首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Regulation of the dephosphorylation of glycogen synthase in extracts from rat heart has been studied by adding exogenous phosphatase to the extract. These experiments were possible only because the endogenous protein phosphatase activity of the extract could be inhibited by KF under conditions where alkaline phosphatase activity was not. The concentration of substrate (glycogen synthase from the heart extract) and catalyst (purified E. coli alkaline phosphatase) could be varied independently, by adding known amounts of alkaline phosphatase to the KF-containing heart extracts. Alkaline phosphatase could completely dephosphorylate glycogen synthase while phosphorylase was unchanged. The rate of dephosphorylation was proportional to both the concentration of alkaline phosphatase added to the tissue extract and the amount of glycogen synthase in the extract. The Km for glycogen synthase was close to the concentration found in heart tissue. The Km and the maximum rate of dephosphorylation were both dependent on the phosphorylation state of the glycogen synthase. Less phosphorylated enzyme forms were dephosphorylated faster. These results indicate the necessity for precise control of many variables in studying the rate of glycogen synthase dephosphorylation.Alkaline phosphatase-catalyzed dephosphorylation could be inhibited by physiological concentrations of glycogen. Glycogen synthase dephosphorylation in extracts from fasted-refed rats was less sensitive to glycogen inhibition than in extracts from normal animals. The phosphorylation state of the glycogen synthase in these animals was assessed by kinetic studies to show that differences in phosphorylation state probably could not account for the observations. Fasting led to a decreased rate of dephosphorylation of glycogen synthase due to both an apparent change in kinetic properties of glycogen synthase as a substrate for alkaline phosphatase, and an increased inhibitory effect of glycogen. Stable modifications of glycogen synthase caused by altered nutritional states in the animals are thought to produce these effects.%GSI represents the percentage of glycogen synthase activity that is active without glucose 6-P.  相似文献   

2.
Phosphorylation of rabbit skeletal muscle glycogen synthase by cyclic AMP-independent synthase kinase 1 results in the incorporation of 4 mol of PO4/subunit. Incubation of the phosphorylated synthase with rabbit muscle phosphoprotein phosphatase brings about the hydrolysis of phosphates from all four major tryptic peptides and an increase in the synthase activity ratio from 0.01 to 0.85. Incubation of the phosphorylated synthase with calf intestinal alkaline phosphatase brings about the preferential hydrolysis of phosphates from three of the four major tryptic peptides and a slight increase in the four major tryptic peptides and a slight increase in the synthase activity ratio from 0.01 to 0.1. The phosphorylation site which is resistant to hydrolysis by calf intestinal alkaline phosphatase can be dephosphorylated by subsequent incubation with rabbit muscle phosphoprotein phosphatase. This dephosphorylation is accompanied by an increase in the synthase activity ratio to approximately 0.9. Measurements of the changes in the kinetic properties of the synthase samples dephosphorylated by alkaline phosphatase reveal that the phosphorylation sites susceptible to hydrolysis by alkaline phosphatase mainly affect the binding of glucose-6-P to the synthase. Comparison of the kinetic properties of the synthase samples dephosphorylated by alkaline phosphatase and by phosphoprotein phosphatase we find that the phosphorylation site resistant to hydrolysis by alkaline phosphatase affects both the binding of UDP-glucose and glucose-6-P to the synthase.  相似文献   

3.
The activity of glycogen synthase phosphatase in rat liver stems from the co-operation of two proteins, a cytosolic S-component and a glycogen-bound G-component. It is shown that both components possess synthase phosphatase activity. The G-component was partially purified from the enzyme-glycogen complex. Dissociative treatments, which increase the activity of phosphorylase phosphatase manyfold, substantially decrease the synthase phosphatase activity of the purified G-component. The specific inhibition of glycogen synthase phosphatase by phosphorylase a, originally observed in crude liver extracts, was investigated with purified liver synthase b and purified phosphorylase a. Synthase phosphatase is strongly inhibited, whether present in a dilute liver extract, in an isolated enzyme-glycogen complex, or as G-component purified therefrom. In contrast, the cytosolic S-component is insensitive to phosphorylase a. The activation of glycogen synthase in crude extracts of skeletal muscle is not affected by phosphorylase a from muscle or liver. Consequently we have studied the dephosphorylation of purified muscle glycogen synthase, previously phosphorylated with any of three protein kinases. Phosphorylase a strongly inhibits the dephosphorylation by the hepatic G-component, but not by the hepatic S-component or by a muscle extract. These observations show that the inhibitory effect of phosphorylase a on the activation of glycogen synthase depends on the type of synthase phosphatase.  相似文献   

