首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
SUMMARY

Oxidative modification of low density lipoprotein (LDL) appears to be important in the pathogenesis of atherosclerosis. Inhibiting the oxidation of LDL may retard or prevent the atherogenic process. However, susceptibility of LDL to oxidation in vitro and its atherogenicity in vivo may not always correlate. Subjects with familial hypercholesterolaemia (FH) develop severe, premature atherosclerosis despite having large, bouyant LDL particles which are less susceptible to oxidation. High dose, long-term vitamin E increases the resistance of LDL to oxidation but, unlike probucol, has no effect on xanthoma regression in homozygous FH. In FH, the quantity of LDL takes priority and the main aim of therapy is reduction of LDL bulk. Individuals with small, dense LDL particles are at increased risk for atherosclerosis despite desirable plasma LDL cholesterol levels. Small, dense LDL particles are more susceptible to oxidation and in these subjects antioxidant therapy may be of greater benefit. In subjects with atherosclerosis, current management should be aimed primarily at reducing the LDL cholesterol level. In the future antioxidant therapy may complement our management of hypercholesterolaemia.  相似文献   

2.
Summary Ten restriction fragment length polymorphisms of the LDL receptor gene were used for haplotype analysis in 12 unrelated patients with homozygous familial hypercholesterolemia. These patients were drawn from the Black, Coloured, and White population groups and collectively represent 24 mutant alleles underlying the FH phenotype. Five distinct haplotypes were detected. Hybridization analysis using DNA codigested with EcoRI and PstI revealed that haplotype IV was associated with two distinct mutations. When coupled to the recent demonstration by other workers of two receptor defects in South African Afrikaners homozygous for FH and haplotype I, these data are suggestive of at least seven distinct LDL receptor mutations in the FH patients examined and thus in the general South African population.  相似文献   

3.
Human patients with familial hypercholesterolemia (FH) and Watanabe heritable hyperlipidemic rabbits (WHHL), while lacking normal receptors recognizing low-density lipoproteins (LDL), are said to have normal clearance of chylomicrons. In the present study, emulsions with a similar lipid composition to chylomicrons were injected intravenously in homozygous WHHL rabbits and normal control rabbits fed diet with low or high cholesterol. Radioactive labels tracing emulsion triolein and cholesteryl oleate were both removed rapidly from the bloodstream, with the removal rate of triolein always faster than that of cholesteryl oleate. This pattern was similar to the clearance of normal chylomicrons in rabbits or rats, and was consistent with the formation of remnant lipoproteins after hydrolysis of emulsion triolein by lipoprotein lipase, followed by hepatic uptake of the remnants. The removal of cholesteryl oleate was significantly slower in WHHL rabbits than in normal controls, suggesting that the absence of LDL receptor function led to impaired remnant clearance. Measured in post-heparin plasma, the activity of lipoprotein lipase was decreased in WHHL rabbits, but this was not associated with clear evidence of defective lipolysis of emulsion triolein. Apolipoprotein E did not appear to be deficient in WHHL rabbits. Plasma devoid of lipoproteins less than 1.006 g/ml from WHHL and normal control rabbits transferred similar amounts of apolipoprotein E to chylomicron-like emulsions after incubation. Impaired clearance of chylomicron remnants possibly contributes to the hypertriglyceridemia of WHHL rabbits and to accelerated atherogenesis when the function of LDL receptors is defective.  相似文献   

4.
Abstract

Low density lipoprotein (LDL), the major cholesterol transport protein in human plasma, consists of an apolar core of cholesteryl esters surrounded by a polar shell containing phospho-lipids, unesterified cholesterol and protein. In the current paper we report the absorption and fluorescence spectra of members of a new class of lipophilic fluorescein derivatives which were designed to be reconstituted into the core of LDL in place of the native cholesteryl esters. One of these derivates, cholesteryl 12–0-[methyl 3–0-methyl-5′(6′)-carboxyfluorescein]ricinoleyl carbonate (MMC) was reconstituted into the core of LDL. The resultant fluorescent reconstituted LDL was used in conjunction with flow cytometry to quantify the LDL receptor activity of fresh blood lymphocytes derived from normal individuals and from patients with the heterozygous and homozygous forms of familial hypercholesterolemia (FH). The LDL receptor activities of the heterozygous and homozygous FH lymphocytes were approximately 37% and 1% of normal, respectively. LDL reconstituted with these lipophilic fluorescein derivatives will be valuable in studying LDL metabolism and may be useful for the diagnosis of FH.  相似文献   

