-6) was codon-optimized and introduced into HEK293 cells by lipofectin transfection. Co-expression of GFP with sDelta-6 and RT-PCR analysis indicated that sDelta-6 could be expressed in mammalian cells. Subsequently, the heterologous expression of borage Δ6-desaturase was evaluated by fatty acid analysis. Total cellular lipid analysis of transformed cells fed with linoleic acid (LA 18:2 n6) as a substrate showed that the expression of sDelta-6 resulted in an 228–483% (p < 0.05) increase of GLA when compared with that in the control cells. The highest conversion efficiency of LA into GLA in sDelta-6+ cells was 6.9 times higher than that in the control group (11.59% vs. 1.69%; p < 0.05). Our present work demonstrated that the sDelta-6 gene from borage could be functionally expressed in mammalian cells, and could convert LA into GLA. Furthermore, this study may pave the way to generate transgenic livestock that can synthesise GLA.  相似文献   

10.
整合素连接激酶相关磷酸酶(ILKAP)是蛋白磷酸酶2C(PP2C)家族的新成员,初步的研究结果显示,这是一种与细胞凋亡信号通路密切相关的磷酸酶.ILKAP广泛表达于人体组织中,在骼肌、肾脏、肝脏中有高水平的表达.介导细胞凋亡是ILKAP的主要生理功能,因而与肿瘤的发生、发展密切相关.ILKAP主要通过负调控整合素激酶信号通路,以及正调控c-Jun氨基末端激酶/促分裂原活化蛋白激酶(JNK/MAPK)信号通路而发挥作用.另外,在很多肿瘤细胞中,存在ILKAP基因的杂合性缺失或突变体,使ILKAP不能正确表达,从而不能介导肿瘤细胞的凋亡.  相似文献   

11.
An alternative splicing variant of E3 ubiquitin ligase ASB2, termed ASB2a, has a distinct N-terminal sequence containing a ubiquitin-interacting motif (UIM) consensus sequence. Examination of the minimal essential region for binding to polyubiquitinated proteins indicated that the UIM consensus sequence (residues 26–41) alone is not enough, and that amino acids 12–41 from the N-terminus of ASB2a is essential for binding. ASB2a(12–41) peptide was chemically synthesized and coupled to Sepharose 4B via disulfide bonds. This ASB2a(12–41) peptide-coupled affinity resin bound both K48- and K63-linked polyubiquitinated proteins in cell lysates and comprehensively captured polyubiquitinated proteins, including polyubiquitinated β-catenin, I-κB, and EGF receptor, which were eluted with 2-mercaptoethanol under non-denaturing conditions. These results indicate that this UIM affinity purification (designated as ubiquitin-trapping) is a useful method to discover polyubiquitinated proteins and their associated proteins.  相似文献   

12.
Scaffold varied quaternized quinine and cinchonidine alkaloid derivatives were evaluated for their selective butyrylcholinesterase (BChE) inhibitory potential. Ki values were between 0.4–260.5 μM (non-competitive inhibition) while corresponding Kivalues to acetylcholinesterase (AChE) ranged from 7.0–400 μM exhibiting a 250-fold selectivity for BChE.Docking arrangements (GOLD, PLANT) revealed that the extended aromatic moieties and the quaternized nitrogen of the inhibitors were responsible for specific ππ stacking and π–cation interactions with the choline binding site and the peripheral anionic site of BChE’s active site.  相似文献   

13.
We report on the formation of the secondary and tertiary structure of bacteriorhodopsin during its in vitro refolding from an SDS-denatured state. We used the mobility of single spin labels in seven samples, attached at various locations to six of the seven helical segments to engineered cysteine residues, to follow coil-to-helix formation. Distance measurements obtained by spin dipolar quenching in six samples labeled at either the cytoplasmic or extracellular ends of pairs of helices revealed the time dependence of the recovery of the transmembrane helical bundle. The secondary structure in the majority of the helical segments refolds with a time constant of <100–140 ms. Recovery of the tertiary structure is achieved by sequential association of the helices and occurs in at least three distinct steps with time constants of 1), well below 1 s; 2), 3–4 s; and 3), 60–130 s (the latter depending on the helical pair). The slowest of these processes occurs in concert with recovery of the retinal chromophore.  相似文献   

