首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Immune opsonin-independent phagocytosis by pulmonary macrophages   总被引:2,自引:0,他引:2  
The uptake of albumin-coated latex particles by hamster pulmonary macrophages (PM) in vitro was investigated by using a new technique that combined flow cytometry and fluorescence microscopy to differentiate and quantitate bound vs ingested particles. In the absence of serum, PM avidly bound and ingested particles, whereas phagocytosis by hamster polymorphonuclear leukocytes (PMN) was less marked. In the presence of serum, phagocytosis by PM was slightly depressed, whereas phagocytosis by PMN was stimulated more than 10-fold. The binding of particles to PM in the absence of serum was pH, temperature, and trypsin sensitive and was dependent on the presence of extracellular Ca++ but not Mg++. The ingestion of particles by this immune opsonin-independent pathway was also temperature sensitive but was not affected by either pH or extracellular Ca++. Particle ingestion, but not binding, was inhibited by cytochalasin D and the divalent cation ionophore A23187.  相似文献   

2.
Bacterial inhibition of phagocytosis   总被引:7,自引:3,他引:4  
The concerted study of molecular mechanisms of phagocytosis and the inhibition of phagocytosis by specific products of extracellular bacterial pathogens has borne considerable fruit. The importance of tyrosine phosphorylation and of the Rho family of GTPases has become clear to cell biologists, but pathogenic bacteria recognized the importance of these signalling pathways in phagocytic cells long ago. The discoveries described in this review are only the beginning. The simultaneous pursuit of the mechanisms and molecules involved in the initiation and regulation of phagocytosis and that pathogenic bacteria use to inhibit phagocytosis will surely identify more interesting pathways on each side of the contest. Are there any obvious possibilities? There are several bacterial factors that have the potential to inhibit known mechanisms of phagocytosis. Clostridium species, for example, make a number of exotoxins of interest. Clostridium botulinum and Clostridium tetani neurotoxins inactivate the regulated secretory machinery by proteolytic cleavage of SNARE proteins, and targets of tetanus toxin and botulinum b toxin inhibit the exocytotic delivery of membrane vesicles needed for phagocytosis of large particles (Hackam et al., 1998). Moreover, the C3 exotoxin of C. botulinum catalyses ADP ribosylation and inactivation of rho family GTPases (Wiegers et al., 1991), and toxins A and B of C. difficile UDP-glucosylate and inactivate rho GTPases and thereby disrupt the actin cytoskeleton (Just et al., 1995a,b). However, as Clostridia lack the machinery for type III secretion, these proteins are not rapidly targeted to the phagocyte cytoplasm. More searching may reveal a pathogen that has combined the type III secretory machinery with clostridia toxin-like substrates. A potentially unique strategy for remaining outside phagocytes is exhibited by Helicobacter pylori, which contain a type IV secretion system. Unopsonized virulent strains of H. pylori bind readily to macrophages but are only internalized after a delay of several minutes. Such a delay appears to be sufficient for the bacteria to remain extracellular (Allen et al., 2000). Elucidation of the mechanism used by H. pylori to delay phagocytosis may reveal one or more novel virulence factors as well as one or more novel targets in the phagocyte that will add to the understanding of a fundamental process in host defence. Another field ripe for further mechanistic investigation is complement receptor-mediated phagocytosis. Dedicated study of the molecular events and molecular mediators of phagocytosis downstream of CR3 is likely to reveal interesting differences from FcgammaR phagocytosis and is just as likely to reveal that microbes have discovered unique mechanisms for circumventing them. Study of extracellular pathogens and the mechanisms that they use to remain outside phagocytic cells has revealed a great deal about the initial encounter between pathogen and phagocyte. We can look forward to additional discoveries about the host-pathogen interactions and the mechanisms and factors that each side uses to battle against the other.  相似文献   