5.
The generation of human induced pluripotent stem cells (hiPSCs) from an individual patient provides a unique tool for disease modeling, drug discovery, and cell replacement therapies. Patient-specific pluripotent stem cells can be expanded in vitro and are thus suitable for genetic manipulations. To date, several genetic liver disorders have been modeled using patient-specific hiPSCs. Here, we present the generation of corrected hepatocyte-like cells (HLCs) from hiPSCs of a familial hypercholesterolemia (FH) patient with a homozygous mutation in the low-density lipoprotein receptor (LDLR) gene. We generated hiPSCs from a patient with FH with the mutated gene encoding a truncated non-functional receptor. In order to deliver normal LDLR to the defective cells, we used a plasmid vector carrying the normal receptor ORF to genetically transform the hiPSCs. The transformed cells were expanded and directed toward HLCs. Undifferentiated defective hiPSCs and HLCs differentiated from the defective hiPSCs did not have the ability to uptake labeled low-density lipoprotein (LDL) particles. The differentiated transformed hiPSCs showed LDL-uptake ability and the correction of disease phenotype as well as expressions of hepatocyte-specific markers. The functionality of differentiated cells was also confirmed by indo-cyanine green (ICG) uptake assay, PAS staining, inducible cyp450 activity, and oil red staining. These data suggest that hiPSC technology can be used for generation of disease-corrected, patient-specific HLCs with potential value for disease modeling and drug discovery as well as cell therapy applications in future.  相似文献   

6.
Partial ileal bypass surgery in homozygous Watanabe heritable hyperlipidemic (WHHL) rabbits resulted in a decrease of low density lipoproteins (LDL)-cholesterol from 14.2 +/- 2.4 to 7.0 +/- 1.2 mmol/l. To investigate the effect of partial ileal bypass on receptor-mediated and receptor-independent LDL catabolism, turnover studies were performed of radiolabeled native LDL and chemically modified LDL (methyl-LDL) in WHHL rabbits after partial ileal bypass, in WHHL control rabbits, and in New Zealand White ("normal") rabbits. The plasma LDL pool in WHHL control rabbits was increased 10-fold. The receptor-mediated LDL clearance was essentially zero in WHHL rabbits, both in controls and after ileal bypass surgery; the fractional catabolic rates for total LDL were equal in both WHHL groups and were also similar to that for methyl-LDL in the normal rabbits. Seventy percent of the total LDL clearance in the normal rabbits occurred via the LDL receptor pathway. In the animals with a partial ileal bypass, the plasma LDL-protein pool was appreciably lower than in WHHL controls (41.6 +/- 5.7 vs 73.4 +/- 9.9 mg/kg, P less than 0.02). The absolute catabolic rate was almost 50% lower in the PIB group (21.4 +/- 2.0 vs 40.0 +/- 7.5 mg X kg-1 X day-1, P less than 0.02). These results indicate that the decrease of LDL after partial ileal bypass surgery in WHHL rabbits is the result of a reduced production rate of LDL.  相似文献   

7.
Previous studies have shown that the cholesteryl ester core of plasma low density lipoprotein (LDL) can be extracted with heptane and replaced with a variety of hydrophobic molecules. In the present report we use this reconstitution technique to incorporate two fluorescent probes, 3-pyrenemethyl-23, 24-dinor-5-cholen-22-oate-3β-yl oleate (PMCA oleate) and dioleyl fluorescein, into heptane-extracted LDL. Both fluorescent lipoprotein preparations were shown to be useful probes for visualizing the receptor-mediated endocytosis of LDL in cultured human fibroblasts. When normal fibroblasts were incubated at 37°C with either of the fluorescent LDL preparations, fluorescent granules accumulated in the perinuclear region of the cell. In contrast, fibroblasts from patients with the homozygous form of familial hypercholesterolemia (FH) that lack functional LDL receptors did not accumulate visible fluorescent granules when incubated with the fluorescent reconstituted LDL. A fluorescence-activated cell sorter was used to quantify the fluorescence intensity of individual cells that had been incubated with LDL reconstituted with dioleyl fluorescein. With this technique a population of normal fibroblasts could be distinguished from a population of FH fibroblasts. The current studies demonstrate the feasibility of using fluorescent reconstituted LDL in conjunction with the cell sorter to isolate mutant cells lacking functional LDL receptors.  相似文献   

