首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A common method for measuring uptake by intact roots in situ is the depletion method, wherein intact fine roots are separated from soil and placed in nutrient solution. The difference between initial and final amounts of nutrient in solution is attributed to root uptake. Variations on this method include applying pretreatment solutions, training roots to grow into bags or trays, and varying concentrations of nutrient solution. We tested whether variations in methods affected measured net uptake rates of NH 4 + , NO 3 , and PO 4 3− . Intact roots of 60 year-old sugar maple (Acer saccharum Marsh.), red pine (Pinus resinosa Ait.), and Norway spruce (Picea abies (L.) Karst.) were given one of four treatments prior to measuring net uptake. “Trained” roots were grown in a sand-soil mixture. “Recovered” roots were excavated and allowed to recover in nutrient solution for two or four days (“two-day recovery” and “four-day recovery”, respectively). “No recovery” roots were excavated and used immediately in experiments. We exposed roots to three concentrations of nutrient solutions to observe the effects of initial nutrient solution concentration. Initial nutrient solution concentration was an important source of variation in measured uptake rates, and N uptake was stimulated by low antecedent concentrations. We found no significant differences in net uptake rates between pretreatments for any of the species studied, indicating that our pretreatments were not effective in improving measurement of uptake. Such pretreatments may not be necessary for measuring net uptake and may not hinder the comparison of rates measured using variations of the depletion method.  相似文献   

2.
Salinity and the Hydraulic Conductance of Roots   总被引:2,自引:0,他引:2  
The effect of salinity on hydraulic conductance of intact roots of tomato (Lycopersicon esculentum Mill.) and sunflower (Helianthus annuus L.) was determined in split-root experiments using salinized nutrient solutions. Experiments were conducted in controlled climate chambers under two or three relative humidity levels and four solution osmotic potential levels. The relationship between water flux through roots (Jv) and total water potential difference between the leaves and the root medium (Δψ) was linear, usually with a small intercept. Thus, the root hydraulic conductance (L) was not affected by salinity within the range of fluxes obtained in these experiments, with L= 0.036 mm h?1 bar?1 for tomato and L= 0.0167 mm h?1 bar?1 for sunflower. Our results agreed with theoretical analysis of coupled water and ion uptake. From Cl? and Na+ uptake data, the reflection coefficient (o) for tomato roots was calculated as 0.956, which was compatible with the near-zero intercept. A large intercept for sunflower could not be readily explained. Relative humidity strongly affected root growth, with more rapid growth under low humidity conditions. Transpiration of sunflower plants was reduced by 20% when the relative humidity was increased from 34% to 84%, whereas transpiration in tomato was reduced 50%.  相似文献   

3.
Mentha aquatica L. was grown at different nutrient availabilities in water and in air at 60% RH. The plants were kept at 600 mmol m?3 free CO2 dissolved in water (40 times air equilibrium) and at 30 mmol m?3 CO2 in air to ensure CO2 saturation of growth in both environments. We quantified the transpiration-independent water transport from root to shoot in submerged plants relative to the transpiration stream in emergent plants and tested the importance of transpiration in sustaining nutrient flux and shoot growth. The acropetal water flow was substantial in submerged Mentha aquatica, reaching 14% of the transpiration stream in emergent plants. The transpiration-independent mass flow of water from the roots, measured by means of tritiated water, was diverted to leaves and adventitious shoots in active growth. The plants grew well and at the same rates in water and air, but nutrient fluxes to the shoot were greater in plants grown in air than in those that were submerged when they were rooted in fertile sediments. Restricted O2 supply to the roots of submerged plants may account for the smaller nutrient concentrations, though these exceeded the levels required to saturate growth. In hydroponics, the root medium was aerated and circulated between submerged and emergent plants to minimize differences in medium chemistry, and here the two growth forms behaved similarly and could fully exploit nutrient enrichment. It is concluded that the lack of transpiration from leaf surfaces in a vapour-saturated atmosphere, or under water, is not likely to constrain the transfer of nutrients from root to shoot in herbaceous plants. Nutrient deficiency under these environmental conditions is more likely to derive from restricted development and function of the roots in waterlogged anoxic soils or from low porewater concentrations of nutrients.  相似文献   