4.
The activation (dephosphorylation) of glycogen synthase and the inactivation (dephosphorylation) of phosphorylase in rat liver extracts on the administration of fructose were examined. The lag in the conversion of synthase b into a was cancelled, owing to the accumulation of fructose 1-phosphate. A decrease in the rate of dephosphorylation of phosphorylase a was also observed. The latency re-appeared in gel-filtered liver extracts. Similar latency was demonstrated in extracts from glucagon-treated rats. Addition of fructose 1-phosphate to the extract was able to abolish the latency, and the activation of glycogen synthase and the inactivation of phosphorylase occurred simultaneously. Fructose 1-phosphate increased the activity of glycogen synthase b measured in the presence of 0.2-0.4 mM-glucose 6-phosphate. According to kinetic investigations, fructose 1-phosphate increased the affinity of synthase b for its substrate, UDP-glucose. The accumulation of fructose 1-phosphate resulted in glycogen synthesis in the liver by inducing the enzymic activity of glycogen synthase b in the presence of glucose 6-phosphate in vivo and by promoting the activation of glycogen synthase.  相似文献   

5.
Insulin rapidly produced an increase in per cent of total heart glycogen synthase in the I form in fed rats. In fasted rats the response was diminished and delayed. In diabetic animals there was no response over the 15-min time period studied. Since synthase phosphatase activity is necessary for synthase D to I conversion, the phosphatase activity was determined in extracts from these groups of animals. In the fasted and diabetic rats phosphatase activity was less than one-half of that in fed animals. Administration of insulin to fasting animals increased synthase phosphatase activity to a level approaching that of fed animals by 15 min. In diabetic animals insulin also stimulated an increase in synthase phosphatase activity but 30 min were required for full activation. Insulin had no effect in normal fed animals. Insulin activation of synthase phosphatase activity in heart extracts from fasted animals was still present after Sephadex G-25 chromatography and ammonium sulfate precipitation. Thus insulin had induced a stable modification of the phosphatase itself or of its substrate synthase D rendering the latter a more favorable substrate for the reaction. A difference in sensitivity of the reaction to glycogen inhibition was present between fed and fasted animals. Increasing concentrations of glycogen had only a slight inhibitory effect in extracts from fed animals but considerably reduced activity in extracts from fasted animals. Insulin administration reduced the sensitivity of the phosphatase reaction to glycogen inhibition. This could explain, at least in part, the increased phosphatase activity noted in the insulin-treated, fasted rats since glycogen was routinely added to the homogenizing buffer.  相似文献   

6.
Exogenous purified rabbit skeletal-muscle glycogen synthase was used as a substrate for adipose-tissue phosphoprotein phosphatase from fed and starved rats in order to (1) compare the relationship between phosphate released from, and the kinetic changes imparted to, the substrate and (2) ascertain if decreases in adipose-tissue phosphatase activity account for the apparent decreased activation of endogenous glycogen synthase from starved as compared with fed rats. Muscle glycogen synthase was phosphorylated with [gamma-(32)P]ATP and cyclic AMP-dependent protein kinase alone, or in combination with a cyclic AMP-independent protein kinase, to 1.7 or 3mol of phosphate per subunit. Adipose-tissue phosphatase activity determined with phosphorylated skeletal-muscle glycogen synthase as substrate was decreased by 35-60% as a consequence of starvation. This decrease in phosphatase activity had little effect on the capacity of adipose-tissue extracts to activate exogenous glycogen synthase (i.e. to increase the glucose 6-phosphate-independent enzyme activity), although there were marked differences in the activation profiles for the two exogenous substrates. Glycogen synthase phosphorylated to 1.7mol of phosphate per subunit was activated rapidly by adipose-tissue extracts from either fed or starved rats, and activation paralleled enzyme dephosphorylation. Glycogen synthase phosphorylated to 3mol of phosphate per subunit was activated more slowly and after a lag period, since release of the first mol of phosphate did not increase the glucose 6-phosphate-independent activity of the enzyme. These patterns of enzyme activation were similar to those observed for the endogenous adipose-tissue glycogen synthase(s): the glucose 6-phosphate-independent activity of the endogenous enzyme from fed rats increased rapidly during incubation, whereas that of starved rats, like that of the more highly phosphorylated muscle enzyme, increased only very slowly after a lag period. The observations made here suggest that (1) changes in glucose 6-phosphate-independent glycogen synthase activity are at best only a qualitative measure of phosphoprotein phosphatase activity and (2) the decrease in glycogen synthase phosphatase activity during starvation is not sufficient to explain the differential glycogen synthase activation in adipose tissue from fed and starved rats. However, alterations in the phosphorylation state of glycogen synthase combined with decreased activity of phosphoprotein phosphatase, both as a consequence of starvation, could explain the apparent markedly decreased enzyme activation.  相似文献   