8.
Summary The low density lipoprotein (LDL) receptor gene was analyzed in 67 unrelated healthy Japanese and 38 members of six consecutive families with familial hypercholesterolemia (FH) by Southern blot hybridization with TaqI, an LDL receptor cDNA fragment containing exons 1 to 8 being used as a probe. A new TaqI RFLP at the LDL receptor locus was detected with allele frequencies of 0.67 and 0.33. The data obtained with smaller cDNA subfragment probes revealed that the TaqI RFLP site is located within 1.1 kb of the 5 side of the EcoRI site of exon 5. The TaqI RFLP was in linkage disequilibrium with the PstI RFLP but showed no significant linkage disequilibrium with the RFLPs for AvaII, ApaLI/I15, PvuII, NcoI, and ApaLI/3. Among the seven RFLPs at the LDL receptor locus, the TaqI RFLP was the only useful genetic marker in one of the six families with FH. Furthermore, the association of an additional TaqI 1.5-kb band with a mutant LDL receptor gene was observed in another family with FH in which the proband was homozygous for all of the seven RFLPs. The data obtained with various restriction enzymes and smaller cDNA subfragments probes suggested that a minor change in nucleotide sequences in the region including exons 5 to 8 is present in the mutant gene. These data suggest that the TaqI RFLP is a useful genetic marker at the LDL receptor locus and that TaqI serves for the analysis of some mutant LDL receptor genes, when used with small LDL receptor cDNA probes.  相似文献   

9.
Familial hypercholesterolemia (FH) results from impaired catabolism of plasma low density lipoproteins (LDL), thus leading to high cholesterol, atherosclerosis, and a high risk of premature myocardial infarction. FH is commonly caused by defects of the LDL receptor or its main ligand apoB, together mediating cellular uptake and clearance of plasma LDL. In some cases FH is inherited by mutations in the genes of PCSK9 and LDLRAP1 (ARH) in a dominant or recessive trait. The encoded proteins are required for LDL receptor stability and internalization within the LDLR pathway. To detect the underlying genetic defect in a family of Turkish descent showing unregular inheritance of severe FH, we screened the four candidate genes by denaturing gradient gel electrophoresis (DGGE) mutation analysis. We identified different combinatory mixtures of LDLR- and LDLRAP1-gene defects as the cause for severe familial hypercholesterolemia in this family. We also show for the first time that a heterozygous LDLR mutation combined with a homozygous LDLRAP1 mutation produces a more severe hypercholesterolemia phenotype in the same family than a homozygous LDLR mutation alone.  相似文献   

10.
11.
Liu YR  Tao QM  Chen JZ  Tao M  Guo XG  Shang YP  Zhu JH  Zhang FR  Zheng LR  Wang XX 《生理学报》2004,56(5):566-572
家族性高胆固醇血症(hypercholesterolemia familial,FH)是由于低密度脂蛋白受体(low density lipoprotein receptor,LDLR)基因突变导致的常染色体显性遗传性疾病,临床上表现为多发黄色瘤、高水平血浆LDL、早发性冠心病及有阳性家族史。本研究通过临床症状结合血脂测定诊断出一个FH家系,其纯合子FH患者的血浆总胆固醇水平高达19.05mmol/L,LDL达17.06mmol/L,并有黄色瘤;而杂合子FH患者的血浆总胆固醇水平为7.96mmol/L,LDL为5.55mmol/L,并有心绞痛症状和黄色瘤。我们对该FH家系患者LDLR基因的PCR扩增DNA片段进行测序,发现纯合子FH患者LDLR基因Exon4区域内发生了GAG683GCG突变,即编码LDLR第683位的谷氨酸被丙氨酸替换,而杂合子FH患者该位点呈现杂合突变。此基因型与临床诊断遗传谱完全一致。同时,利用获得Epstein-Barr(EB)病毒转化型人永生淋巴细胞株(EBV-Ls)与荧光探针DiI标记的LDL结合反应,再通过流式细胞仪检测结果显示,具有功能性LDLR的EBV-Ls细胞比例,在纯合子FH患者(7.02%)和杂合子FH患者(62.64%)均比健康对照者(84.69%)低,纯合子FH患者LDLR活性仅为健康对照者的8.29%、而杂合子FH患者LDLR活性约为健康对照者的73.96%,前者呈现非常显著的降低。这些EBV-Ls细胞LDLR的功能变化分析,有力地支持了该FH家系的临床诊断和DNA测序结果。经查阅最新的UMD-LDLR完全版证实,本研究发现鉴定的GAG683GCG突变是人LDLR基因的新突变位点。  相似文献   

