首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UDP-hexose 4-epimerases play a pivotal role in lipopolysaccharide (LPS) biosynthesis and Leloir pathway. These epimerases are classified into three groups based on whether they recognize nonacetylated UDP-hexoses (Group 1), both N-acetylated and nonacetylated UDP-hexoses (Group 2) or only N-acetylated UDP-hexoses (Group 3). Although the catalysis has been investigated extensively, yet a definitive model rationalizing the substrate specificity of all the three groups on a common platform is largely lacking. In this work, we present the crystal structure of WbgU, a novel UDP-hexose 4-epimerase that belongs to the Group 3. WbgU is involved in biosynthetic pathway of the unusual glycan 2-deoxy-L-altruronic acid that is found in the LPS of the pathogen Pleisomonas shigelloides. A model that defines its substrate specificity is proposed on the basis of the active site architecture. Representatives from all the three groups are then compared to rationalize their substrate specificity. This investigation reveals that the Group 3 active site architecture is markedly different from the "conserved scaffold" of the Group 1 and the Group 2 epimerases and highlights the interactions potentially responsible for the origin of specificity of the Group 3 epimerases toward N-acetylated hexoses. This study provides a platform for further engineering of the UDP-hexose 4-epimerases, leads to a deeper understanding of the LPS biosynthesis and carbohydrate recognition by proteins. It may also have implications in development of novel antibiotics and more economic synthesis of UDP-GalNAc and downstream products such as carbohydrate based vaccines.  相似文献   

2.
Recently, we have solved the crystal structure of L-glutamate oxidase (LGOX) from Streptomyces sp. X-119-6 (PDB code: 2E1M), the substrate specificity of which is strict toward L-glutamate. By a docking simulation using L-glutamate and structure of LGOX, we selected three residues, Arg305, His312, and Trp564 as candidates of the residues associating with recognition of L-glutamate. The activity of LGOX toward L-glutamate was significantly reduced by substitution of selected residues with Ala. However, the enzyme, Arg305 of which was substituted with Ala, exhibited catalytic activity toward various L-amino acids. To investigate the role of Arg305 in substrate specificity, we constructed Arg305 variants of LGOX. In all mutants, the substrate specificity of LGOX was markedly changed by the mutation. The results of kinetics and pH dependence on activity indicate that Arg305 of LGOX is associated with the interaction of enzyme and side chain of substrate.  相似文献   

3.
In spite of its broad specificity among phenols, Trametes versicolor laccase hardly succeeds in oxidizing hindered substrates. To improve the oxidation ability of this laccase towards bulky phenolic substrates, we designed a series of single-point mutants on the basis of the amino-acid layout inside the reducing substrate active site known from the crystal structure of the enzyme. Site-directed mutagenesis has addressed four phenylalanine residues in key positions 162, 265, 332, and 337 at the entrance of the binding pocket, as these residues appeared instrumental for docking of the substrate. These phenylalanines were replaced by smaller-sized but still apolar alanines. A double mutant F162A/F332A was also designed. Measurement of the oxidation efficiency towards encumbered phenols has shown that mutant F162A was more efficient than the wild-type laccase. The double mutant F162A/F332A led to 98% consumption of bisphenol A in only 5 h and was more efficient than the single mutants in the aerobic oxidation of this bulky substrate. In contrast, lack of appropriate hydrophobic interactions with the substrate possibly depresses the oxidation outcome with mutants F265A and F332A. One explanation for the lack of reactivity of mutant F337A, supported by literature reports, is that this residue is part of the second coordination shell of T1 Cu. A mutation at this position thus leads to a drastic coordination shell destabilization. Thermal stability of the mutants and their resistance in a mixed water–dioxane solvent have also been investigated.  相似文献   