7.
Abstract Total trehalose-6-phosphate synthase activity decreased in cell extracts from Candida utilis under conditions inducing activation of the regulatory trehalase by protein kinase catalysed phosphorylation. The synthase activity was reactivated by treatment with alkaline phosphatase revealing the presence of an enzyme whose activity is inactivated by reversible phosphorylation. The occurrence in the trehalose-6-phosphate synthase complex of a second synthase enzyme whose activity is not controlled by phosphorylation and dephosphorylation was demonstrated following gel filtration of cell extracts. The activity of the isolated enzymes was differently modified in vitro by the presence of alkaline phosphatase, ATP, glucose or protein kinase.  相似文献   

8.
We investigated the inhibitory effect of Ca2+ in the micromolar range on the activation of glycogen synthase in crude gel-filtered liver extracts [van de Werve (1981) Biochem. Biophys. Res. Commun. 102, 1323-1329]. The magnitude of the inhibition was highly dependent on the glycogen concentration in the final liver extract. Ca2+ inhibited the activation of purified hepatic synthase b by the G-component of synthase phosphatase, as present in the isolated glycogen-protein complex. The cytosolic S-component was not inhibited. Maximal inhibition of the crude G-component occurred at 0.3 microM-Ca2+. The inhibition was not influenced by the addition of either calmodulin or calmodulin antagonists, or by various proteinase inhibitors. The use of purified G-component revealed that the inhibition by 0.3 microM-Ca2+ increased from 45% to 85% when the concentration of glycogen was raised from 1.5 to 20 mg/ml. Muscle glycogen synthase, extensively phosphorylated in vitro, was also used as substrate for purified G-component. Activation and dephosphorylation were similarly inhibited by 0.3 microM-Ca2+, but the magnitude of the inhibition was much greater with the hepatic substrate. No effect of 0.3 microM-Ca2+ was found on the activity of phosphorylase phosphatase in various liver preparations. We conclude that the inhibition of synthase activation by Ca2+ is one of the mechanisms by which cyclic AMP-independent glycogenolytic hormones promote the inactivation of glycogen synthase in the liver, especially in the fed state.  相似文献   

9.
H Olsson  P Belfrage 《FEBS letters》1988,232(1):78-82
Phosphorylation of the basal site with glycogen synthase kinase-4 enhanced the rate of phosphorylation of the regulatory site by cyclic AMP-dependent protein kinase 1.7-fold. In contrast, the phosphorylation state of the regulatory site did not affect the rate of phosphorylation of the basal site with glycogen synthase kinase-4. The rate of dephosphorylation of either the regulatory or the basal phosphorylation site by protein phosphatase-1, 2A or 2C was independent of the phosphorylation state of the other site. These results suggest that the basal phosphorylation site could play an indirect role in the control of the hormone-sensitive lipase activity in the adipocyte by functioning as a recognition site for the cyclic AMP-dependent protein kinase in the phosphorylation of the activity-controlling regulatory phosphorylation site in response to lipolytic hormones.  相似文献   