3.
The mechanism whereby bacterial lipopolysaccharide (LPS) exerts its biologic effects on mammalian cells is unknown. Plasma membrane gangliosides bind bacterial toxins and have been implicated in modulating the effects of a variety of immunoregulatory substances. We investigated the possibility that gangliosides can inhibit the effect of lipopolysaccharide on Fc-dependent phagocytosis by murine peritoneal macrophages. Protein-free lipopolysaccharide preparations significantly inhibited Fc-mediated phagocytosis (less than 71% of control) at concentrations of 100 ng/ml or greater after 90 min of incubation. The inhibitory effect of LPS (1 micrograms/ml) was blocked when macrophages were incubated with mono-, di-, or trisialogangliosides (25-50 micrograms/ml). Neither asialoganglioside nor sialic acid alone were capable of blocking the effect of LPS. When chromatographed separately on a Sepharose 4B column, LPS and trisialoganglioside had different elution profiles. LPS and trisialoganglioside coeluted, however, when premixed at 37 degrees C for 60 min and then applied to the column. Therefore, abrogation of the effect of LPS on Fc-dependent phagocytosis may occur as a consequence of direct interaction between LPS and gangliosides. These data suggest that gangliosides may modulate the response of macrophages to bacterial lipopolysaccharide.  相似文献   

4.
Influenza virus-infected cells undergo apoptosis and become susceptible to phagocytosis by macrophages, and this leads to the inhibition of virus propagation in vitro. To assess if this were also true in vivo, mice infected with influenza A/WSN (H1N1) virus were administered with phagocytosis inhibitors and examined for the progress of influenza. Administration of the inhibitors caused a decrease in the level of phagocytosis observed with bronchoalveolar lavage cells. We found that both the lethality in mice and the extent of inflammation in the lung were augmented in those mice. These results suggest that phagocytosis of virus-infected cells helps suppress the progress of influenza in mice.  相似文献   

5.
6.
7.
8.
2-Deoxy-D-glucose inhibits Fc and complement receptor-mediated phagocytosis of mouse peritoneal macrophages. To understand the mechanism of this inhibition, we analyzed the 2-deoxy-D-glucose metabolites in macrophages under phagocytosis inhibition conditions and conditions of phagocytosis reversal caused by glucose, mannose and 5-thio-D-glucose, and compared their accumulations under these conditions. Macrophages metabolized 2-deoxy-D-glucose to form 2-deoxy-D-glucose 6-phosphate, 2-deoxy-D-glucose 1-phosphate, UDP-2-deoxy-D-glucose, 2-deoxy-D-glucose 1, 6-diphosphate, 2-deoxy-D-gluconic acid and 2-deoxy-6-phospho-D-gluconic acid. The level of bulk accumulation as well as the accumulation of any of these 2-deoxy-D-glucose metabolites did not correlate with changes in macrophage phagocytosis capacities caused by the reversing sugars. 2-Deoxy-D-glucose inhibited glycosylation of thioglycolate-elicited macrophage by 70-80%. This inhibition did not cause phagocytosis inhibition, since (1) the reversal of phagocytosis by 5-thio-D-glucose was not followed by increases in the incorporation of radiolabelled galactose, glucosamine, N-acetylgalactosamine or fucose; (2) cycloheximide at a concentration that inhibited glycosylation by 70-80% did not affect macrophage phagocytosis. The inhibition of protein synthesis by 2-deoxy-D-glucose similarly could not account for phagocytosis inhibition, since cycloheximide, when used at a concentration that inhibited protein synthesis by 95%, did not affect phagocytosis. 2-Deoxy-D-glucose lowered cellular nucleoside triphosphates by 70-99%, but their intracellular levels in the presence of different reversing sugars did not correlate with the magnitude of phagocytosis reversal caused by these sugars. The results show that 2-deoxy-D-glucose inhibits phagocytosis by a mechanism distinct from its usual action of inhibiting glycosylation, protein synthesis and depleting energy supplies, mechanisms by which 2-deoxy-D-glucose inhibits other cellular processes.  相似文献   