4.
Guo H  Li L  Wang PG 《Biochemistry》2006,45(46):13760-13768
The O-antigen of lipopolysaccharide in Gram-negative bacteria plays an important role in bacterium-host interactions. Escherichia coli O86:B7 O-unit contains five sugar residues: one fucose (Fuc) and two each of N-acetylgalactosamine (GalNAc) and galactose (Gal). The entire O-antigen gene cluster was previously sequenced: orf1 was assigned the gne gene for the biosynthesis of UDP-GalNAc. To confirm this annotation, overexpression, purification, and biochemical characterization of Gne were performed. By using capillary electrophoresis, we showed that Gne can catalyze the interconversion of both UDP-GlcNAc/GalNAc and UDP-Glc/Gal almost equally well. The Km values of Gne for UDP-Glc, UDP-Gal, UDP-GlcNAc, and UDP-GalNAc are 370, 295, 323, and 373 microM, respectively. The comparison of kinetic parameters of Gne from Escherichia coli O86:B7 to those of other characterized UDP-GlcNAc/Glc 4-epimerases indicated that it has relaxed specificity toward the four substrates, the first characterized enzyme to have this activity in the O-antigen biosynthesis. Moreover, the calculated kcat/Km values for UDP-GalNAc and UDP-Gal are approximately 2-4 times higher than those for UDP-GlcNAc and UDP-Glc, suggesting that Gne is slightly more efficient for the epimerization of UDP-GalNAc and UDP-Gal. One mutation (S306Y) resulted in a loss of epimerase activity for non-acetylated substrates by about 5-fold but totally abolished the activity for N-acetylated substrates, indicating that residue S306 plays an important role in the determination of substrate specificity.  相似文献   

5.
Barley limit dextrinase (HvLD) of glycoside hydrolase family 13 is the sole enzyme hydrolysing α-1,6-glucosidic linkages from starch in the germinating seed. Surprisingly, HvLD shows 150- and 7-fold higher activity towards pullulan and β-limit dextrin, respectively, than amylopectin. This is investigated by mutational analysis of residues in the N-terminal CBM-21-like domain (Ser14Arg, His108Arg, Ser14Arg/His108Arg) and at the outer subsites +2 (Phe553Gly) and +3 (Phe620Ala, Asp621Ala, Phe620Ala/Asp621Ala) of the active site. The Ser14 and His108 mutants mimic natural LD variants from sorghum and rice with elevated enzymatic activity. Although situated about 40 Å from the active site, the single mutants had 15–40% catalytic efficiency compared to wild type for the three polysaccharides and the double mutant retained 27% activity for β-limit dextrin and 64% for pullulan and amylopectin. These three mutants hydrolysed 4,6-O-benzylidene-4-nitrophenyl-63-α-d-maltotriosyl-maltotriose (BPNPG3G3) with 51–109% of wild-type activity. The results highlight that the N-terminal CBM21-like domain plays a role in activity. Phe553 and the highly conserved Trp512 sandwich a substrate main chain glucosyl residue at subsite +2 of the active site, while substrate contacts of Phe620 and Asp621 at subsite +3 are less prominent. Phe553Gly showed 47% and 25% activity on pullulan and BPNPG3G3, respectively having a main role at subsite +2. By contrast at subsite +3, Asp621Ala increased activity on pullulan by 2.4-fold, while Phe620Ala/Asp621Ala retained only 7% activity on pullulan albeit showed 25% activity towards BPNPG3G3. This outcome supports that the outer substrate binding area harbours preference determinants for the branched substrates amylopectin and β-limit dextrin.  相似文献   

6.
In order to understand the heme distal structure of neuronal nitric oxide synthase (nNOS), we studied cyanide binding to the ferric wild-type and substrate binding site mutants, Glu592Ala and Tyr588His, of the isolated oxygenase domain in the absence and presence of substrates and inhibitors. Cyanide bound to isolated heme-bound oxygenase domains (nNOSox) in the absence of the substrates with the dissociation constant (K(d)) of 3.1 mM. The presence of the substrates, L-Arg and NHA, did not change the K(d) value. However, cyanide binding was almost abolished in the presence of inhibitors such as NAME, thiocitrulline and 7-NI. The effect of the inhibitors were not observed for the Glu592Ala mutant, while similar strong inhibiting effects were observed for the Tyr588His mutant. We discuss the binding fashion of those inhibitors to the heme substrate binding site of nNOS.  相似文献   

