首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the effect of hyperthermia, 6 MeV electron radiation and combination of these treatments on cancer cell line DU145 in both monolayer culture and spheroids enriched for prostate cancer stem cells (CSCs). Flowcytometric analysis of the expression of molecular markers CD133+/CD44+ was carried out to determine the prostate CSCs in cell line DU145 grown as spheroids in serum-free medium. Following monolayer and spheroid culture, DU145 cells were treated with different doses of hyperthermia, electron beam and combination of them. The survival and self-renewing of the cells were evaluated by colony formation assay (CFA) and spheroid formation assay (SFA). Flowcytometry results indicated that the percentage of CD133+/CD44+ cells in spheroid culture was 13.9-fold higher than in the monolayer culture. The SFA showed significant difference between monolayer and spheroid culture for radiation treatment (6 Gy) and hyperthermia (60 and 90 min). The CFA showed significantly enhanced radiosensitivity in DU145 cells grown as monolayer as compared to spheroids, but no effect of hyperthermia. In contrast, for the combination of radiation and hyperthermia the results of CFA and SFA showed a reduced survival fraction in both cultures, with larger effects in monolayer than in spheroid culture. Thus, hyperthermia may be a promising approach in prostate cancer treatment that enhances the cytotoxic effect of electron radiation. Furthermore, determination and characterization of radioresistance and thermoresistance of CSCs in the prostate tumor is the key to develop more efficient therapeutic strategies.  相似文献   

2.
Galiellalactone inhibits stem cell-like ALDH-positive prostate cancer cells   总被引:1,自引:0,他引:1  
Galiellalactone is a potent and specific inhibitor of STAT3 signaling which has been shown to possess growth inhibitory effects on prostate cancer cells expressing active STAT3. In this study we aimed to investigate the effect of galiellalactone on prostate cancer stem cell-like cells. We explored the expression of aldehyde dehydrogenase (ALDH) as a marker for cancer stem cell-like cells in different human prostate cancer cell lines and the effects of galiellalactone on ALDH expressing (ALDH+) prostate cancer cells. ALDH+ subpopulations were detected and isolated from the human prostate cancer cell lines DU145 and long-term IL-6 stimulated LNCaP cells using ALDEFLUOR® assay and flow cytometry. In contrast to ALDH− cells, ALDH+ prostate cancer cells showed cancer stem cell-like characteristics such as increased self-renewing and colony forming capacity and tumorigenicity. In addition, ALDH+ cells showed an increased expression of putative prostate cancer stem cell markers (CD44 and integrin α2β1). Furthermore, ALDH+ cells expressed phosphorylated STAT3. Galiellalactone treatment decreased the proportion of ALDH+ prostate cancer cells and induced apoptosis of ALDH+ cells. The gene expression of ALDH1A1 was downregulated in vivo in galiellalactone treated DU145 xenografts. These findings emphasize that targeting the STAT3 pathway in prostate cancer cells, including prostate cancer stem cell-like cells, is a promising therapeutic approach and that galiellalactone is an interesting compound for the development of future prostate cancer drugs.  相似文献   

3.
Trabectedin (Yondelis, ET-743) is a marine-derived tetrahydroisoquinoline alkaloid. It is originally derived from the Caribbean marine tunicate Ecteinascidia turbinata and currently produced synthetically. Trabectedin is active against a variety of tumor cell lines growing in culture. The present study focused on the effect of trabectedin in cell proliferation, cell cycle progression, apoptosis and spheroid formation in prostate cancer stem cells (CSCs). Cluster of differentiation (CD) 133+high/CD44+high prostate CSCs were isolated from the DU145 and PC-3 human prostate cancer cell line through flow cytometry. We studied the growth-inhibitory effects of trabectedin and its molecular mechanisms on human prostate CSCs and non-CSCs. DU-145 and PC-3 CSCs were treated with 0.1, 1, 10 and 100 nM trabectedin for 24, 48 and 72 h and the growth inhibition rates were examined using the sphere-forming assay. Annexin-V assay and immunofluorescence analyses were performed for the detection of the cell death. Concentration-dependent effects of trabectedin on the cell cycle were also evaluated. The cells were exposed to the different doses of trabectedin for 24, 48 and 72 h to evaluate the effect of trabectedin on the number and diameter of spheroids. According to the results, trabectedin induced cytotoxicity and apoptosis at the IC50 dose, resulting in a significant increase expression of caspase-3, caspase-8, caspase-9, p53 and decrease expression of bcl-2 in dose-dependent manner. Cell cycle analyses revealed that trabectedin induces dose-dependent G2/M-phase cell cycle arrest, particularly at high-dose treatments. Three-dimensional culture studies showed that trabectedin reduced the number and diameter of spheroids of DU145 and PC3 CSCs. Furthermore, we have found that trabectedin disrupted cell-cell interactions via E-cadherin in prostasphere of DU-145 and PC-3 CSCs. Our results showed that trabectedin inhibits cellular proliferation and accelerates apoptotic events in prostate CSCs; and may be a potential effective therapeutic agent against prostate cancer.  相似文献   

