首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peripheral benzodiazepine receptor (PBR) has been known to have many functions such as a role in cell proliferation, cell differentiation, steroidogenesis, calcium flow, cellular respiration, cellular immunity, malignancy, and apoptosis. However, the presence of PBR has not been examined in mesenchymal stem cells. In this study, we demonstrated the expression of PBR in human bone marrow stromal cells (hBMSCs) and human adipose stromal cells (hATSCs) by RT-PCR and immunocytochemistry. To determine the roles of PBR in cellular functions of human mesenchymal stem cells (hMSCs), effects of diazepam, PK11195, and Ro5-4864 were examined. Adipose differentiation of hMSCs was decreased by high concentration of PBR ligands (50 microM), whereas it was increased by low concentrations of PBR ligands (<10 microM). PBR ligands showed a biphasic effect on glycerol-3-phosphate dehydrogenase (GPDH) activity. High concentration of PBR ligands (from 25 to 75 microM) inhibited proliferation of hMSCs. However, clonazepam, which does not have an affinity to PBR, did not affect adipose differentiation and proliferation of hMSCs. The PBR ligands did not induce cell death in hMSCs. PK11195 (50 microM) and Ro5-5864 (50 microM) induced cell cycle arrest in the G(2)/M phase. These results indicate that PBR ligands play roles in adipose differentiation and proliferation of hMSCs.  相似文献   

2.
Transforming growth factor-beta (TGF beta) is a potent growth inhibitor in most epithelial cells. We evaluated the effects of norethindrone (which in combination with estrogen is commonly used in oral contraceptives) and other progestins [medioxyprogesterone acetate (MPA) and R5020, which are not used in oral contraceptives] on cell growth and the expression of TGF beta 1, TGF beta 2, and TGF beta 3 mRNAs in MCF-7 human breast cancer cells. Growth of MCF-7 cells was stimulated by norethindrone (10(-8)-10(-5) M), with maximal growth stimulation at 10(-7) M norethindrone after 7 days of treatment. However, the growth of MCF-7 cells was not affected by MPA (10(-8) M) or R5020 (10(-8) M). Treatment with the antiestrogen 4-hydroxytamoxifen at a concentration of 10(-7) M blocked the growth stimulation induced by norethindrone. The norethindrone-induced growth stimulation was accompanied by a dramatic decrease in TGF beta 2 and TGF beta 3 mRNA levels, whereas the level of TGF beta 1 mRNA was not affected by any of the compounds tested. In addition, treatment with MPA or R5020 did not affect TGF beta 2 and TGF beta 3 mRNA levels. The inhibitory effect of norethindrone on TGF beta 2 and TGF beta 3 mRNA levels could be blocked by the addition of 10(-7) M 4-hydroxytamoxifen. Norethindrone as well as estradiol decreased estrogen receptor mRNA levels and increased progesterone receptor mRNA levels. This is the first report which demonstrates that norethindrone stimulates estrogen-responsive human breast cancer cell growth and inhibits the expression of TGF beta 2 and TGF beta 3 mRNAs. These results suggest that the differential regulation of TGF beta expression by norethindrone may be at least partly responsible for the growth stimulation induced by norethindrone. Thus, the norethindrone component of some oral contraceptives may be sufficiently estrogenic to facilitate the development of breast cancer.  相似文献   