7.
Enzymatic properties of barley alpha-amylase 1 (AMY1) are altered as a result of amino acid substitutions at subsites -5/-6 (Cys95-->Ala/Thr) and +1/+2 (Met298-->Ala/Asn/Ser) as well as in the double mutants, Cys95-->Ala/Met298-->Ala/Asn/Ser. Cys95-->Ala shows 176% activity towards insoluble Blue Starch compared to wild-type AMY1, kcat of 142 and 211% towards amylose DP17 and 2-chloro-4-nitrophenyl beta-d-maltoheptaoside (Cl-PNPG7), respectively, but fivefold to 20-fold higher Km. The Cys95-->Thr-AMY1 AMY2 isozyme mimic exhibits the intermediary behaviour of Cys95-->Ala and wild-type. Met298-->Ala/Asn/Ser have slightly higher to slightly lower activity for starch and amylose, whereas kcat and kcat/Km for Cl-PNPG7 are < or = 30% and < or = 10% of wild-type, respectively. The activity of Cys95-->Ala/Met298-->Ala/Asn/Ser is 100-180% towards starch, and the kcat/Km is 15-30%, and 0.4-1.1% towards amylose and Cl-PNPG7, respectively, emphasizing the strong impact of the Cys95-->Ala mutation on activity. The mutants therefore prefer the longer substrates and the specificity ratios of starch/Cl-PNPG7 and amylose/Cl-PNPG7 are 2.8- to 270-fold and 1.2- to 60-fold larger, respectively, than of wild-type. Bond cleavage analyses show that Cys95 and Met298 mutations weaken malto-oligosaccharide binding near subsites -5 and +2, respectively. In the crystal structure Met298 CE and SD (i.e., the side chain methyl group and sulfur atom) are near C(6) and O(6) of the rings of the inhibitor acarbose at subsites +1 and +2, respectively, and Met298 mutants prefer amylose for glycogen, which is hydrolysed with a slightly lower activity than by wild-type. Met298 AMY1 mutants and wild-type release glucose from the nonreducing end of the main-chain of 6"'-maltotriosyl-maltohexaose thus covering subsites -1 to +5, while productive binding of unbranched substrate involves subsites -3 to +3.  相似文献   

8.
Xanthine oxidase (oxidoreductase; XOR) and aldehyde oxidase (AO) are similar in protein structure and prosthetic group composition, but differ in substrate preference. Here we show that mutation of two amino acid residues in the active site of human XOR for purine substrates results in conversion of the substrate preference to AO type. Human XOR and its Glu803-to-valine (E803V) and Arg881-to-methionine (R881M) mutants were expressed in an Escherichia coli system. The E803V mutation almost completely abrogated the activity towards hypoxanthine as a substrate, but very weak activity towards xanthine remained. On the other hand, the R881M mutant lacked activity towards xanthine, but retained slight activity towards hypoxanthine. Both mutants, however, exhibited significant aldehyde oxidase activity. The crystal structure of E803V mutant of human XOR was determined at 2.6 A resolution. The overall molybdopterin domain structure of this mutant closely resembles that of bovine milk XOR; amino acid residues in the active centre pocket are situated at very similar positions and in similar orientations, except that Glu803 was replaced by valine, indicating that the decrease in activity towards purine substrate is not due to large conformational change in the mutant enzyme. Unlike wild-type XOR, the mutants were not subject to time-dependent inhibition by allopurinol.  相似文献   