12.
In homozygous Watanabe heritable hyperlipidemic (WHHL) rabbits, the serum cholesterol level and serum low-density lipoprotein (LDL) level decreased from 562 +/- 76 (mean +/- S.E.) to 144 +/- 34 mg/dl and 410 +/- 56 to 90 +/- 25 mg/dl, respectively, during pregnancy, although the LDL receptor in this rabbit is genetically deficient. When Tyroxapol, which inhibits the degradation of very-low-density lipoprotein (VLDL), as well as Triton WR-1339, was injected into WHHL rabbits, the rate of the increase in serum cholesterol level in pregnant rabbits was not statistically different from that in non-pregnant rabbits. This result implied that the secretion rate of VLDL-cholesterol, the precursor of LDL-cholesterol, did not decrease during pregnancy. The amount of 125I-labeled LDL bound to LDL receptor was increased 1.8-fold in normal rabbits (from 29.3 +/- 4.3 to 52.3 +/- 4.6 ng/mg protein) and 12-fold in WHHL rabbits (from 0.5 +/- 0.2 to 6.0 +/- 0.7 ng/mg protein) during pregnancy. These results suggest that the decrease in serum cholesterol level in WHHL rabbits during pregnancy was associated with an increase in hepatic LDL receptor activity, which plays an important role in the regulation of serum cholesterol level.  相似文献   

13.
Low density lipoprotein (LDL) catabolism was studied using WHHL rabbits, an inbred strain deficient in LDL receptor activity and, thus, an animal model for homozygous familial hypercholesterolemia. WHHL and normal rabbits were injected with [14C]sucrose-LDL and the tissue sites of LDL degradation were determined 24 h later. On degradation of [14C]sucrose-LDL, the [14C]sucrose ligand remains trapped within tissues as a cumulative measure of degradation. The fractional catabolic rate of [14C]sucrose-LDL in Watanabe heritable hyperlipidemic (WHHL) rabbits was reduced (0.024 +/- 0.010 versus 0.063 +/- 0.026 h-1) but, by virtue of the increased plasma pool, total LDL flux was increased (33.5 +/- 9.6 versus 10.6 +/- 4.4 mg of LDL protein/kg/day). Liver was the predominant site of catabolism in both WHHL and normal rabbits (52.7 +/- 6.9 and 56.6 +/- 6.2% of total degradation). About 90% of hepatic catabolism was attributable to parenchymal cells in both cases. Thus, Kupffer cells, a major component of the reticuloendothelial system, do not play a major role in LDL catabolism in WHHL rabbits. Despite receptor deficiency, the relative contribution of various tissues to overall LDL degradation was not greatly altered and the absolute rate of delivery of LDL to all tissues was increased with the exception of the adrenal. Thus, there was no evidence that the increased degradation occurred in any special subset of "scavenger" cells. Nevertheless, local scavenger cell uptake may be critically important, especially in atherogenesis. If it is assumed that receptor-independent degradation occurs at the same rate in the tissues of WHHL and normal rabbits and that catabolism in the absence of receptors is a linear function of concentration, then one can estimate the fraction of uptake in normal tissues mediated by receptors. The difference in the fraction of the plasma LDL pool cleared per unit of time in normal and WHHL rabbits would reflect the contribution of receptors to fractional clearance. By this calculation, receptor-mediated degradation in normal rabbits was 62% overall, 63% in liver, 92% in adrenal, and 83% in gut.  相似文献   