3.
K Merry  M Gowen 《Cytokine》1992,4(3):171-179
Transforming growth factor beta (TGF-beta) and interleukin 1 (IL-1) are among the most potent osteotropic cytokines. The expression of mRNA for both TGF-beta and IL-1 beta was studied in human osteoblast-like cells in vitro. These cells constitutively expressed TGF-beta but not IL-1 beta mRNA. Treatment of the cells with the systemic hormones 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] (10(-8) M) and parathyroid hormone (10(-7) M) induced an increase in TGF-beta mRNA but failed to stimulate the production of IL-1-beta mRNA. Retinoic acid (10(-8) M) had no effect on either mRNA species. The cytokines IL-1 alpha (200 pg/ml), tumour necrosis factor alpha (TNF-alpha) (17 ng/ml) and bacterial lipopolysaccharide (LPS) (500 ng/ml) stimulated the production of IL-1 beta mRNA after 6-8 hours. This was followed by an increase in protein production after 24 hours. In contrast, the production of TGF-beta mRNA remained constant after treatment with these agents. Treatment of the cells with hydrocortisone (10(-8) M) resulted in the suppression of both TGF-beta and IL-1 beta mRNA. However, when the stimulating agent 1,25-(OH)2D3 was added in conjunction with hydrocortisone the mRNA expression of TGF-beta mRNA returned to 70% of the stimulated level. In contrast, the addition of the stimulatory agent IL-1 alpha to hydrocortisone-treated cells resulted in no increase in IL-1 beta mRNA. In-situ hybridization demonstrated both TGF-beta and IL-1 beta mRNA at the cellular level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
p11 is a member of the S100 family of proteins, is the cellular ligand of annexin II, and interacts with the carboxyl region of 85-kDa cytosolic phospholipase A(2) (cPLA(2)), inhibiting cPLA(2) activity and arachidonic acid (AA) release. We studied the effect of retinoic acid (RA) on PLA(2) activity in human bronchial epithelial cells and whether p11 contributes to these effects. The addition of 10(-6) M RA resulted in reduced p11 protein levels at 4 days, with the greatest effect observed on days 6 and 7. This effect was dose related (10(-6) to 10(-9) M). RA treatment (10(-6) M) had no effect on cPLA(2) protein levels. p11 mRNA levels were unchanged at 6 and 8 days of treatment (correlating with maximum p11 protein reduction). Treatment with RA reduced p11 levels in control cells and in cells transfected with a p11 expression vector, suggesting a posttranslational mechanism. Lactacystin (10(-6) M), an inhibitor of the human 26S proteasome, blocked the decrease in p11 observed with RA treatment. Compared with control cells (n = 3), RA-treated cells (n = 3) had significantly increased AA release after treatment with the calcium ionophore A-23187 (P = 0.006). Therefore, RA reduces p11 protein expression and increases PLA(2) activity and AA release.  相似文献   

5.
The peripheral benzodiazepine receptor (PBR) is a mitochondrial protein involved in the formation of mitochondrial permeability transition (PT) pores which play a critical role during the early events of apoptosis. PBRs are located in many tissues and are strongly expressed in the superficial layers of human epidermis. PBRs play a protective role against free radical damage and PBR ligands modulate apoptosis. To investigate the role of PBR during the early events of ultraviolet (UV)-mediated apoptosis we compared the effects of UVB on PBR-transfected Jurkat cells and their wild type counterparts devoid of any PBR expression. Results indicate that early after UVB exposure (up to 4 h), PBR-transfected cells were more resistant to apoptosis and exhibited a delayed mitochondrial transmembrane potential drop, a diminished superoxide anions production, and a reduced caspase-3 activation. Taken together these findings suggest that PBR may regulate early death signals leading to UV induced apoptosis.  相似文献   

6.
7.
The mitochondrial peripheral benzodiazepine receptor (PBR) is involved in a functional structure designated as the mitochondrial permeability transition (MPT) pore, which controls apoptosis. PBR expression in nervous system has been reported in glial and immune cells. We now show expression of both PBR mRNA and protein, and the appearance of binding of a synthetic ligand fluo-FGIN-1-27 in mitochondria of rat cerebellar granule cells (CGCs). Additionally, the effect of PBR ligands on colchicine-induced apoptosis was investigated. Colchicine-induced neurotoxicity in CGCs was measured at 24 h. We show that, in vitro, PBR ligands 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4- benzodiazepin-2-one (Ro5-4864) and diazepam (25– 50 M) enhanced apoptosis induced by colchicine, as demonstrated by viability experiments, flow cytometry and nuclear chromatin condensation. Enhancement of colchicine-induced apoptosis was characterized by an increase in mitochondrial release of cytochrome c and AIF proteins and an enhanced activation of caspase-3, suggesting mitochondrion dependent mechanism that is involved in apoptotic process. Our results indicate that exposure of neural cells to PBR ligands generates an amplification of apoptotic process induced by colchicine and that the MPT pore may be involved in this process.  相似文献   