4.
Previous reports have indicated positive effects of enriched rhizosphere dissolved inorganic carbon on the growth of salinity-stressed tomato (Lycopersicon esculentum L. Mill. cv. F144) plants. In the present work we tested whether a supply of CO2 enriched air to the roots of hydroponically grown tomato plants had an effect on nitrogen uptake in these plants. Uptake was followed over periods of 6 to 12 hours and measured as the depletion of nitrogen from the nutrient solution aerated with either ambient or CO2 enriched air. Enriched rhizosphere CO2 treatments (5000 μmol mol-1) increased NO3 - uptake up to 30% at pH 5.8 in hydroponically grown tomato plants compared to control treatments aerated with ambient CO2 (360 μmol mol-1). Enriched rhizosphere CO2 treatments had no effect on NH3 + uptake. Acetazolamide, an inhibitor of apoplastic carbonic anhydrase, increased NO3 - uptake in ambient rhizosphere CO2 treatments, but had no effect on NO3 - uptake in enriched rhizosphere CO2 treatments. Ethoxyzolamide, an inhibitor of both cytoplasmic and extracellular carbonic anhydrase, decreased NO3 - uptake in ambient rhizosphere CO2 treatments. In contrast, a CO2 enriched rhizosphere increased NO3 - uptake with ethoxyzolamide, although not to the same extent as in plants without ethoxyzolamide. It is suggested that a supply of enriched CO2 to the rhizosphere influenced NO3 - uptake through the formation of increased amounts of HCO3 - in the cytosol. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Uptake of Rb+ was investigated in 12-day-old intact plants of sunflower (Helianthus annum L. var. californicus) which had been cultivated or pretreated in nutrient solutions with various K+ concentrations. The relationship between Rb+ influx and K+ concentration of the roots indicated regulation of Rb+ uptake by allosteric inhibition of the uptake mechanism. A constant passive influx occurred contemporaneously with the active uptake as shown by experiments at 0°C or with 2,4-dinitrophenol. The allosteric regulation of ion carrier activity occurred after a time lag of up to 1 h after the change of external solution. In experiments involving Rb+ treatments of K+-deficient plants, the synthesis of carriers for transport of Rb+ could be demonstrated. A model including allosteric regulation of Rb+ uptake in roots is discussed.  相似文献   

6.
By means of monthly in situ incubations, variations in oxygen uptake, nutrient release and C/N-ratio were monitored during a period of 14 months of a mussel population (Mytilus edulis L.) located on an exposed beach. A condition index calculated as weight/length3 showed that the condition of the mussels was highest in the spring. Specific oxygen uptake and nutrient release had separate maxima, with high oxygen uptake in the spring coinciding with a period of growth, and high nutrient release during summer when the temperature was highest. Oxygen uptake was significantly correlated with both the condition of the mussels and the temperature, while ammonium release was significantly correlated only with the temperature. Except in spring, the oxygen uptake, condition index and O/N-ratio were low, indicating a poor condition of the mussels. The mussels suffered from suboptimal conditions caused by inadequate food supply and failed to accumulate glycogen reserves essential for the development of mature gametes.  相似文献   