4.
Cancer stem cells (CSCs) possess high tumor-initiating capacity and have been reported to be resistant to therapeutics. Vice versa, therapy-resistant cancer cells seem to manifest CSC phenotypes and properties. It has been generally assumed that drug-resistant cancer cells may all be CSCs although the generality of this assumption is unknown. Here, we chronically treated Du145 prostate cancer cells with etoposide, paclitaxel and some experimental drugs (i.e., staurosporine and 2 paclitaxel analogs), which led to populations of drug-tolerant cells (DTCs). Surprisingly, these DTCs, when implanted either subcutaneously or orthotopically into NOD/SCID mice, exhibited much reduced tumorigenicity or were even non-tumorigenic. Drug-tolerant DLD1 colon cancer cells selected by a similar chronic selection protocol also displayed reduced tumorigenicity whereas drug-tolerant UC14 bladder cancer cells demonstrated either increased or decreased tumor-regenerating capacity. Drug-tolerant Du145 cells demonstrated low proliferative and clonogenic potential and were virtually devoid of CD44(+) cells. Prospective knockdown of CD44 in Du145 cells inhibited cell proliferation and tumor regeneration, whereas restoration of CD44 expression in drug-tolerant Du145 cells increased cell proliferation and partially increased tumorigenicity. Interestingly, drug-tolerant Du145 cells showed both increases and decreases in many "stemness" genes. Finally, evidence was provided that chronic drug exposure generated DTCs via epigenetic mechanisms involving molecules such as CD44 and KDM5A. Our results thus reveal that 1) not all DTCs are necessarily CSCs; 2) conventional chemotherapeutic drugs such as taxol and etoposide may directly target CD44(+) tumor-initiating cells; and 3) DTCs generated via chronic drug selection involve epigenetic mechanisms.  相似文献   

5.
6.
Accumulating evidence has demonstrated that breast cancers are initiated and develop from a small population of stem‐like cells termed cancer stem cells (CSCs). These cells are hypothesized to mediate tumor metastasis and contribute to therapeutic resistance. However, the molecular regulatory networks responsible for maintaining CSCs in an undifferentiated state have yet to be elucidated. In this study, we used CSC markers to isolate pure breast CSCs fractions (ALDH+ and CD44+CD24‐ cell populations) and the mature luminal cells (CD49f‐EpCAM+) from the MCF7 cell line. Proteomic analysis was performed on these samples and a total of 3304 proteins were identified. A label‐free quantitative method was applied to analyze differentially expressed proteins. Using the criteria of greater than twofold changes and p value <0.05, 305, 322 and 98 proteins were identified as significantly different in three pairwise comparisons of ALDH+ versus CD44+CD24‐, ALDH+ versus CD49f‐EpCAM+ and CD44+CD24‐ versus CD49f‐EpCAM+, respectively. Pathway analysis of differentially expressed proteins by Ingenuity Pathway Analysis (IPA) revealed potential molecular regulatory networks that may regulate CSCs. Selected differential proteins were validated by Western blot assay and immunohistochemical staining. The use of proteomics analysis may increase our understanding of the underlying molecular mechanisms of breast CSCs. This may be of importance in the future development of anti‐CSC therapeutics.  相似文献   