8.
Adrenomedullin is a potent vasodilator peptide originally isolated from a pheochromocytoma. Recently, a novel adrenomedullin receptor has been identified as a complex consisting of calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein (RAMP) 2. To explore possible pathophysiological roles of adrenomedullin and its receptor component RAMP2 in hypoxic tissues, we studied effects of hypoxia on expression of adrenomedullin and RAMP2 in two human neuroblastoma cell lines, IMR-32 and NB69, by radioimmunoassay and Northern blot analysis. Expression levels of adrenomedullin were increased by hypoxia in both cell lines. Treatment with cobalt chloride or desferrioxamine mesylate also increased expression levels of adrenomedullin mRNA. On the other hand, expression levels of RAMP2 mRNA were decreased in IMR-32 cells and were not changed in NB69 cells by hypoxia. Treatment with cobalt chloride or desferrioxamine mesylate decreased expression levels of RAMP2 mRNA in both IMR-32 and NB69 cells. These findings indicate that adrenomedullin expression is induced during hypoxia in IMR-32 and NB69 neuroblastoma cells, but RAMP2 expression is rather suppressed under the same conditions. The decreased expression of RAMP2 and the ADM expression induction under hypoxia may constitute one mechanism of cellular adaptation to hypoxic stress.  相似文献   

9.
Testicular mitochondria were previously shown to contain an abundance of peripheral-type benzodiazepine recognition site(s)/receptor(s) (PBR). We have previously purified, cloned, and expressed an Mr 18,000 PBR protein (Antkiewicz-Michaluk, Mukhin, A. G., Guidotti, A., and Krueger, K. E. (1988) J. Biol. Chem. 263, 17317-17321; (Sprengel, R., Werner, P., Seeburg, P. H., Mukhin, A. G., Santi, M. R., Grayson, D. R., Guidotti, A., and Krueger, K. E. (1989) J. Biol. Chem. 264, 20415-20421); and in this report, we present evidence that PBR are functionally linked to Leydig cell steroid biosynthesis. A spectrum of nine different ligands covering a range of over 4 orders of magnitude in their affinities for PBR were tested for their potencies to modulate steroidogenesis in the MA-10 mouse Leydig tumor cell line. The Ki for inhibition of [3H]1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide binding and the EC50 for steroid biosynthesis for this series of compounds showed a correlation coefficient of r = 0.95. The most potent ligands stimulated steroid production by approximately 4-fold in these cells. This stimulation was not inhibited by cycloheximide, unlike human chorionic gonadotropin- or cyclic AMP-activated steroidogenesis. The action of PBR ligands was not additive to stimulation by human chorionic gonadotropin or cyclic AMP, but was additive to that of epidermal growth factor, another regulator of MA-10 Leydig cell steroidogenesis. Moreover, PBR ligands stimulated, in a dose-dependent manner, pregnenolone biosynthesis by isolated mitochondria when supplied with exogenous cholesterol. This effect was not observed with mitoplasts (mitochondria devoid of the outer membrane). Cytochrome P-450 side chain cleavage activity, as measured by metabolism of (22R)-hydroxycholesterol, was not affected by PBR ligands in intact cells. Similar results were also obtained with purified rat Leydig cells. In conclusion, PBR are implicated in the acute stimulation of Leydig cell steroidogenesis possibly by mediating the entry, distribution, and/or availability of cholesterol within mitochondria.  相似文献   

