首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Humoral (H) endorphin, a novel endogenous opioid ligand detected in brain, blood and cerebrospinal fluid was tested in a series of opiate sensitive assays. H-endorphin displaced radiolabeled enkephalin from its specific bindings sites and inhibited the electrically evoked contraction of the guinea pig ileum and mouse vas deferens. When injected to unanesthesized animals, humoral endorphin induced analgesia in rats and mydriasis in mice. The activity of H-endorphin both invitro and invivo attests to its opioid nature. However, while its antinociceptive effect was blocked by naloxone, mydriasis induced by H-endorphin was resistant to the effect of the opiate antagonist. Similarly, intermediate concentrations of naloxone inhibited the effect of H-endorphin on the guinea pig ileum while its effect on the mouse vas deferens was completely refractory to naloxone. The physiological function of humoral endorphin in various naturally occuring states that show similar paradoxical interactions with naloxone is discussed.  相似文献   

2.
The brain levels of β-endorphin, α-endorphin and enkephalin were measured by radioimmunoassay after different methods of sacrifice. Microwave irradiation proved not to be better than decapitation followed by boiling of the intact tissue, the latter procedure giving values of β-endorphin 10 fold higher than decapitation alone. Concurrently when decapitation was followed by boiling, α-endorphin was no longer detected. Evaluation in brain tissue of several extraction media--phosphate buffered saline, 5% TCA, HCl methanol, and 1N HOAc--showed the last to be the most satisfactory for both β-endorphin and enkephalin. Since β-endorphin was found to be readily hydrolized by brain homogenates with consequent appearance of α-endorphin, these results indicate that disruption of tissue modifies the content of opioid peptides in brain.  相似文献   

3.
The synthetic peptide octarphin (TPLVTLFK, fragment 12–19 of β-endorphin), a selective agonist of nonopioid β-endorphin receptor, was prepared with specific activity 28 Ci/mmol. The binding of [3H]octarphin to T and B lymphocytes isolated from the blood of donors was studied. It was found that [3H]octarphin binds both to T and B cells with high affinity: K d = 3.0 ± 0.2 and 3.2 ± 0.3 nM, respectively. The specific binding of [3H]octarphin to T and B lymphocytes was competitively inhibited by unlabeled β-endorphin (K i = 1.9 ± 0.2 and 2.2 ± 0.3 nM, respectively) and was not inhibited by unlabeled naloxone, [Met5]enkephalin, [Leu5]enkephalin, α-endorphin, and γ-endorphin. Thus, T and B lymphocytes of human blood possess a nonopioid β-endorphin receptor whose binding is provided by the fragment 12–19 (the octarphin sequence).  相似文献   

4.
Antiserum directed against methionine enkephalin (metenkephalin) was used to determine its anatomical distribution in rat brain. Cross reactivity of that antiserum was not detectable against leucine enkephalin (leu-enkephalin), β-lipotropin (β-LPH), β-endorphin or assorted peptide fragments of met-enkephalin; alpha-endorphin was 370 times less active than met-enkephalin. The localization of met-enkephalin was carried out in the presence of excess leu-enkephalin and yet could be blocked with equal amounts of met-enkephalin. Met-enkephalin was detected in several structures in the spinal cord, medulla, pons, mesencephalon, diencephalon and telencephalon. No met-enkephalin was detected in cerebellum or cerebral cortex.  相似文献   