9.
Phagocytosis and the microbicidal functions of neutrophils require dynamic changes of the actin cytoskeleton. We have investigated the role of gelsolin, a calcium-dependent actin severing and capping protein, in peripheral blood neutrophils from gelsolin-null (Gsn-) mice. The phagocytosis of complement opsonized yeast was only minimally affected. In contrast, phagocytosis of IgG-opsonized yeast was reduced close to background level in Gsn- neutrophils. Thus, gelsolin is essential for efficient IgG- but not complement-mediated phagocytosis. Furthermore, attachment of IgG-opsonized yeast to Gsn- neutrophils was reduced ( approximately 50%) but not to the same extent as ingestion ( approximately 73%). This was not due to reduced surface expression of the Fcgamma-receptor or its lateral mobility. This suggests that attachment and ingestion of IgG-opsonized yeast by murine neutrophils are actin-dependent and gelsolin is important for both steps in phagocytosis. We also investigated granule exocytosis and several steps in phagosome processing, namely the formation of actin around the phagosome, translocation of granules, and activation of the NADPH-oxidase. All these functions were normal in Gsn- neutrophils. Thus, the role of gelsolin is specific for IgG-mediated phagocytosis. Our data suggest that gelsolin is part of the molecular machinery that distinguishes complement and IgG-mediated phagocytosis. The latter requires a more dynamic reorganization of the cytoskeleton.  相似文献   

10.
Fcgamma receptors are important mediators of the binding of IgG to and induction of phagocytosis in neutrophils. COS-1 cells provide a potentially useful model for studying these receptors because transfection with the FcgammaRIIA renders these cells phagocytic. During FcgammaRIIA-mediated phagocytosis in COS-1 cells, endogenous ceramide levels increased 52% by 20 min (p < 0.01). Phospholipase D activity increased by 62% (p < 0.01). Correspondingly, the phagocytic index increased by 3.7-fold by 20 min. Two inhibitors of ceramide formation were used to assess the consequences of reduced ceramide generation. l-Cycloserine, an inhibitor that blocks serine palmitoyltransferase activity, lowered both sphingosine and ceramide levels. Under these conditions, the phagocytic index increased 100% in the presence of 2 mm l-cycloserine. The formation of ceramide resulting from the N-acylation of dihydrosphingosine or sphingosine by ceramide synthase is inhibited by the fungal toxin fumonisin B(1). When cells were treated with 5-50 microm fumonisin B(1), the cellular level of ceramide decreased in a concentration-dependent manner, while simultaneously the phagocytic index increased by 52%. Concomitantly, three indirect measures of FcgammaRIIA activity were altered with the fall in ceramide levels. Syk phosphorylation, phospholipase D activity, and mitogen-activated protein (MAP) kinase phosphorylation were increased at 30 min. When Syk phosphorylation was blocked with piceatannol and cells were similarly challenged, phosphatidylinositol 3-kinase activation was blocked, but no changes in either ceramide accumulation or MAP kinase activation were observed. Ceramide formation and MAP kinase activation are therefore not dependent on Syk kinase activity in this system. These results indicate that COS-1 cells provide a useful model for the recapitulation of sphingolipid signaling in the study of phagocytosis. Ceramide formed by de novo synthesis may represent an important mechanism in the regulation of phagocytosis.  相似文献   

11.
Abstract The role of the lipoamino acids (serratamolide and ornithine lipid), membrane lipid components of Serratia marcescens , was examined in phagocytosis and phagosome-lysosome fusion of human peripheral polymorphonuclear leukocytes. A mutant strain of Serratia marcescens (NS 38-09) lacking serratamolide was actively phagocytosed by human PMN, while the wild-type strain (NS 38) producing serratamolide was more resistant to phagocytosis by human PMN. Phagocytosis of killed Staphylococcus aureus coated with lipoamino acid (serratamolide), showed that they were more resistant to phagocytosis by PMN, while the cells coated with ornithine lipid or serratamic acid were phagocytosed more actively. Staphylococci coated with phosphatidylethanolamine or phosphatidylglycerol had no significant effect on phagocytosis by PMN. Phagosome-lysosome fusion by PMN labelled with acridine orange was examined by fluorescence microscopy. The fusion indices of lipoamino acid-coated staphylococci were the same as that of controls. Further, ornithine lipid-coated staphylococci stimulated the release of superoxide anion from PMN slightly, but serratamolide did not. These results suggested that serratamolide may contribute to the virulence of S. marcescens in vitro.  相似文献   