10.
Hormone-induced steroid biosynthesis begins with the transfer of cholesterol from intracellular stores into mitochondria. Steroidogenic acute regulatory protein (StAR) and peripheral-type benzodiazepine receptor (PBR) have been implicated in this rate-determining step of steroidogenesis. MA-10 mouse Leydig tumor cells were treated with and without oligodeoxynucleotides (ODNs) antisense to PBR and StAR followed by treatment with saturating concentrations of human choriogonadotropin. Treatment with ODNs antisense but not missense for both proteins inhibited the respective protein expression and the ability of the cells to synthesize steroids in response to human choriogonadotropin. Treatment of the cells with either ODNs antisense to PBR or a transducible peptide antagonist to PBR resulted in inhibition of the accumulation of the mature mitochondrial 30-kDa StAR protein, suggesting that the presence of PBR is required for StAR import into mitochondria. Addition of in vitro transcribed/translated 37-kDa StAR or a fusion protein of Tom20 (translocase of outer membrane) and StAR (Tom/StAR) to mitochondria isolated from control cells increased pregnenolone formation. Mitochondria isolated from cells treated with ODNs antisense, but not missense, to PBR failed to form pregnenolone and respond to either StAR or Tom/StAR proteins. Reincorporation of in vitro transcribed/translated PBR, but not PBR missing the cholesterol-binding domain, into MA-10 mitochondria rescued the ability of the mitochondria to form steroids and the ability of the mitochondria to respond to StAR and Tom/StAR proteins. These data suggest that both StAR and PBR proteins are indispensable elements of the steroidogenic machinery and function in a coordinated manner to transfer cholesterol into mitochondria.  相似文献   

11.
Treatment of SH-SY5Y human neuroblastoma cells with the protein kinase inhibitor staurosporine, induced both morphological and functional differentiation in these cells. The effects of staurosporine were comparable to those induced by the protein kinase C (PKC) activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA), with respect to induction of neuronal differentiation, i.e. neurite outgrowth, inhibition of DNA synthesis, induction and down-regulation of c-myc protein expression, induction of mRNA for both neuropeptide Y (NPY) and growth associated protein 43 (GAP-43) and stimulation of tyrosine hydroxylase expression. Staurosporine failed to translocate PKC to the membrane fraction or to stimulate phosphorylation of the endogenous PKC substrate M(r) 80,000 (p80). Instead, staurosporine inhibited TPA-induced phosphorylation of p80.  相似文献   

12.
The objective of this study was to examine effects of interleukin-6 (IL-6) on the expression and activity of the drug resistance transporters (MDR1 and MRP) in human hepatoma cell lines. Expression and activity of MDR1 and MRP transporters were examined in IL-6-treated and control HuH 7 and HepG2 cells using semi-quantitative RT-PCR analysis and by rhodamine 123 and 5-carboxyfluorescin efflux assays. Results from RT-PCR demonstrated expression of MRP3, MRP6, and MDR1 in HuH 7 cells and expression of MRP1, MRP2, MRP3, MRP6, and MDR1 in HepG2 cells. Compared with controls, treatment of HuH 7 cells with IL-6 (10 ng/mL, 24 h) resulted in a 1.8-fold increase in MRP-mediated efflux of 5-CF with a corresponding 1.5-fold induction of MRP3 mRNA levels (p < 0.05). Similarly, in HepG2 cells, a 2-fold increase in MRP functional activity and a 1.8-fold induction of MRP1 mRNA levels were seen in the IL-6 treated cells (p < 0.05). Treatment of cells with IL-6 was also found to cause significant reductions in the expression and activity of MDR1 in HuH 7 cells, but not in HepG2 cells. Our data suggest that IL-6 induces MRP expression and activity in human hepatoma cell lines. Suppressive effects of IL-6 on MDR1 expression and activity were also observed in HuH 7 cells. This underscores the importance of examining the regulation of multiple drug resistance proteins as these proteins may have opposing regulatory mechanisms in malignant cells.  相似文献   