7.
While accumulating evidence demonstrates the existence of prostate cancer stem cells (PCSCs), PCSCs have not been isolated and thoroughly characterized. We report here the enrichment and characterization of sphere-propagating cells with stem-like properties from DU145 PC cells in a defined serum-free medium (SFM). Approximately 1.25% of monolayer DU145 cells formed spheres in SFM and 26% of sphere cells formed secondary spheres. Spheres are enriched for cells expressing prostate basal and luminal cytokeratins (34βE12 and CK18) and for cancer stem cell markers, including CD44, CD24, and integrin α2β1. Upon culturing spheres under differentiating media conditions in the presence of 10% serum, cells positive for CD44 and CD24 were substantially reduced. Furthermore, spheres could be generated from the sphere-derived adherent cell cultures and xenograft tumors, demonstrating the stemness of DU145 spheres. We have maintained spheres for more than 30 passages within 1.5 years without noticeable loss of their “stemness”. Sphere cells possess self-renewal capacity, display significant increases in proliferation potential, and initiate xenograft tumors with enhanced capacity compared to monolayer DU145 cells. While EGF promoted the generation and maintenance of these stem-like cells, bFGF inhibited these events. Sphere cells proliferate slowly with a significant reduction in the activation of the PI3K-AKT pathway compared to monolayer DU145 cells. While knockdown of PTEN enhanced AKT activation, this did not affect the generation of primary spheres and the propagation of secondary spheres. Consistent with this observation, we were able to demonstrate the generation and propagation of spheres without the addition of external growth factors. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

8.
Cancer stem cells (CSCs), or tumor-initiating cells, are involved in tumor progression and metastasis. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has been implicated in tumorigenesis. CSCs in many tumors--including cancers of the breast, pancreas, head and neck, colon, small intestine, liver, stomach, bladder and ovary--have been identified using the adhesion molecule CD44, either individually or in combination with other marker(s). Prostate CSCs with enhanced clonogenic and tumor-initiating and metastatic capacities are enriched in the CD44(+) cell population, but whether miRNAs regulate CD44(+) prostate cancer cells and prostate cancer metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target, was underexpressed in CD44(+) prostate cancer cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk or purified CD44(+) prostate cancer cells inhibited clonogenic expansion, tumor regeneration, and metastasis. In contrast, expression of miR-34a antagomirs in CD44(-) prostate cancer cells promoted tumor development and metastasis. Systemically delivered miR-34a inhibited prostate cancer metastasis and extended survival of tumor-bearing mice. We identified and validated CD44 as a direct and functional target of miR-34a and found that CD44 knockdown phenocopied miR-34a overexpression in inhibiting prostate cancer regeneration and metastasis. Our study shows that miR-34a is a key negative regulator of CD44(+) prostate cancer cells and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against prostate CSCs.  相似文献   

9.
An increasing number of malignancies has been shown to be initiated and propelled by small subpopulations of cancer stem cells (CSC). However, whether tumor aggressiveness is driven by CSC and by what extent this property may be relevant within the tumor mass is still unsettled. To address this issue, we isolated a rare tumor cell population on the basis of its CD44(+)CD24(-) phenotype from the human androgen-independent prostate carcinoma cell line DU145 and established its CSC properties. The behavior of selected CSC was investigated with respect to the bulk DU145 cells. The injection of CSC in nude mice generated highly vascularized tumors infiltrating the adjacent tissues, showing high density of neuroendocrine cells and expressing low levels of E-cadherin and β-catenin as well as high levels of vimentin. On the contrary, when a comparable number of unsorted DU145 cells were injected the resulting tumors were less aggressive. To investigate the different features of tumors in vivo, the influence of differentiated tumor cells on CSC was examined in vitro by growing CSC in the absence or presence of conditioned medium from DU145 cells. CSC grown in permissive conditions differentiated into cell populations with features similar to those of cells held in aggressive tumors generated from CSC injection. Differently, conditioned medium induced CSC to differentiate into a cell phenotype comparable to cells of scarcely aggressive tumors originated from bulk DU145 cell injection. These findings show for the first time that CSC are able to generate differentiated cells expressing either highly or scarcely aggressive phenotype, thus influencing prostate cancer progression. The fate of CSC was determined by signals released from tumor environment. Moreover, using microarray analysis we selected some molecules which could be involved in this cell-to-cell signaling, hypothesizing their potential value for prognostic or therapeutic applications.  相似文献   

10.
Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin alpha2beta1(hi) and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 microg/ml insulin (DMEM+10% FBS+Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.  相似文献   