7.
Carbon cycling responses of ecosystems to global warming will likely be stronger in cold ecosystems where many processes are temperature‐limited. Predicting these effects is difficult because air and soil temperatures will not change in concert, and will affect above and belowground processes differently. We disentangled above and belowground temperature effects on plant C allocation and deposition of plant C in soils by independently manipulating air and soil temperatures in microcosms planted with either Leucanthemopsis alpina or Pinus mugo seedlings. Daily average temperatures of 4 or 9°C were applied to shoots and independently to roots, and plants pulse‐labelled with 14CO2. We traced soil CO2 and 14CO2 evolution for 4 days, after which microcosms were destructively harvested and 14C quantified in plant and soil fractions. In microcosms with L. alpina, net 14C uptake was higher at 9°C than at 4°C soil temperature, and this difference was independent of air temperature. In warmer soils, more C was allocated to roots at greater soil depth, with no effect of air temperature. In P. mugo microcosms, assimilate partitioning to roots increased with air temperature, but only when soils were at 9°C. Higher soil temperatures also increased the mean soil depth at which 14C was allocated. Our findings highlight the dependence of C uptake, use, and partitioning on both air and soil temperature, with the latter being relatively more important. The strong temperature‐sensitivity of C assimilate use in the roots and rhizosphere supports the hypothesis that cold limitation on C uptake is primarily mediated by reduced sink strength in the roots. We conclude that variations in soil rather than air temperature are going to drive plant responses to warming in cold environments, with potentially large changes in C cycling due to enhanced transfer of plant‐derived C to soils.  相似文献   

8.
In an earlier study, we found that rice (Oryza sativa) grown in nutrient solution well‐supplied with Zn preferentially took up light 64Zn over 66Zn, probably as a result of kinetic fractionation in membrane transport processes. Here, we measure isotope fractionation by rice in a submerged Zn‐deficient soil with and without Zn fertilizer. We grew the same genotype as in the nutrient solution study plus low‐Zn tolerant and intolerant lines from a recombinant inbred population. In contrast to the nutrient solution, in soil with Zn fertilizer we found little or heavy isotopic enrichment in the plants relative to plant‐available Zn in the soil, and in soil without Zn fertilizer we found consistently heavy enrichment, particularly in the low‐Zn tolerant line. These observations are only explicable by complexation of Zn by a complexing agent released from the roots and uptake of the complexed Zn by specific root transporters. We show with a mathematical model that, for realistic rates of secretion of the phytosiderophore deoxymugineic acid (DMA) by rice, and realistic parameters for the Zn‐solubilizing effect of DMA in soil, solubilization and uptake by this mechanism is necessary and sufficient to account for the measured Zn uptake and the differences between genotypes.  相似文献   

9.
Adventitious roots of two to four-weekold intact plants of Zea mays L. (cv. LG11) were shorter but less dense after extending into stagnant, non-aerated nutrient solution than into solution continuously aerated with air. Dissolved oxygen in the non-aerated solutions decreased from 21 kPa to 3–9 kPa within 24 h. When oxygen partial pressures similar to those found in non-aerated solutions (3, 5 and 12 kPa) were applied for 7 d to root systems growing in vigorously bubbled solutions, the volume of gas-space in the cortex (aerenchyma) was increased several fold. This stimulation of aerenchyma was associated with faster ethylene production by 45-mm-long apical root segments. When ethylene production by roots exposed to 5 kPa oxygen was inhibited by aminoethoxyvinylglycine (AVG) dissolved in the nutrient solution, aerenchyma formation was also retarded. The effect of AVG was reversible by concomitant applications of 1-aminocyclopropane-1-carboxylic acid, an immediate precursor of ethylene. Addition of silver nitrate, an inhibitor of ethylene action, to the nutrient solution also prevented the development of aerenchyma in roots given 5 kPa oxygen. Treating roots with only 1 kPa oxygen stimulated ethylene production but failed to promote gas-space formation. These severely oxygen-deficient roots seemed insensitive to the ethylene produced since a supplement of exogeneous ethylene that promoted aerenchyma development in nutrient solution aerated with air (21 kPa oxygen) failed to do so in nutrient solution supplied with 1 kPa oxygen. Both ethylene production and aerenchyma formation were almost completely halted when roots were exposed to nutrient solutions devoid of oxygen. Thus both processes require oxygen and are stimulated by oxygen-deficient surroundings in the 3-to 12-kPa range of oxygen partial pressures when compared with rates observed in air (21 kPa oxygen).Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine  相似文献   