10.
Hepatocytes from normal fed rats and from chronically (90 h) alloxan-diabetic rats were compared. The rate and the extent of activation of glycogen synthase in response to 60 mM-glucose were greatly decreased in diabetes. During incubation of gel-filtered extracts from broken hepatocytes, diabetes only decreased the rate of the activation, which became ultimately complete in either preparation. Synthase phosphatase activity, as measured by the activation of purified hepatic synthase b, was decreased in chronic diabetes. The decrease was proportional to the severity of the diabetes, and reached 90% when the plasma glucose concentration was greater than or equal to 55 mM. In contrast, phosphorylase phosphatase activity was not decreased. Synthase phosphatase activity was progressively restored by treatment with insulin for 20-68 h. During the induction of diabetes and during insulin treatment there was a good correlation between the activity of synthase phosphatase and the maximal activation of synthase in glucose-stimulated hepatocytes from the same livers. The decreased activity of synthase phosphatase in diabetes cannot be explained by an inhibitor. The decrease was much less marked when synthase phosphatase was assayed by the dephosphorylation of 32P-labelled synthase from muscle. This observation suggested a loss of only one component of synthase phosphatase. Cross-combination of subcellular fractions from control rats and from diabetic rats showed a preferential loss of G-component, with little or no loss of S-component. No G-component could be detected in severe diabetes. The concentration of G-component is therefore of critical importance in the glucose-induced activation of glycogen synthase in the liver.  相似文献   

11.
Improved methodology was used to establish that the phosphorylation of a serine located 10 residues from the N-terminus of glycogen synthase (N10) increases from 0.12 mol.mol-1 to 0.54 mol.mol-1 in vivo in response to adrenalin. The only 'N10 kinase' detected in muscle extracts was casein kinase-1 (CK1), although its activity was unaffected by injection of adrenalin in vivo or by incubation with cyclic-AMP-dependent protein kinase and MgATP in vitro. Prior phosphorylation of the serine residue N7 by phosphorylase kinase increased sixfold the rate of phosphorylation of glycogen synthase by CK1, and altered the specificity of CK1 so that it phosphorylated the serine residue N10 specifically. Stoichiometric phosphorylation of N7 decreased the activity ratio (+/- glucose 6-phosphate) of glycogen synthase from 0.80 to 0.45, and subsequent phosphorylation of N10 to 0.8 mol.mol-1 produced a further decrease to 0.17, demonstrating that N10 phosphorylation inhibits glycogen synthase. The major 'N10 phosphatase' in skeletal muscle extracts was identified as the glycogen-associated form of protein phosphatase-1 (PP1G), accounting for approximately 75% of the N10 phosphatase activity in the extracts and about 90% of the activity in isolated glycogen particles. Phosphorylation of N10, after prior phosphorylation of N7, decreased the rate of dephosphorylation of N7. These results, in conjunction with previous findings, establish that adrenalin inhibits glycogen synthase by increasing the phosphorylation of N7, N10 and three further serines located 30, 34 and 38 residues from the start of the C-terminal CNBr peptide (termed the region C30-C38). They also indicate that increased phosphorylation of N10, the region C30-C38, and perhaps N7, is initiated through the inhibition of PP1G by adrenalin, which results from phosphorylation of its glycogen-targetting subunit by cyclic-AMP-dependent protein kinase [Hubbard, M.J. & Cohen, P. (1989) Eur. J. Biochem. 186, 711-716]. The conclusion that direct phosphorylation of glycogen synthase by cyclic-AMP-dependent protein kinase makes little contribution to inhibition by adrenalin, is at variance with the teachings of the major textbooks of biochemistry.  相似文献   