11.
12.
Ma Y  Liang D  Liu J  Axcrona K  Kvalheim G  Stokke T  Nesland JM  Suo Z 《PloS one》2011,6(12):e29170
Hypoxia is an important environmental change in many cancers. Hypoxic niches can be occupied by cancer stem/progenitor-like cells that are associated with tumor progression and resistance to radiotherapy and chemotherapy. However, it has not yet been fully elucidated how hypoxia influences the stem-like properties of prostate cancer cells. In this report, we investigated the effects of hypoxia on human prostate cancer cell lines, PC-3 and DU145. In comparison to normoxia (20% O(2)), 7% O(2) induced higher expressions of HIF-1α and HIF-2α, which were associated with upregulation of Oct3/4 and Nanog; 1% O(2) induced even greater levels of these factors. The upregulated NANOG mRNA expression in hypoxia was confirmed to be predominantly retrogene NANOGP8. Similar growth rates were observed for cells cultivated under hypoxic and normoxic conditions for 48 hours; however, the colony formation assay revealed that 48 hours of hypoxic pretreatment resulted in the formation of more colonies. Treatment with 1% O(2) also extended the G(0)/G(1) stage, resulting in more side population cells, and induced CD44 and ABCG2 expressions. Hypoxia also increased the number of cells positive for ABCG2 expression, which were predominantly found to be CD44(bright) cells. Correspondingly, the sorted CD44(bright) cells expressed higher levels of ABCG2, Oct3/4, and Nanog than CD44(dim) cells, and hypoxic pretreatment significantly increased the expressions of these factors. CD44(bright) cells under normoxia formed significantly more colonies and spheres compared with the CD44(dim) cells, and hypoxic pretreatment even increased this effect. Our data indicate that prostate cancer cells under hypoxia possess greater stem-like properties.  相似文献   

13.
Pancreatic cancer has the worst prognosis of any major malignancy, with an annual death rate that approximates the annual incidence rate. Delayed diagnosis, relative chemotherapy and radiation resistance and an intrinsic biologic aggressiveness all contribute to the abysmal prognosis associated with pancreatic cancer. Answers to the frustrating effort to find effective therapies for pancreatic cancer may be gained through a renewed perspective on tumorigenesis as a process governed by a select population of cells, termed cancer stem cells (CSCs). Cancer stem cells, like their normal counterparts, have the properties of self-renewal and multilineage differentiation and possess inherently heightened DNA damage response and repair mechanisms that make them difficult to eradicate. Initially discovered in leukemias, researchers have identified CSCs in several solid-organ malignancies including breast, brain, prostate, and colon cancers. We have recently identified a CSC population in human pancreatic cancers. These pancreatic CSC represent 0.5% to 1.0% of all pancreatic cancer cells and express the cell surface markers CD44, CD24, and epithelial-specific antigen. Pancreatic CSCs have been shown to be resistant to standard chemotherapy and radiation, and devising specific therapies to target this distinct cell population is likely needed to identify effective therapies to treat this dismal disease.  相似文献   

14.
A better understanding of cancer stem cells (CSCs) may facilitate the prevention and treatment of cancers. Epithelial-mesenchymal transition (EMT) is a process activated during invasion and metastasis of tumors. EMT induction in normal and tumor cells makes them more resistant to chemotherapy. E-cadherin is a membrane protein and plays a role in tumor invasion, metastasis, and prognosis. Downregulation of E-cadherin is a hallmark of EMT. Here, we created a model of cancer stem-like cells enrichment via EMT induction using E-cadherin downregulation in HT29 cell line using a lentiviral vector carrying shRNA. We aimed to evaluate cancer and anti-CSC chemotherapeutics screening. The markers of EMT and CSCs were assessed and compared with control cells using flow cytometry, real-time PCR, immunocytochemistry, western blot, migration assay, invasion assay, and colony formation assay. The transduced cells showed a mesenchymal morphology. High levels of EMT-related proteins were also expressed. These results confirmed that the transduced cells underwent EMT. In addition, we observed an increased population of E-cadherin-downregulated HT29 cell line among the cells expressing colon CSC markers (CD133+ and CD44+) after EMT induction. E-cadherin-downregulated cells were morphologically like mesenchymal cells, and the number of CD133+- and CD44+-cells (CSC-like cells) increased. These cells can be used as stable models to study cancer cells and screening of antitumor therapeutics.  相似文献   