9.
In earlier attempts to shift the substrate specificity of glutamate dehydrogenase (GDH) in favour of monocarboxylic amino-acid substrates, the active-site residues K89 and S380 were replaced by leucine and valine, respectively, which occupy corresponding positions in leucine dehydrogenase. In the GDH framework, however, the mutation S380V caused a steric clash. To avoid this, S380 has been replaced with alanine instead. The single mutant S380A and the combined double mutant K89L/S380A were satisfactorily overexpressed in soluble form and folded correctly as hexameric enzymes. Both were purified successfully by Remazol Red dye chromatography as routinely used for wild-type GDH. The S380A mutant shows much lower activity than wild-type GDH with glutamate. Activities towards monocarboxylic substrates were only marginally altered, and the pH profile of substrate specificity was not markedly altered. In the double mutant K89L/S380A, activity towards glutamate was undetectable. Activity towards L-methionine, L-norleucine and L-norvaline, however, was measurable at pH 7.0, 8.0 and 9.0, as for wild-type GDH. Ala163 is one of the residues that lines the binding pocket for the side chain of the amino-acid substrate. To explore its importance, the three mutants A163G, K89L/A163G and K89L/S380A/A163G were constructed. All three were abundantly overexpressed and showed chromatographic behaviour identical with that of wild-type GDH. With A163G, glutamate activity was lower at pH 7.0 and 8.0, but by contrast higher at pH 9.0 than with wild-type GDH. Activities towards five aliphatic amino acids were remarkably higher than those for the wild-type enzyme at pH 8.0 and 9.0. In addition, the mutant A163G used L-aspartate and L-leucine as substrates, neither of which gave any detectable activity with wild-type GDH. Compared with wild-type GDH, the A163 mutant showed lower catalytic efficiencies and higher K(m ) values for glutamate/2-oxoglutarate at pH 7.0, but a similar k(cat)/K(m) value and lower K(m) at pH 8.0, and a nearly 22-fold lower S(0.5) (substrate concentration giving half-saturation under conditions where Michaelis-Menten kinetics does not apply) at pH 9.0. Coupling the A163G mutation with the K89L mutation markedly enhanced activity (100-1000-fold) over that of the single mutant K89L towards monocarboxylic amino acids, especially L-norleucine and L-methionine. The triple mutant K89L/S380A/A163G retained a level of activity towards monocarboxylic amino acids similar to that of the double mutant K89L/A163G, but could no longer use glutamate as substrate. In terms of natural amino-acid substrates, the triple mutant represents effective conversion of a glutamate dehydrogenase into a methionine dehydrogenase. Kinetic parameters for the reductive amination reaction are also reported. At pH 7 the triple mutant and K89L/A163G show 5 to 10-fold increased catalytic efficiency, compared with K89L, towards the novel substrates. In the oxidative deamination reaction, it is not possible to estimate k(cat) and K(m) separately, but for reductive amination the additional mutations have no significant effect on k(cat) at pH 7, and the increase in catalytic efficiency is entirely attributable to the measured decrease in K(m). At pH 8 the enhancement of catalytic efficiency with the novel substrates was much more striking (e.g. for norleucine approximately 2000-fold compared with wild-type or the K89L mutant), but it was not established whether this is also exclusively due to more favourable Michaelis constants.  相似文献   

10.
In addition to their physiological importance, microbial lipases, like staphylococcal ones, are of considerable commercial interest for biotechnological applications such as detergents, food production, and pharmaceuticals and industrial synthesis of fine chemicals. The gene encoding the extracellular lipase of Staphylococcus simulans (SSL) was subcloned in the pET-14b expression vector and expressed in Esherichia coli BL21 (DE3). The wild-type SSL was expressed as amino terminal His6-tagged recombinant protein. One-step purification of the recombinant lipase was achieved with nickel metal affinity column. The purified His-tagged SSL (His6-SSL) is able to hydrolyse triacylglycerols without chain length selectivity. The major differences among lipases are reflected in their chemical specificity in the hydrolysis of peculiar ester bonds, and their respective capacity to hydrolyse substrates having different physico-chemical properties. It has been proposed, using homology alignment, that the region around the residue 290 of Staphylococcus hyicus lipase could be involved in the selection of the substrate. To evaluate the importance of this environment, the residue Asp290 of Staphylococcus simulans lipase was mutated to Ala using site-directed mutagenesis. The mutant expression plasmid was also overexpressed in Esherichia coli and purified with a nickel metal affinity column. The substitution of Asp290 by Ala was accompanied by a significant shift of the acyl-chain length specificity of the mutant towards short chain fatty acid esters. Kinetic studies of wild-type SSL and its mutant D290A were carried out, and show essentially that the catalytic efficiency (k cat /K M ) of the mutant was affected. Our results confirmed that Asp290 is important for the chain length selectivity and catalytic efficiency of Staphylococcus simulans lipase.  相似文献   