12.
13.
14.
15.
Depression of phagocytosis by sulfamethazine.   总被引:1,自引:0,他引:1  
  相似文献   

16.
In the central nervous system, synaptic pruning, the removal of unnecessary synaptic contacts, is an essential process for proper circuit maturation in neurodevelopment as well as for synaptic homeostasis in the adult stage. Dysregulation of synaptic pruning can contribute to the initiation and progression of various mental disorders, such as schizophrenia and depression, as well as neurodegenerative diseases including Alzheimer's disease. In the past 15 years, pioneering works have demonstrated that different types of glial cells regulate the number of synapses by selectively eliminating them through phagocytic molecular machinery. Although a majority of findings have been focused on microglia, it is increasingly evident that astrocytes function as a critical player in activity-dependent synapse elimination in developing, adult, and diseased brains. In this review, we will discuss recent findings showing the mechanisms and physiological importance of astrocyte-mediated synapse elimination in controlling synapses and circuit homeostasis. We propose that astrocytes play dominant and non-redundant roles in eliminating synapses during the activity-dependent circuit remodeling processes that do not involve neuro-inflammation.  相似文献   

17.
18.
Decorin is a small, leucine-rich proteoglycan that binds to collagen and regulates fibrillogenesis. We hypothesized that decorin binding to collagen inhibits phagocytosis of collagen fibrils. To determine the effects of decorin on collagen degradation, we analyzed phagocytosis of collagen and collagen/decorin-coated fluorescent beads by Rat-2 and gingival fibroblasts. Collagen beads bound to gingival cells by alpha2beta1 integrins. Binding and internalization of decorin/collagen-coated beads decreased dose-dependently with increasing decorin concentration (p < 0.001). Inhibition of binding was sustained over 5 h (p < 0.001) and was attributed to interactions between decorin and collagen and not to decorin-collagen receptor interactions. Both the non-glycosylated decorin core protein and the thermally denatured decorin significantly inhibited collagen bead binding (approximately 50 and 89%, respectively; p < 0.05). Mimetic peptides corresponding to leucine-rich repeats 1-3, encompassed by a collagen-binding approximately 11-kDa cyanogen bromide fragment of decorin and leucine-rich repeats 4 and 5, previously shown to bind to collagen, were tested for their ability to inhibit collagen bead binding. Although the synthetic peptide 3 alone exhibited saturable binding to collagen, neither peptides 3 nor 1 and 2 markedly inhibited phagocytosis. Leucine-rich repeat 3 bound to a triple helical peptide containing the alpha2 integrin-binding site of collagen. When collagen beads were co-incubated with peptides 3 and 4, inhibition of collagen phagocytosis (55%) was equivalent to intact native/recombinant core protein. Thus a novel collagen binding domain in decorin acts cooperatively with leucine-rich repeat 4 to mask the alpha2beta1 integrin-binding site on collagen, an important sequence for the phagocytosis of collagen fibrils.  相似文献   

19.
20.
Levels of IgG4 in immunoglobulin preparations obtained either by conventional ethanol fractionation or by ethanol and caprylic acid fractionation (Allergam) were measured by an enzyme-immunoassay (competitive Elisa). In 9 ethanol preparations, the mean percentage of IgG4 was 2.1% +/- 0.5. In 10 preparations of Allergam, the mean percentage of IgG4 was 4.6% +/- 1. The concentration of IgG4 in Allergam preparations is about twice the concentration found in conventional ethanol preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号