13.
Interferon gamma (IFN-gamma) is a potential immunoregulatory cytokine, which is secreted mainly by cells of immune origin. In this study, we examined the capacity of human gingival fibroblasts as non-professional immune cells to express IFN-gamma messenger RNA (mRNA) and to produce the protein. Cultures of fibroblast cells were established from gingival biopsies from three children. The expression of mRNA for IFN-gamma was studied by in situ hybridization, and the level of IFN-gamma was determined by cell-released capturing ELISA. Treatment of the cells with phytohaemagglutinin (PHA) (2.5, 5.0, and 10 microg/ml) increased the number of IFN-gamma mRNA expressing cells and the protein production at 1, 6, and 24 h. Non-stimulated cells did not reveal measurable levels of IFN-gamma mRNA or the protein. The inflammatory cytokines interleukin 1beta (IL-1beta) (100 microg/ml) and tumour necrosis factor alpha (TNFalpha) (10 ng/ml) did not affect IFN-gamma mRNA expression or protein production. Treatment of the cells with 1 microM phorbol 12-myristate-13-acetate (PMA) stimulated IFN-gamma mRNA expression but had no effect on IFN-gamma protein production. We conclude that human gingival fibroblasts not only transcribe IFN-gamma mRNA but also produce the IFN-gamma protein in response to PHA. The finding that human gingival fibroblasts, produce the cytokine IFN-gamma, further support the concept that these cells take an active part in the modulation of the inflammatory and immune response in the periodontal tissue.  相似文献   

14.
15.
Flavonoids have inhibiting effects on the proliferation of cancer cells, including thyroidal ones. In the treatment of thyroid cancer the uptake of iodide is essential. Flavonoids are known to interfere with iodide organification in vitro, and to cause goiter. The influence of flavonoids on iodine metabolism was studied in a human thyroid cancer cell line (FTC-133) transfected with the human sodium/iodide transporter (NIS). All flavonoids inhibited growth, and iodide uptake was decreased in most cells. NIS mRNA expression was affected during the early hours after treatment, indicating that these flavonoids can act on NIS. Pendrin mRNA expression did not change after treatment. Only myricetin increased iodide uptake. Apeginin, luteolin, kaempferol and F21388 increased the efflux of iodide, leading to a decreased retention of iodide. Instead myricetin increased the retention of iodide; this could be of use in the radioiodide treatment of thyroid cancer.  相似文献   

16.
17.
Due to the health risks attributed to perimenopausal hormone therapy, phytoestrogens such as flavonoids are receiving widespread attention to help alleviate menopausal symptoms, including hormone-driven mood disorders. Based on our previous reporter gene study regarding their transactivational activity in raphe nuclei cells from a brain region involved in regulation of mood disturbances, we herein study their effects on the regulation of expression of 17β-estradiol (E2)-regulated genes. DNA microarray was used to globally assess E2-induced gene expression in RNDA cells, a rat raphe nuclei-derived cellular model expressing oestrogen receptor β. Out of 212 regulated genes, six were selected for verification and as endpoints for the effect of flavonoids on the regulation of mRNA expression in proliferating as well as differentiating RNDA cells. Under proliferative conditions, E2 up-regulated mRNA expression of Cml-5, Sox-18 and Krt-19. Similar effects were observed in response to 8-prenylnaringenin (8-PN), genistein (GEN), daidzein (DAI) and equol (EQ). In line with E2, mRNA expression of Nefm and Zdhhc-2 was down-regulated following 8-PN, GEN, DAI, EQ and naringenin treatment. No regulation was observed on Slc6a4 mRNA expression in response to E2 or the flavonoids in proliferating RNDA cells. When cells were shifted to conditions promoting differentiation, changes in cell morphology, in mRNA expression levels and in responsiveness towards E2 and the tested flavonoids were noticed. These expression studies additionally highlighted some of the genes as markers for RNDA cellular differentiation. RNDA cells should prove useful to elucidate molecular and cellular mechanisms of exogenous oestrogen receptor ligands with neural cell populations.  相似文献   

18.
The ability of retinoic acid (RA) to modulate acetylcholinesterase (AChE) activity in a human neuroblastoma cell line (LN-N-5) was examined. The specific activity of AChE was significantly increased 3 days after exposure of LA-N-5 to RA and reached its maximum values after 9 or more days of culturing. Dose-response experiments demonstrated that large increases of AChE occurred at RA concentrations between 10(-7) and 10(-6) M with maximum AChE values detected at 10(-6)-10(-5) M. Increased AChE activity paralleled neurite outgrowth in LA-N-5 cultures. These findings demonstrate that RA can regulate specific AChE activity in human neuroblastoma cells in a manner consistent with neuronal maturation.  相似文献   