11.
Nayak SK  Bagga S  Gaur D  Nair DT  Salunke DM  Batra JK 《Biochemistry》2001,40(31):9115-9124
Restrictocin, a member of the fungal ribotoxin family, specifically cleaves a single phosphodiester bond in the 28S rRNA and potently inhibits eukaryotic protein synthesis. Residues Tyr47, His49, Glu95, Phe96, Pro97, Arg120, and His136 have been predicted to form the active site of restrictocin. In this study, we have individually mutated these amino acids to alanine to probe their role in restrictocin structure and function. The role of Tyr47, His49, Arg120, and His136 was further investigated by making additional mutants. Mutating Arg120 or His136 to alanine or the other amino acids rendered the toxin completely inactive, whereas mutating Glu95 to alanine only partially inactivated the toxin. Mutation of Phe96 and Pro97 to Ala had no effect on the activity of restrictocin. The Tyr47 to alanine mutant was inactive in inhibiting protein synthesis, and had a nonspecific ribonuclease activity on 28S rRNA similar to that shown previously for the His49 to Ala mutant. Unlike the His136 to Ala mutant, the double mutants containing Tyr47 or His49 mutated to alanine along with His136 did not compete with restrictocin to cause a significant reduction in the extent of cleavage of 28S rRNA. In a model of restrictocin and a 29-mer RNA substrate complex, residues Tyr47, His49, Glu95, Arg120, and His136 were found to be near the cleavage site on RNA. It is proposed that in restrictocin Glu95 and His136 are directly involved in catalysis, Arg120 is involved in the stabilization of the enzyme-substrate complex, Tyr47 provides structural stability to the active site, and His49 determines the substrate specificity.  相似文献   

12.
Catalytic activities toward benzphetamine and 7-ethoxycoumarin of 11 distal mutants, 9 proximal mutants, and 3 aromatic mutants of rat liver cytochrome P-450d were studied. A distal mutant Thr319Ala was not catalytically active toward benzphetamine, while this mutant retained activity toward 7-ethoxycoumarin. Distal mutants Gly316Glu, Thr319Ala, and Thr322Ala displayed higher activities (kcat/Km) toward 7-ethoxycoumarin that were 2.4-4.7-fold higher than that of the wild-type enzyme. Although kcat/Km values of four multiple distal mutants toward benzphetamine were less than half that of the wild type, activities of these mutants toward 7-ethoxycoumarin were almost the same as or higher than the wild-type activity toward this substrate. The distal double mutant Glu318Asp, Phe325Tyr showed 6-fold higher activity than the wild-type P-450d toward 7-ethoxycoumarin. Activities of the proximal mutants Lys453Glu and Arg455Gly toward both substrates were much lower (less than one-seventh) than the corresponding wild-type activities. Catalytic activities of three aromatic mutants, Phe425Leu, Pro427Leu, and Phe430Leu, toward benzphetamine were less than 7% of that of the wild type, while the activities of these aromatic mutants toward 7-ethoxycoumarin were more than 2.5 times higher than the wild-type activity toward this substrate. From these findings, in conjunction with a molecular model for P-450d, we suggest that (1) the relative importance to catalysis of various distal helix amino acids differs depending on the substrate and that these differences are associated with the size, shape, and flexibility of the substrate and (2) the proximal residue Lys453 appears to play a critical role in the catalytic activity of P-450d, perhaps by participating in forming an intermolecular electron-transfer complex.  相似文献   