14.
The ligand-binding domain of low-density lipoprotein (LDL) is composed of seven 40-amino-acid repeats encoded by exons 2–6. Previous studies identified a missense mutation in codon 66 of exon 3, which resulted in the production of LDL receptor protein that is not processed to its mature form. In the current investigation, we documented the presence of two identical mutant LDL receptor alleles (Trp66→ Gly) in two familial hypercholesterolemia (FH) probands, II-1 and II-2, associated with markedly elevated plasma LDL cholesterol (17.22 ± 0.78 and 11.95 ± 0.24 mmol/liter, respectively). Functional assays of their fibroblast LDL receptor showed inefficient binding (39 and 50%), internalization (33 and 37%), and degradation (32 and 37%) compared with controls. The contribution of the apo B gene to variation in LDL levels was virtually eliminated given the normal ligand interaction with cell surface receptors and the absence of the mutation occurring in codon 3500 of the apo B gene. Similarly, the homozygous apo E3/E3wildtype phenotype excluded any genetic contribution of apo E to the lipoprotein abnormalities. Furthermore, the LPL mutations commonly observed in French Canadians could not account for the observed lipid alterations. Several alterations in lipoprotein composition characterized VLDL, IDL, LDL, HDL2, and HDL3fractions. Moreover, defective intestinal fat transport was observed in both probands (II-1 and II-2). Thus, the disturbance of lipoprotein concentration, composition, size, and metabolism may in part be related to the exon 3 mutation (Trp66→ Gly) of the LDL receptor gene. The biochemical phenotype was more severe in the father (I-1) than in the mother (I-2), and in the younger homozygous proband (II-1) than in the older (II-2). The greater severity was associated with a higher LDL cholesterol/HDL cholesterol ratio. Whether the differences between the two probands are due to polygenic factors or to a metabolic consequence of a major nonallelic trait is unknown. Nevertheless, the present biochemical findings stress the extent of the lipid abnormalities associated with homozygous FH and the importance of the phenotypic variability encountered even among subjects carrying the same mutation.  相似文献   

15.
Non-dividing human lymphocytes were transformed upon infection with the Epstein-Barr virus (EBV) into lymphoblasts which are capable of continuous growth in culture. We studied the properties of the LDL receptor in EBV-transformed human lymphocytes (EBV-L) by binding experiments and by ligand blotting. EBV-L show a high affinity binding of LDL in the same order of magnitude as found with fibroblasts; EBV-L obtained from a homozygous familial hypercholesterolemic (FH) patient fail to express LDL receptor activity. Similar to that of fibroblasts, the LDL receptor activity in EBV-L is Ca2(+)-dependent and is down-regulated by the presence of an exogenous source of cholesterol in the medium. The LDL receptor protein of EBV-L has an apparent molecular weight of 130,000. Since our results show that EBV-L display a LDL receptor protein similar to the LDL receptor present in fibroblasts, we conclude that in comparison with other cell types the EBV-L offer a suitable model system to investigate LDL receptor protein abnormalities in FH patients.  相似文献   

16.
The metabolism of low density lipoproteins (LDL), and LDL modified by reductive methylation (M-LDL) of lysine residues, was studied in proximal tubular (PT) cells both from normal human kidney and from urine of patients with homozygous (LDL receptor-negative) familial hypercholesterolemia (FH). LDL and M-LDL was labeled either in the protein moiety with 125I or in the lactosylceramide moiety with 3H. The binding and degradation of 125I-LDL in normal cells was saturable and displaced by unlabeled LDL but not by M-LDL. The uptake of [3H]lactosylceramide (LacCer) low density lipoprotein in normal renal cells was saturable, and time and temperature-dependent. Exogenously derived [3H]LacCer on LDL was rapidly taken up and catabolized to monoglycosylceramide, or it was utilized for the endogenous synthesis of globotriaosylceramide (trihexosylceramide) and globotetraosylceramide (tetraglycosylceramide). [3H]LacCer M-LDL was taken up less avidly and metabolized less extensively than [3H]LacCer-LDL in normal cells. In homozygous FH renal cells the binding of 125I-LDL was not saturable and not displaced by unlabeled LDL. 125I-LDL degradation did not occur in FH cells. The homozygous FH PT cells took up a 2-fold greater amount of exogenously derived [3H]LacCer on LDL than normal cells. Yet, most of the [3H]LacCer taken up by FH PT cells accumulated as LacCer, and only small amounts were metabolized to monoglycosylceramide, globotriaosylceramide (trihexosylceramide), or globotetraosylceramide (tetraglycosylceramide). When normal and FH PT cells were preincubated with LDL (0-100 micrograms/ml medium), there was a 5-fold increase in cellular LacCer levels in FH cells at saturating levels of LDL, whereas there was about a 50% decrease in LacCer levels in normal cells. While the high affinity binding of LDL was not essential for the delivery of LacCer to cells, the data support the conclusion that LDL binding to the LDL receptor facilitates further LacCer processing and metabolism in normal renal cells. We speculate that [3H] LacCer is taken up by FH homozygous cells via a LDL receptor-independent mechanism and accumulates in the cells without significant metabolism. LacCer taken up by this mechanism contributes to the storage of LacCer in FH PT cells.  相似文献   