10.
Bean, corn, and tomato plants were grown in a nutrient solution labeled with 32P, 45Ca, or 35S and varying concentrations of AgNO3. Following a 6-hour treatment period, plants were harvested and analyzed. A low Ag+ concentration (50 nanomolar) inhibited the shoot uptake of the ions investigated. In the roots, Ca uptake increased whereas P and S uptake decreased.  相似文献   

11.
The uptake of C14-labeled proteins (lysozyme, hemoglobin, lactoglobulin, and ovalbumin) from solution by tomato plants with sterile roots was studied. It was found that C14-compounds (proteins and/or protein-degradation products) were translocated to the foliage if the roots had undergone minor mechanical injury or if the plants were subjected to temporary wilting, i.e., physiological damage. C14-lysozyme was not transported to foliar tissue in healthy plants; C14-hemoglobin showed radioactivity in leaves of both healthy and injured plants, but there was evidence of a breakdown of the molecule; C14-ovalbumin gave a faint labeling of foliar tissues of some plants in which wilting or mechanical damage was below the threshold of detection. It is concluded, however, that translocation of proteins from roots in nutrient solution to tomato leaves does not occur in significant amounts in healthy plants in spite of the large uptake of proteins by root cortex, as found in earlier studies.  相似文献   

12.
Phosphorus transport to the xylem and its regulation by water flow   总被引:1,自引:0,他引:1  
H. Greenway  Betty Klepper 《Planta》1968,83(2):119-136
Summary The effects of water flow on phosphorus uptake by roots and on its subsequent translocation to shoots were separated by giving short-term pulses of 32P-labelled nutrient to intact tomato plants. At the end of a 5 min pulse, all the 32P taken up by the plants was confined to the roots. Only about half of this 32P was later translocated to shoots; there was very little translocation after 4 hours.Experiments after long-term labelling showed that only a small part of the total P in the root is readily translocated to shoots. This P appears to be in part of the symplast and contributes about 75% of the P transported to the xylem sap. The rest is presumably derived by leakage from vacuoles.A slow rate of water flow reduced both uptake into the symplast and the translocation to the shoots of P which had already been absorbed by the roots. This was conclusively demonstrated by giving a 32P pulse before reducing the rate of water flow; 32P not translocated to shoots was partly retained by the roots and partly lost to the external solution. Water flow also accelerates transport to the xylem of previously-absorbed P in excised roots.It is concluded that the major effect of water flow on phosphorus transport to shoots occurs after phosphorus uptake by the roots, probably during radial transport to the xylem.  相似文献   

13.
Rates of oxygen uptake, growth and alkaloid production by hairy roots in submerged culture were investigated using a recirculation reactor allowing operation at high liquid velocities for removal of hydrodynamic boundary layers. Measurements were performed at dissolved oxygen tensions of 31-450% air saturation. Critical oxygen concentrations for Atropa belladonna hairy roots were above air saturation, viz. 100-125% air saturation for oxygen uptake and 150% air saturation for growth, demonstrating that these roots cultivated in reactors with air sparging are oxygen-limited. The critical oxygen tension for oxygen uptake by Solanum aviculare hairy roots was 75% air saturation. Both the specific oxygen uptake rate and specific growth rate of A. belladonna hairy roots were dependent on the mass (g dry weight) of roots present; even in the absence of boundary layers, growth did not remain exponential over the entire culture period. Cryo-scanning electron microscopy showed that hairy roots grown submerged in liquid medium were covered with thick layers of hydrated mucilage and root hairs, representing a significant additional barrier to oxygen transfer. Roots protruding out of the liquid medium showed no evidence of mucilage accumulation. The specific oxygen demand of A. belladonna root tips was 3.3-11.5 times higher than for the remainder of the roots, the ratio increasing as the dissolved oxygen tension was reduced. Specific growth rates, biomass yields from sugar, and atropine levels were maximum at around 150% air saturation, but decreased significantly with oxygen concentrations above ca. 200%.  相似文献   