19.
BACKGROUND: Perturbation in a level of any peptide from insulin-like growth factor (IGF) family (ligands, receptors, and binding proteins) seems to be implicated in lung cancer formation; IGF ligands and IGF-I receptor through their mitogenic and anti-apoptotic action, and the mannose 6-phosphate/insulin-like growth factor II receptor (M6-P/IGF-IIR) possibly as a tumor suppressor. MATERIALS AND METHODS: To determine the identity, role, and mutual relationship of IGFs in lung cancer growth and maintenance, we examined IGF's gene (by RT-PCR) and protein (by immunohistochemistry) expression in 69 human lung carcinoma tissues. We also examined IGF-I receptor numbers (Scatchard analysis) and IGF-II production and release (by Western blot) in IGF-II/IGF-IR mRNA positive and negative lung carcinomas. Finally, the potential role of IGF-IR and IGF-II as growth promoting factors in lung cancer was studied using antisense oligodeoxynucleotides that specifically inhibit IGF-IR and IGF-II mRNA. RESULTS: Thirty-two tumors were positive for IGF-I, 39 for IGF-II, 48 for IGF-IR, and 35 for IGFBP-4 mRNA. Seventeen tumors were concomitantly positive for all four IGFs, whereas 34 were positive for IGF-II, IGF-IR, and IGFBP-4 mRNA. An elevated amount of IGF-II peptide was secreted into the growth medium of cell cultures established from five different IGF-II/IGF-IR mRNA positive lung cancer tissues. The cells also expressed elevated numbers of IGF-IR. Nine IGF-II-negative and 19 IGF-II-positive lung cancers of different stages were selected, and M6-P/ IGF-II receptor was determined immunohistochemically. Most of the IGF-II-negative tumors were strongly positive for M6-P/IGF-IIR. IGF-II-positive tumors were mostly negative for M6-P/IGF-II receptors. Antisense oligodeoxynucleotides to IGF-II significantly inhibited, by 25-60%, the in vitro growth of all six lung cancer cell lines. However, the best results (growth inhibition of up to 80%) were achieved with concomitant antisense treatment (to IGF-IR and IGF-II). CONCLUSION: Our data suggest that lung cancer cells produce IGF-IR and IGF-II, which in turn stimulates their proliferation by autocrine mechanism. Cancer cell proliferation can be abrogated or alleviated by blocking the mRNA activity of these genes indicating that an antisense approach may represent an effective and practical cancer gene therapy strategy.  相似文献   

20.
The mitogen-activated protein kinase (MAPk) signaling pathway, which plays a critical role in the proliferation of mammalian cells, is frequently up-regulated in human tumors and may contribute to the transformed phenotype. Since a major limitation of current cancer chemotherapy is prevalent resistance to cytotoxic drugs, this study determined whether alterations in growth factor signaling through MAPk may contribute to this phenomenon in human neuroblastoma cell lines. Drug-resistant SKNSH cell lines were established by long-term incubation with increasing concentrations to 10(-6) M doxorubicin (SKNSH rDOX6) or MDL 28842 (SKNSH rMDL6). The expression of epidermal growth factor receptor (EGFR) and epidermal growth factor (EGF)-induced EGFR tyrosine phosphorylation were lower in drug-resistant SKNSH cells than their wild-type counterparts. In SKNSH rDOX6 cells, decreased activation and reduced nuclear translocation of MAPk in response to EGF, or lysophosphatidic acid (LPA), or phorbol 12-myristate 13-acetate (PMA), were observed. In SKNSH rMDL6 cells, although MAPk could be activated to wild-type levels by ligand stimulation, the translocation of active MAPk to the nucleus was also reduced. These results suggest that resistance to cytotoxic drugs in human neuroblastoma cell lines is associated with a decrease in growth factor signaling through the MAPk pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号