15.
Dual roles of E-cadherin in prostate cancer invasion   总被引:6,自引:0,他引:6  
The role(s) of E-cadherin in tumor progression, invasion, and metastasis remains somewhat enigmatic. In order to investigate various aspects of E-cadherin biological activity, particularly in prostate cancer progression, our laboratory cloned unique subpopulations of the heterogeneous DU145 human prostatic carcinoma cell line and characterized their distinct biological functions. The data revealed that the highly invasive, fibroblastic-like subpopulation of DU145 cells (designated DU145-F) expressed less than 0.1-fold of E-cadherin protein when compared to the parental DU145 or the poorly invasive DU145 cells (designated DU145-E). Experimental disruption of E-cadherin function stimulated migration and invasion of DU145-E and other E-cadherin-positive prostate cancer cell lines, but did not affect the fibroblastic-like DU145-F subpopulation. Within the medium of parental DU145 cells, the presence of an 80 kDa E-cadherin fragment was detected. Subsequent functional analyses revealed the stimulatory effect of this fragment on the migratory and invasive capability of E-cadherin-positive cells. These results suggest that E-cadherin plays an important role in regulating the invasive potential of prostate cancer cells through an unique paracrine mechanism.  相似文献   

16.
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cells isolated from adipose tissue and have the ability to differentiate into adipogenic, osteogenic, and chondrogenic lineages. Despite their great therapeutic potentials, previous studies showed that ADSCs could enhance the proliferation and metastatic potential of breast cancer cells (BCCs). In this study, we found that ADSCs fused with BCCs spontaneously, while breast cancer stem cell (CSC) markers CD44+CD24-/lowEpCAM+ were enriched in this fusion population. We further assessed the fusion hybrid by multicolor DNA FISH and mouse xenograft assays. Only single nucleus was observed in the fusion hybrid, confirming that it was a synkaryon. In vivo mouse xenograft assay indicated that the tumorigenic potential of the fusion hybrid was significantly higher than that of the parent tumorigenic triple-negative BCC line MDA-MB-231. We had compared the fusion efficiency between two BCC lines, the CD44-rich MDA-MB-231 and the CD44-poor MCF-7, with ADSCs. Interestingly, we found that the fusion efficiency was much higher between MDA-MB-231 and ADSCs, suggesting that a potential mechanism of cell fusion may lie in the dissimilarity between these two cell lines. The cell fusion efficiency was hampered by knocking down the CD44. Altogether, our findings suggest that CD44-mediated cell fusion could be a potential mechanism for generating CSCs.  相似文献   

17.
Studies have shown that a subgroup of tumor cells possess stemness characteristics having self-renewal capacity and the ability to form new tumors. We sought to identify the plausible stemness factor that determines the “molecular signature” of prostate cancer (PCa) cells derived from different metastases (PC3, PCa2b, LNCaP, and DU145) and whether androgen receptor (AR) influences the maintenance of stemness features. Here we show sex-determining region Y (SRY)-box 2 (SOX2) as a putative stem cell marker in PC3 PCa cells and not in DU145, PCa2b, or LNCaP cells. PCa2b and PC3 cells were derived from bone metastases. PCa2b cells which are positive for the AR failed to demonstrate the expression of either cluster of differentiation 44 (CD44) or SOX2. Knockdown (KD) of AR in these cells did not affect the expression of either CD44 or SOX2. Conversely, PC3 cells, which are negative for AR, expressed both CD44 and SOX2. However, the expression of AR downregulated the expression of both CD44 and SOX2 in PC3 cells. CD44 regulates SOX2 expression as KD of CD44 and reduces SOX2 levels considerably. SOX2 KD attenuated not only the expression of SNAIL and SLUG but also the migration and tumorsphere formation in PC3 cells. Collectively, our findings underscore a novel role of CD44 signaling in the maintenance of stemness and progression of cancer through SOX2 in AR-independent PC3 cells. SOX2 has a role in the regulation of expression of SNAIL and SLUG. SOX2 could be a potential therapeutic target to thwart the progression of SOX2-positive cancer cells or recurrence of androgen-independent PCa.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号