13.
Cytochrome P450BM3 (CYP102A1) from Bacillus megaterium, a fatty acid hydroxylase, is a member of a very large superfamily of monooxygenase enzymes. The available crystal structures of the enzyme show non-productive binding of substrates with their omega-end distant from the iron in a hydrophobic pocket at one side of the active site. We have constructed and characterised mutants in which this pocket is filled by large hydrophobic side-chains replacing alanine at position 82. The mutants having phenylalanine or tryptophan at this position have very much (approximately 800-fold) greater affinity for substrate, with a greater conversion of the haem iron to the high-spin state, and similarly increased catalytic efficiency. The enzyme as isolated contains bound palmitate, reflecting this much higher affinity. We have determined the crystal structure of the haem domain of the Ala82Phe mutant with bound palmitate; this shows that the substrate is binding differently from the wild-type enzyme but still distant from the haem iron. Detailed analysis of the structure indicates that the tighter binding in the mutant reflects a shift in the conformational equilibrium of the substrate-free enzyme towards the conformation seen in the substrate complex rather than differences in the enzyme-substrate interactions. On this basis, we outline a sequence of events for the initial stages of the catalytic cycle. The Ala82Phe and Ala82Trp mutants are also very much more effective catalysts of indole hydroxylation than the wild-type enzyme, suggesting that they will be valuable starting points for the design of mutants to catalyse synthetically useful hydroxylation reactions.  相似文献   

14.
Histone deacetylases (HDACs)-an enzyme family that deacetylates histones and non-histone proteins-are implicated in human diseases such as cancer, and the first-generation of HDAC inhibitors are now in clinical trials. Here, we report the 2.0 A resolution crystal structure of a catalytically inactive HDAC8 active-site mutant, Tyr306Phe, bound to an acetylated peptidic substrate. The structure clarifies the role of active-site residues in the deacetylation reaction and substrate recognition. Notably, the structure shows the unexpected role of a conserved residue at the active-site rim, Asp 101, in positioning the substrate by directly interacting with the peptidic backbone and imposing a constrained cis-conformation. A similar interaction is observed in a new hydroxamate inhibitor-HDAC8 structure that we also solved. The crucial role of Asp 101 in substrate and inhibitor recognition was confirmed by activity and binding assays of wild-type HDAC8 and Asp101Ala, Tyr306Phe and Asp101Ala/Tyr306Phe mutants.  相似文献   

15.
The Gin residue at amino acid position 102 ofBacillus stearothermophilus lactate dehydrogenase was replaced with Ser, Thr, Tyr, or Phe to investigate the effect on substrate recognition. The Q102S and Q102T mutant enzymes were found to have a broader range of substrate specificity (measured byk cat/K m) than the wild-type enzyme. However, it is evident that either Ser or Thr at position 102 are of a size able to accommodate a wide variety of substrates in the active site and substrate specificity appears to rely largely on size discrimination in these mutants. The Q102F and Q102Y mutant enzymes have low catalytic efficiency and do not show this relaxed substrate specificity. However, their activities are restored by the presence of an aromatic substrate. All of the enzymes have a very low catalytic efficiency with branched chain aliphatic substrates.Abbreviations used BSLDH Bacillus stearothermophilus lactate dehydrogenase - FBP fructose-1,6-bisphosphate - HP hydroxypyruvate - KB ketobutyrate - KC ketocaproate - KV ketovalerate - MDH malate dehydrogenase - PP phenylpyruvate - PYR pyruvate - RBE relative binding energy  相似文献   