12.
Inhibitor-1 from rabbit skeletal muscle was phosphorylated by protein kinase dependent on adenosine 3' :5'-monophosphate (cyclic AMP), but not by phosphorylase kinase or by glycogen synthetase kinase-2. Protein phosphatase-III, isolated and stored in the presence of manganese ions to keep it stable, was in a form which catalysed a rapid dephosphorylation and inactivation of inhibitor-1. The kinetic constants for the dephosphorylation of inhibitor-1 [Km = 0.7 micron, V(rel) = 40] were comparable to those for the dephosphorylation of phosphorylase kinase [Km =1.1 micron, V (rel) = 62] and phosphorylase [Km = 5.0 micron, V (rel) = 100]. The dephosphorylation of inhibitor -1 was inhibited by inhibitor-2, indicating that it was catalysed by protein phosphatase-III, and not by another enzyme that might be contaminating the preparation. When protein phosphatase-III was diluted into buffers containing excess EDTA, it lost activity initially, but after 90 min, the activity reached a plateau that remained stable for at least 20h. The initial loss in activity varied with the substrate that was tested; it was 20-30% with phosphorylase a, 50-60% with phosphorylase kinase and greater than or equal to 95% with inhibitor-1. This form of protein phosphatase-III was inhibited by inhibitor-1 in a noncompetitive manner, and the Ki for inhibitor-1 was 1.6 +/- 0.3 nM. The phosphorylase phosphatase, phosphorylase kinase phosphatase and glycogen synthetase phosphatase activities of protein phosphatase-III were inhibited in an identical manner by inhibitor-1. This result emphasizes the potential importance of inhibitor-1 in the regulation of glycogen metabolism, since it can influence the state of phosphorylation of three different enzymes. The formation of the inactive complex between inhibitor-1 and protein phosphatase-III was reversed by incubation with trypsin (which destroyed inhibitor-1, but not protein phosphatase-III) or by dilution of the inactive complex. Kinetic studies, using the form of protein phosphatase-III which dephosphorylated inhibitor-1 very rapidly, demonstrated three unusual features of the system: (a) inhibitor-1 was still as powerful and inhibitor of the dephosphorylation of phosphorylase a and phosphorylase kinase a even under conditions where it was being rapidly dephosphorylated; (b) inhibitor-1 was not an inhibitor of its own dephosphorylation; (c) phosphorylase a did not effect the rate of dephosphorylation of inhibitor-1 even when it was present in a 50-fold molar excess over inhibitor-1. The result of these three properties is that inhibitor-1 is preferentially dephosphorylated by protein phosphatase-III even in the presence of a large excess of other phosphoprotein substrates. Inhibitor-1 was also dephosphorylated by protein phosphatase-II. The kinetic constants for the dephosphorylation of inhibitor-1 [Km = 2.8 micron, V (rel) = 200] and the alpha-subunit of phosphorylase kinase [Km = 3.7 micron, V (rel) = 100]were comparable...  相似文献   

13.
The activation of glycogen synthase by insulin is in many instances stimulated by the presence of extracellular glucose. Previous observations in cell extracts, glycogen pellets and other crude systems suggest that this stimulation may be due to an increase in glucose 6-phosphate, which activates the dephosphorylation of glycogen synthase by protein phosphatases. Using purified rabbit muscle glycogen synthase D and protein phosphatases 1 and 2A, the types responsible for the activation of muscle synthase, it was found that glucose 6-phosphate, at low, physiological concentrations, stimulated the dephosphorylation of glycogen synthase. Both types of phosphatase were stimulated to the same extent when acting on glycogen synthase. The dephosphorylation of other protein substrates of the phosphatases was either not affected or inhibited by glucose 6-phosphate. It appears that the stimulatory effect of glucose 6-phosphate at physiological concentrations is apparently specific for glycogen synthase, and most likely due to an allosteric configuration change of this enzyme which facilitates its dephosphorylation. In addition, the effects of other reported modulators of glycogen synthase dephosphorylation, AMP, ATP and Mg2+, were studied in this 'in vitro' system.  相似文献   

14.
Glycogen synthase in the liver extracts of short-term (3 days) streptozotocin-induced diabetic rats is poorly activated by the endogenous synthase phosphatase as well as phosphatase(s) from the liver extracts of normal animals. However, synthase in the liver extracts of diabetic rats is readily activated by the 35,000 Mr rabbit liver protein phosphatase (H. Brandt, F. L. Capulong, and E. Y. C. Lee (J. Biol. Chem.250, 8038–8044 (1975)). The purified synthases from normal and diabetic animals respond differently after incubations with three different phosphatases. Both normal and diabetic synthase are activated by the 35,000 Mr protein phosphatase; however, the total activity of diabetic, but not the normal, synthase is significantly increased. Normal, but not the diabetic, synthase is activated by a synthase phosphatase from normal rats; this activation is accompanied by an increase in total synthase activity. Incubation of the diabetic synthase with calf intestinal alkaline phosphatase results in a reduction of the total synthase activity, whereas synthase activity of the normal is not significantly affected. The reduction in total activity of the diabetic synthase by treatment with alkaline phosphatase was prevented by prior dephosphorylation with 35,000 Mr rabbit liver protein phosphatase. In addition to their differences in responses to different phosphatases, the normal and diabetic synthases are also different in their molecular weights as determined by sucrose density gradient centrifugation (154,000 ± 17,000 (n = 6) for the normal and 185,000 ± 15,000 (n = 8) for the diabetic synthase) and their kinetic properties.  相似文献   