14.
Radial movement of oxygen in plant roots   总被引:1,自引:1,他引:0       下载免费PDF全文
The radial movement of oxygen in excised corn and jack bean roots was measured with a platinum wire electrode embedded in the root tissue. Measurements were made with the roots exposed to air and with the roots immersed in nutrient solution in the presence and absence of millimolar sodium azide. Effective rates of oxygen diffusion in the root tissue were also measured from 5 to 30 C and compared to the respiration rates of similar root segments over the same temperature range. Under conditions which allow the roots to exude freely, the interior of the root operates under an oxygen deficit. Inhibition of respiratory oxygen uptake by low temperature or azide treatment increased the flux of oxygen to the root interior.  相似文献   

15.
Summary Experiments on cucumber plants grown in nutrient solution were conducted in order to study long and short time effects of ammonia on growth, nutrient element uptake and respiration of roots.Shoot yield and potassium concentration in tissue of plants treated 18 days with varied ammonia concentration were decreased. However, it was not assumed that K deficiency caused the yield reduction. The ammonia effect on K content was more pronounced in roots than in shoots.The decreased K concentration of plant tissue was linked to a diminished ability of plant roots to absorb potassium. The maximum rate of potassium uptake was lowered by ammonia during both, long- and short-time treatment. The results indicated that the NH3 influence on potassium uptake was due to effects on metabolism and permeability of roots because changes of K uptake rate occurred immediately after starting the NH3 treatment. Furthermore, it is shown that ammonia inhibited respiration of roots.During the short-time treatment net potassium efflux of roots was observed at higher NH3 concentrations. The extent of K efflux depended on K concentration of both, root tissue and nutrient solution.Pretreating the plants for 12 hours with ammonia also resulted a decline in K uptake rate. However, plant roots subjected to ammonia concentrations up to 0.09 mM completely recovered during 24 hours after removing the NH3 treatment whereas at higher NH3 concentrations only a partial recovery occurred.Furthermore, it was shown that ammonia also influenced P uptake by plant roots.  相似文献   

16.
Summary Excised roots of rice (Oryzae sativa L.) cv IR26 absorbed both Zn2+ and Cu2+ from 0.01 mM to 0.50 mM external solutions at rates twice those of cv M101 over a 30-min period. However, the latter have a two-fold greater affinity (1/Km) for Zn2+ and Cu2+ than do those of the former. Zinc2+ and Cu2+ mutually and competitively inhibited uptake of each other, indicating that both micronutrient cations are absorbed through the same uptake mechanism or carrier sites. Further, these differences in uptake rates are restricted to roots but they cannot be explained by variations in root surface areas. Excised roots of tomato (Lycopersicon esculentum L.) cv Kewalo absorbed Zn2+ and Cu2+ much more rapidly than did cv Sel 7625-2. Uptake of each cation was competitively and reciprocally inhibited by the other, so Zn2+ and Cu2+ are seemingly accumulated through the same uptake system in tomato also. Tomato cultivars Kewalo and Sel 7625-2 did not differ with regard to affinities of the root apices for Zn2+ and Cu2+; however. Vmax values for Zn2+ and Cu2+ uptake by roots of cv Kewalo were three-fold greater than those for cv Sel 7625-2. Journal Series 2991 of the Hawaii Institute of Tropical Agriculture and Human Resources. Supported by USDA/CSRS Grants Program in Tropical and Subtropical Agriculture (83-CSRS-2-2245).  相似文献   

17.
Water uptake rate of decapitated root systems of cotton (Gossypium hirsutum L.), tomato (Lycopersicon esculentum L. cv. Rutgers), and kidney bean (Phaseolus vulgaris L.) plants shows an exponential increase with applied suction up to about —1 bar. The water uptake rate was higher on the descending path of applied suction than on the ascending path, indicating a hysteresis effect in the roots. The root resistance in a cotton plant increased between 3-to 5-fold during the photoperiod of 12 hours. The water uptake rate increased with increasing temperature of the root medium up to 30°C in cotton and 25°C in tomato and bean plants.  相似文献   