17.
Prenatal diagnosis for familial hypercholesterolaemia (FH) was performed by using restriction fragment length polymorphisms (RFLPs) of the LDL receptor gene on chorionic villi DNA taken during the 10th week of pregnancy. Both parents were FH heterozygotes and had previously had a healthy son and an FH homozygous son. Two RFLPs were informative in this family and revealed that the fetus was unaffected by FH. At birth the child was found to have an LDL cholesterol level of 30 mg/dl and a normal LDL receptor activity in cultured umbilical cord fibroblasts. RFLP analysis on chorionic villi DNA is highly recommended for all heterozygous FH couples in whom the LDL receptor gene mutation/s is/are still to be characterized.  相似文献   

18.
Ex vivo‐expanded stem cells have long been a cornerstone of biotherapeutics and have attracted increasing attention for treating intractable diseases and improving tissue regeneration. However, using exogenous cellular materials to develop restorative treatments for large numbers of patients has become a major concern for both economic and safety reasons. Advances in cell biological research over the past two decades have expanded the potential for using endogenous stem cells during wound healing processes, and in particular, recent insight into stem cell movement and homing has prompted regenerative research and therapy based on recruiting endogenous cells. Inspired by the natural healing process, artificial administration of specific chemokines as signals systemically or at the injury site, typically using biomaterials as vehicles, is a state‐of‐the‐art strategy that potentiates stem cell homing and recreates an anti‐inflammatory and immunomodulatory microenvironment to enhance in situ tissue regeneration. However, pharmacologically coaxing endogenous stem cells to act as therapeutics in the field of biomedicine remains in the early stages; its efficacy is limited by the lack of innovative methodologies for chemokine presentation and release. This review describes how to direct the homing of endogenous stem cells via the administration of specific signals, with a particular emphasis on targeted signalling molecules that regulate this homing process, to enhance in situ tissue regeneration. We also provide an outlook on and critical considerations for future investigations to enhance stem cell recruitment and harness the reparative potential of these recruited cells as a clinically relevant cell therapy.  相似文献   

19.
We studied the effects of ethinyl oestradiol on the serum concentrations and metabolism of very-low- and low-density lipoproteins (VLDL and LDL) in Watanabe heritable hyperlipidaemic (WHHL) homozygous rabbits, an animal model for familial hypercholesterolaemia. The results were compared with those in untreated homozygotes as well as in heterozygotes treated or not with ethinyl oestradiol. The gain in body weight was similar in all groups. Treatment with ethinyl oestradiol resulted in the homozygotes in an approx. 80% decrease in the concentrations of lipids and apoprotein B in the d less than 1.019 lipoprotein fraction; those in the LDL fraction did not change. In the heterozygotes, basal serum lipids and apoprotein B levels in the d less than 1.019 fraction were low; ethinyl oestradiol treatment especially affected the LDL fraction (cholesterol -84%, apoprotein B -64%). Turnover experiments with 125I-labelled VLDL revealed that, on treatment with ethinyl oestradiol, the fractional catabolic rate in homozygous rabbits increased 2-fold. The secretion rates of lipids and protein in the d less than 1.019 fraction as estimated after injection of Triton WR-1339 was not decreased. In homozygotes and heterozygotes increases in post-heparin hepatic lipase activity of 62 and 80% respectively were observed, with no changes in lipoprotein lipase activity. We conclude that ethinyl oestradiol induces in homozygous WHHL rabbits a direct removal of VLDL and VLDL remnants from the plasma, apparently due to an increase in hepatic lipase activity.  相似文献   

20.
Summary Familial hypercholesterolemia (FH), at a prevalence of about 1 in 200 in the French-Canadian population, is caused by a 10-kb deletion in the low-density lipoprotein (LDL) receptor gene in 60% of French-Canadian FH heterozygotes. We genotyped 159 FH patients who carry this common mutation and 221 healthy French-Canadian controls for five DNA restriction fragment length polymorphisms (RFLPs) of the LDL receptor gene. The allele numbers for four of the five RFLPs differed significantly (P < 0.001) between FH patients and control subjects. Our results suggest that the 10-kb deletion carrier allele is associated with a single haplotype (called the B haplotype). In a family study including a patient homozygous for the 10-kb deletion, we showed that the B haplotype cosegregates with the deletion in affected members and that the B haplotype is also associated with the normal allele in some members of the family. We identified 15 different haplotypes for the normal allele in 10-kb deletion carrier FH heterozygotes. These results offer strong support, at a molecular level, for the hypothesis of a founder effect for the 10-kb deletion in the French-Canadian population.This work was presented in part at the meeting: Advances in Gene Technology: the molecular biology of human genetic disease, Miami, Florida, 1991  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号