15.
1. Post-mitochondrial supernatants were prepared from the livers of 24 h-fasted rats. Upon centrifugation at high speed, the major part of the glycogen-synthase phosphatase activity sedimented with the microsomal fraction. However, two approaches showed that the enzyme was associated with residual glycogen rather than with vesicles of the endoplasmic reticulum. Indeed, the activity was entirely solubilized when the remaining glycogen was degraded either by glucagon treatment in vivo or by alpha-amylolysis in vitro. No evidence could be found for an association of glycogen-synthase phosphatase with the smooth endoplasmic reticulum, as isolated with the use of discontinuous sucrose gradients. 2. After solubilization by glucagon treatment in vivo, synthase phosphatase could be transferred to glycogen particles with very high affinity. Half-maximal binding occurred at a glycogen concentration of about 0.25 mg/ml, whereas glycogen synthase and phosphorylase required 1.5-2 mg/ml. 3. In gel-filtered extracts prepared from glycogen-depleted livers, the activation of glycogen synthase was not inhibited at all by phosphorylase alpha. The inhibition was restored when the liver homogenates were prepared in a glycogen-containing buffer. The effect was half-maximal at a glycogen concentration of about 0.25 mg/ml, and virtually complete at 1 mg/ml. These findings explain long-standing observations that in fasted animals the liver contains appreciable amounts of both synthase and phosphorylase in the active form.  相似文献   

16.
The relationship between dephosphorylation and D to I conversion of skeletal muscle glycogen synthase by synthase phosphatase was investigated using synthase preparations containing 1 to 3 mol of 32P/mol of subunit (90,000 g). Dephosphorylation was analyzed in terms of 32P release from the trypsin-sensitive and trypsin-insensitive phosphorylation regions of synthase. With synthase containing 1 to 2 mol of 32P/90,000 g, dephosphorylation of the trypsin-insensitive region correlated closely with D to I conversion and was more rapid than dephosphorylation of the trypsin-sensitive region. Synthase containing 3 mol of 32P/90,000 g was a relatively poor substrate for the phosphatase since dephosphorylation of both regions, as well as D to I conversion, was slow. With this species of synthase, glucose-6-P (0.1 mM) increased the rates of D to I conversion and dephosphorylation of trypsin-insensitive region. It is concluded that dephosphorylation of the trypsin-insensitive region is responsible for the conversion of synthase D to I.  相似文献   

17.
The type-1 protein phosphatase associated with hepatic microsomes has been distinguished from the glycogen-bound enzyme in five ways. (1) The phosphorylase phosphatase/synthase phosphatase activity ratio of the microsomal enzyme (measured using muscle phosphorylase a and glycogen synthase (labelled in sites-3) as substrates) was 50-fold higher than that of the glycogen-bound enzyme. (2) The microsomal enzyme had a greater sensitivity to inhibitors-1 and 2. (3) Release of the catalytic subunit from the microsomal type-1 phosphatase by tryptic digestion was accompanied by a 2-fold increase in synthase phosphatase activity, whereas release of the catalytic subunit from the glycogen-bound enzyme decreased synthase phosphatase activity by 60%. (4) 95% of the synthase phosphatase activity was released from the microsomes with 0.3 M NaCl, whereas little activity could be released from the glycogen fraction with salt. (5) The type-1 phosphatase separated from glycogen by anion-exchange chromatography could be rebound to glycogen, whereas the microsomal enzyme (separated from the microsomes by the same procedure, or by extraction with NaCl) could not. These findings indicate that the synthase phosphatase activity of the microsomal enzyme is not explained by contamination with glycogen-bound enzyme. The microsomal and glycogen-associated enzymes may contain a common catalytic subunit complexed to microsomal and glycogen-binding subunits, respectively. Thiophosphorylase a was a potent inhibitor of the dephosphorylation of ribosomal protein S6, HMG-CoA reductase and glycogen synthase, by the glycogen-associated type-1 protein phosphatase. By contrast, thiophosphorylase a did not inhibit the dephosphorylation of S6 or HMG-CoA reductase by the microsomal enzyme, although the dephosphorylation of glycogen synthase was inhibited. The I50 for inhibition of synthase phosphatase activity by thiophosphorylase a catalysed by either the glycogen-associated or microsomal type-1 phosphatases, or for inhibition of S6 phosphatase activity catalysed by the glycogen-associated enzyme, was decreased 20-fold to 5-10 nM in the presence of glycogen. The results suggest that the physiologically relevant inhibitor of the glycogen-associated type-1 phosphatase is the phosphorylase a-glycogen complex, and that inhibition of the microsomal type-1 phosphatase by phosphorylase a is unlikely to play a role in the hormonal control of cholesterol or protein synthesis. Protein phosphatase-1 appears to be the principal S6 phosphatase in mammalian liver acting on the serine residues phosphorylated by cyclic AMP-dependent protein kinase.  相似文献   