18.
Electropotential in excised pea epicotyls   总被引:12,自引:11,他引:1       下载免费PDF全文
In contrast to intact etiolated pea seedling tissue (Pisum sativum L.), excised segments immersed in a complete nutrient solution show marked increases in ion content, largely of K+ and NO3, over a 72-hour period. During this time there is increase in cell electropotential difference, PD. During the initial 6 to 8 hours there is a lag in ion uptake; cell PD, however, increases rapidly from approximately −50 to −100 mv then increases more slowly. The increase in PD precedes and thus may be a prerequisite for the rapid ion accumulation phase. Cell PD increases in either water or nutrient solution but eventually reaches higher levels in the latter. Following water pretreatment of sufficient duration K+ accumulation shows no lag period. The lag phase noted here appears dissimilar to that of storage tissues.  相似文献   

19.
Cadmium uptake from solution by plants and its transport from roots to shoots   总被引:22,自引:2,他引:20  
Summary The uptake of cadmium by the roots of plants, and its transport to shoots was examined using solution culture. Uptake by the roots of perennial ryegrass over a period of 4 hours from an aqueous solution containing 0.25 ppm cadmium as CdCl2 was (i) enhanced by killing the roots and (ii) depressed when Ca2+, Mn2+ or Zn2+ were added to the solution. The distribution of cadmium between the roots and shoots of 23 species was examined at 4 days after a single, 3-day exposure to a nutrient solution containing 0.01 ppm added Cd. In all except 3 species, i.e. kale, lettuce and watercress, more than 50 per cent of that taken up was retained in the roots. The concentration in the roots was always greater than in the shoots, and in fibrous roots of fodder beet, parsnip, carrot and radish it was greater than in the swollen storage roots. When perennial ryegrass was similarly exposed to solutions containing 0.01, 0.05, and 0.25 ppm added cadmium, uptake, as measured at 3 days after adding cadmium, increased with increasing rates of addition, but the proportion retained in the roots was constant (approximately 88 per cent). There was no further transport from roots to shoots during the next 21 days, with the result that the concentration in the shoots decreased progressively with increasing growth. It is concluded that although the roots of several species can take up large quantities of cadmium from solution there are mechanisms which may restrict the movement of cadmium through plants, and thus to animals.  相似文献   

20.
Cotton (Gossypium hirsutum L. cv. Deltapine 15/21) plants were precultured for 19 to 25 days under controlled climatic conditions in nutrient solutions with different levels of Zn. With the onset of visual Zn-deficiency symptoms the pH of the nutrient solution decreased from 6.0 to about 5.0. In contrast, Zn-sufficient plants raised the pH of the nutrient solution to about 7.0. In short-term studies it could be demonstrated that the Zn nutritional status of the plants remarkably influenced the uptake and translocation rates of mineral nutrients. Compared to Zn-sufficient plants, P uptake rate in severely Zn-deficient plants was increased by a factor of 2 to 3, whereas the uptake rates of K, Ca and particularly NO3 decreased. The accumulation of P in the roots of Zn-deficient plants was either not affected or even lower than in Zn-sufficient plants. Thus, Zn deficiency had a specific enhancement effect on root to shoot transport of P. This enhancement effect of Zn deficiency on uptake and transport of P was similar at nutrient solution pH values of 7.0 and 5.8; i.e. it was not the result of acidification of the nutrient solution. After application of 36CI, 86Rb and 32P to plant stems, basipetal transport of 36CI and 86Rb was not affected by the Zn nutritional status of the plants. However, in Zn-deficient plants, only 7.8% of the 32P was translocated basipetally compared to 34% in the Zn-sufficient plants. A resupply of Zn for 19 h to Zn-deficient plants enhanced basipetal 32P transport. The results indicate that a feedback mechanism in the shoots is impaired in Zn-deficient plants which controls the P uptake by roots and especially the P transport from roots to shoots. As a result of this impairment toxic concentrations of P accumulate in the leaves. The mechanism responsible is likely the retranslocation of P in the phloem from shoots to roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号