16.
The S2 subsite specificity of the plant protease papain has been altered to resemble that of mammalian cathepsin B by site-directed mutagenesis. On the basis of amino acid sequence alignments for papain and cathepsin B, a double mutant (Val133Ala/Ser205Glu) was produced where Val133 and Ser205 are replaced by Ala and Glu, respectively, as well as a triple mutant (Val133Ala/Val157Gly/Ser205Glu), where Val157 is also replaced by Gly. Three synthetic substrates were used for the kinetic characterization of the mutants, as well as wild-type papain and cathepsin B: CBZ-Phe-Arg-MCA, CBZ-Arg-Arg-MCA, and CBZ-Cit-Arg-MCA. The ratio of kcat/KM obtained by using CBZ-Phe-Arg-MCA as substrate over that obtained with CBZ-Arg-Arg-MCA is 8.0 for the Val133Ala/Ser205Glu variant, while the equivalent values for wild-type papain and cathepsin B are 904 and 3.6, respectively. This change in specificity has been achieved by replacing only two amino acids out of a total of 212 in papain and with little loss in overall enzyme activity. However, further replacement of Val157 by Gly as in Val133Ala/Val157Gly/Ser205Glu causes an important decrease in activity, although the enzyme still displays a cathepsin B like substrate specificity. In addition, the pH dependence of activity for the Val133Ala/Ser205Glu variant compares well with that of cathepsin B. In particular, the activity toward CBZ-Arg-Arg-MCA is modulated by a group with a pKa of 5.51, a behavior that is also encountered in the case of cathepsin B but is absent with papain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The aim of this study was to broaden the current knowledge about the Porphyromonas gingivalis heme receptor HmuR. Site-directed mutagenesis was employed to replace Glu427, Glu448, Glu458 and Glu503 by alanines and to construct a triple Glu427Ala/Glu448Ala/Glu 458Ala mutant. All iron/heme-starved P. gingivalis mutants showed decreased growth recovery when human serum as the iron/heme source was used, hmuR::ermF, hmuR E503A and hmuR E427A,E448A,E458A mutant strains being the most affected. E. coli cells expressing HmuR with mutated glutamate residues bound hemin, hemoglobin and hemin–serum albumin complex with the same efficiency as did the wild-type recombinant protein, suggesting that the residues were not directly involved in heme binding. These data indicate that in addition to two conserved histidine residues (His95 and His434), NPDL and YRAP motifs, conserved glutamate residues are important for HmuR to utilize heme present in serum hemoproteins.  相似文献   

18.
Aminopeptidase P (APPro) is a manganese-containing enzyme that catalyses the hydrolysis of the N-terminal residue of a polypeptide if the second residue is proline. Structures of APPro mutants with reduced or negligible activity have been determined in complex with the tripeptide substrate ValProLeu. In the complex of Glu383Ala APPro with ValProLeu one of the two metal sites is only partly occupied, indicating an essential role for Glu383 in metal binding in the presence of substrate. His361Ala APPro clearly possesses residual activity as the ValProLeu substrate has been cleaved in the crystals; difference electron density consistent with bound ProLeu dipeptide and a disordered Val amino acid is present at the active site. Contrary to previous suggestions, the His243Ala mutant is capable of binding substrate. The structure of the His243Ala APPro complex with ValProLeu shows that the peptide interacts with one of the active-site metal atoms via its terminal amino group. The implications of these complexes for the roles of the respective residues in APPro catalysis are discussed.  相似文献   

19.
Recently, we identified Ala426 and Lys438 of phospholipase D from Streptomyces septatus TH-2 (TH-2PLD) as important residues for activity, stability and selectivity in transphosphatidylation. These residues are located in a C-terminal flexible loop separate from two catalytic HxKxxxxD motifs. To study the role of these residues in substrate recognition, we evaluated the affinities of inactive mutants, in which these residues were substituted with Phe and His, toward several phospholipids by SPR analysis. By substituting Ala426 and Lys438 with Phe and His, respectively, the inactive mutant showed a much stronger interaction with phosphatidylcholine and a weaker interaction with phosphatidylglycerol than the inactive TH-2PLD mutant. We demonstrated that Ala426 and Lys438 of TH-2PLD play a role in sensing the head group of phospholipids.  相似文献   

20.
To investigate the functional role of an invariant histidine residue in Trigonopsis variabilis D-amino acid oxidase (DAAO), a set of mutant enzymes with replacement of the histidine residue at position 324 was constructed and their enzymatic properties were examined. Wild-type and mutant enzymes have been purified to homogeneity using the His-bound column and the molecular masses were determined to be 39.2 kDa. Western blot analysis revealed that the in vivo synthesized mutant enzymes are immuno-identical with that of the wild-type DAAO. The His324Asn and His324Gln mutants displayed comparable enzymatic activity to that of the wild-type enzyme, while the other mutant DAAOs showed markedly decreased or no detectable activity. The mutants, His324/Asn/Gln/Ala/Tyr/Glu, exhibited 38-181% increase in Km and a 2-10-fold reduction in kcat/Km. Based on the crystal structure of a homologous protein, pig kidney DAAO, it is suggested that His324 might play a structural role for proper catalytic function of T. variabilis DAAO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号