18.
We have investigated the effects of insulin and motor denervation on the phosphorylation of glycogen synthase in skeletal muscle. Rat epitrochlearis muscles were denervated in vivo 3 days before the contralateral and denervated muscles were incubated in vitro with 32Pi to label sites in glycogen synthase. The 32P-labeled synthase was rapidly immunoprecipitated from extracts under conditions which prevented changes in the phosphorylation state of the enzyme. When 32P-labeled synthase from contralateral muscles was cleaved with CNBr, essentially all of the 32P was recovered in two fragments, denoted CB-1 and CB-2. Incubating these muscles with insulin decreased the 32P content of each fragment by approximately 25%, indicating that the hormone stimulated dephosphorylation of at least two sites. Peptide mapping by reverse phase high performance liquid chromatography was performed to resolve phosphorylation sites more completely. The results suggest that the enzyme was phosphorylated in sites 1a, 1b, 2, 3(a+b+c), and 5. Insulin stimulated dephosphorylation of sites in peptides presumed to contain sites 1b, 2, and 3(a+b+c). Synthase from denervated muscles appeared to contain the same amount of phosphate as enzyme from contralateral muscles, and denervation did not detectably affect the distribution of 32P within the subunit. However, denervation abolished the effect of insulin on decreasing the 32P content of synthase. The results indicate that the insulin resistance induced by denervation involves a loss in the ability of insulin to stimulate dephosphorylation of glycogen synthase.  相似文献   

19.
A simplified procedure for the purification of low molecular weight phosphoprotein phosphatase acting on muscle phosphorylase a has been described from rabbit heart. The enzyme was purified to homogeneity by acid precipitation, ethanol treatment, and chromatography on Sephadex G-75 and Sepharose-histone. The purified enzyme showed a single band when examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; the molecular weight calculated by this method was 34 000. The S20, W value and Stokes radius for the enzyme was 3.35 and 24.0 A(1 A = 0.1 nm), respectively. Using these two values, a molecular weight of 35 000 was calculated. Purified enzyme showed a wide substrate specificity and catalyzed the dephosphorylation of phosphorylase a, glycogen synthase D, phosphorylated histone, and phosphorylated casein. Kinetic studies revealed the lowest Km with glycogen synthase D and maximum Vmax for the reaction with phosphorylase a.  相似文献   

20.
A phosphoprotein phosphatase which has an apparent molecular weight of 240,000 was partially purified (500-fold) from the glycogen-protein complex of rabbit skeletal muscle. The enzyme exhibited broad substrate specificity as it dephosphorylated phosphorylase, phosphohistones, glycogen synthase, phosphorylase kinase, regulatory subunit of cAMP-dependent protein kinase, and phosphatase inhibitor 1. The phosphatase showed high specificity towards dephosphorylation of the beta-subunit of phosphorylase kinase and site 2 of glycogen synthase. With the latter substrate, the presence of phosphate in sites 1a and 1b decreased the apparent Vmax, perhaps by inhibiting the dephosphorylation of site 2. The phosphorylated form of inhibitor 1 did not significantly inhibit this high-molecular-weight phosphatase. However, an inhibitor 1-sensitive phosphatase activity could be derived from this preparation by limited trypsinization. Furthermore, greater than 70% of the phosphatase activity in skeletal muscle extracts and in the glycogen-protein complex was insensitive to inhibitor 1. Limited trypsinization of each fraction obtained from the phosphatase purification increased the total activity (1.5- to 2-fold) and converted the enzyme into a form which was inhibited by inhibitor 1. The results suggest that inhibitor 1-sensitive phosphatase may be a proteolyzed enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号