14.
Here, we report the NMR structure of the actin-binding domain contained in the cell adhesion protein palladin. Previously, we demonstrated that one of the immunoglobulin domains of palladin (Ig3) is both necessary and sufficient for direct filamentous actin binding in vitro. In this study, we identify two basic patches on opposite faces of Ig3 that are critical for actin binding and cross-linking. Sedimentation equilibrium assays indicate that the Ig3 domain of palladin does not self-associate. These combined data are consistent with an actin cross-linking mechanism that involves concurrent attachment of two actin filaments by a single palladin molecule by an electrostatic mechanism. Palladin mutations that disrupt actin binding show altered cellular distributions and morphology of actin in cells, revealing a functional requirement for the interaction between palladin and actin in vivo.  相似文献   

15.
16.
The gastrointestinal hormone gastrin is generated from an 80 amino acid precursor (progastrin) by cleavage after dibasic residues by prohormone convertase 1. Phosphorylation of Ser75 has previously been suggested, on the basis of indirect evidence, to inhibit cleavage of progastrin after Arg73Arg74. Gastrins bind two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated gastrins in vitro and in vivo. This study directly investigated the effect of iron binding and of serine phosphorylation on the cleavage of synthetic progastrin-derived peptides. The affinity of synthetic progastrin55–80 for ferric ions, and the rate of cleavage by prohormone convertase 1, were not affected by phosphorylation of Ser75. In contrast, in the presence of ferric ions the rate of cleavage of both progastrin55–80 and phosphoSer75progastrin55–80 by prohormone convertase 1 was significantly reduced. Hence iron binding to progastrin may regulate processing and secretion in vivo, and regulation may be particularly important in diseases with altered iron homeostasis.  相似文献   

17.
Ubiquitin-like (UBL)–ubiquitin-associated (UBA) proteins, including Dsk2 and Rad23, act as delivery factors that target polyubiquitinated substrates to the proteasome. We report here that the Dsk2 UBL domain is ubiquitinated in yeast cells and that Dsk2 ubiquitination of the UBL domain is involved in Dsk2 stability, depending on the Dsk2 UBA domain. Also, Dsk2 lacking ubiquitin chains impaired ubiquitin-dependent protein degradation and decreased the interaction of Dsk2 with polyubiquitinated proteins in cells. Moreover, Dsk2 ubiquitination affected ability to restore the temperature-sensitive growth defect of dsk2Δ. These results indicate that ubiquitination in the UBL domain of Dsk2 has in vivo functions in the ubiquitin–proteasome pathway in yeast.  相似文献   

18.
Recent work has demonstrated that antibody phage display libraries containing restricted diversity in the complementarity determining regions (CDRs) can be used to target a wide variety of antigens with high affinity and specificity. In the most extreme case, antibodies whose combining sites are comprised of only two residues – tyrosine and serine – have been identified against several protein antigens. [F.A. Fellouse, B. Li, D.M. Compaan, A.A. Peden, S.G. Hymowitz, S.S. Sidhu, J. Mol. Biol. 348 (2005) 1153–1162.] Here, we report the isolation and characterization of antigen-binding fragments (Fabs) from such “minimalist” diversity synthetic antibody libraries that bind the heptad repeat regions of human immunodeficiency virus type 1 (HIV-1) gp41. We show that these Fabs are highly specific for the HIV-1 epitope and comparable in affinity to a single chain variable fragment (scFv) derived from a natural antibody repertoire that targets the same region. Since the heptad repeat regions of HIV-1 gp41 are required for viral entry, these Fabs have potential for use in therapeutic, research, or diagnostic applications.  相似文献   

19.
Oligosaccharyltransferase (OST) is a membrane associated enzyme complex that mediates transfer of an oligosaccharide onto asparagine residue of a protein. Human Ost4 is a small membrane protein and belongs to one of the seven subunits of human OST. This study determined the solution structure of human Ost4 in solvent system using NMR spectroscopy. Ost4 was demonstrated that the residues 5–30 adopt an α-helical structure. A kink structure was observed in the transmembrane domain, which may be important for its function.  相似文献   

20.
Uracil–DNA glycosylase (Ung) is a DNA repair enzyme that excises uracil bases from DNA, where they appear through deamination of cytosine or incorporation from a cellular dUTP pool. DNA repair enzymes often use one-dimensional diffusion along DNA to accelerate target search; however, this mechanism remains poorly investigated mechanistically. We used oligonucleotide substrates containing two uracil residues in defined positions to characterize one-dimensional search of DNA by Escherichia coli Ung. Mg2+ ions suppressed the search in double-stranded DNA to a higher extent than K+ likely due to tight binding of Mg2+ to DNA phosphates. Ung was able to efficiently overcome short single-stranded gaps within double-stranded DNA. Varying the distance between the lesions and fitting the data to a theoretical model of DNA random walk, we estimated the characteristic one-dimensional search distance of ∼100 nucleotides and translocation rate constant of ∼2 × 106 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号