5.
The contents of acetylcholine and choline were determined in rat cortex, striatum, and hippocampus following intraventricular injection of β-endorphin or D-Ala2-enkephalinamide, a synthetic enkephalin analog, in doses known to produce analgesia in experimental animals. These opiate polypeptides produced significant increases in acetylcholine levels in the hippocampus, a subcortical structure rich in cholinergic terminals. The acetylcholine content of the hippocampus (but not the cortex or striatum) was significantly elevated 15, 30, and 60 minutes after a single intraventricular injection of β-endorphin (10 μg/brain) or D-Ala2-enkephalinamide (10 μg/brain). Peak alterations in regional acetylcholine concentrations and in analgetic effectiveness both occurred 30 minutes after peptide administration. Choline concentrations were unchanged by any of the experimental treatments. Naloxone hydrochloride (1 mg/kg, subcutaneously) affected neither brain acetylcholine concentrations, nor the response latencies of rats placed on a hot-plate; it did, however, antagonize the changes in these parameters caused by β-endorphin or D-Ala2-enkephalinamide. These data suggest that endorphins may normally regulate the physiologic activity of some cholinergic neurons.  相似文献   

6.
C S Liao  A R Day  R J Freer 《Life sciences》1981,29(25):2617-2622
A series of opioids have been used to study the heterogeneity of the opioid receptor system in rat vas deferentia. β-Endorphin, etorphune, etonitazine, D-Ala2-Nle5 (des-COOH) enkephalin and, sufentanil behave as full agonists in this tissue preparation. Ketobemidone, α(+)-N-allyl normetazocine, morphine and oxymorphone show little or no biological activity. In fact, the latter four drugs were able to inhibit the biological effects of β-endorphin, etorphine and sufentanil in a concentration dependent fashion. These data suggest that there is only one opioid receptor type in the rat vas deferens. These observations are discussed in terms of the binding modes for a series of drugs to an homogeneous receptor system.  相似文献   

7.
Extracts of rat posterior intermediate pituitary and extracts of brains from normal and hypophysectomized rats were separated by gel filtration chromatography and fractions were analyzed by both a classical β-endorphin radioimmunoassay and by a radioimmunoassay specific for α-N-acetyl β-endorphin. In posterior intermediate pituitary extracts, more than 90 percent of the β-endorphin-sized immunoreactive material was α-N-acetylated. In extracts of brains from normal rats, less than 2 percent of the β-endorphin-sized immunoreactive material corresponded to α-N-acetylβ-endorphin, whereas in brains from hypophysectomized animals, no α-N-acetylβ-endorphin-like material could be detected. Immunofluorescence on normal brain sections, using either affinity purified antibodies to α-N-acetylβ-endorphin or conventional β-endorphin antibodies, showed no α-N-acetylβ-endorphin immunoreactivity in β-endorphin neurons. Only in brain sections which had been acetylated invitro prior to immunostaining could α-N-acetylβ-endorphin-like material be detected in the β-endorphin neurons. These results suggest that—in contrast to the cells in the intermediate lobe of the pituitary—the β-endorphin in brain neurons is not α-N-acetylated and that the small amount of α-N-acetyl β-endorphin which can be found in extracts of brains from normal animals is probably of pituitary origin.  相似文献   

8.
R Schulz  E Faase  M Wüster  A Herz 《Life sciences》1979,24(9):843-849
The isolated rat vas deferens, being insensitive to morphine, contains selective binding sites for β-end-orphin. A half-maximal inhibition of twitch tension evoked by electrical stimulation is established with 100 nM β-endorphin, while fragments of β-endorphin, that is, methionine-enkephalin, α- and γ-endorphin, are almost ineffective. The opiate alkaloid etorphine, a powerful inhibitor of guinea-pig ileum and mouse vas deferens, is 100-fold less potent on the rat vas deferens. The unique β-endorphin activity suggests very specific binding sites for this peptide, which cannot be related to the μ- or δ-receptors so far described for opiods on isolated preparations.  相似文献   

9.
The site at which opiate agonists and antagonists act to alter secretion of prolactin, growth hormone and luteinizing hormone as well as the pharmacological specificity of the opiate receptors mediating these effects were examined in rats. Injection of β-endorphin but not a 10 fold higher dose of the non opiate peptide β-endorphin, increased release of prolactin and growth hormone in male rats while inhibiting luteinizing hormone release in ovariectomized, estrogen primed female rats. Prior treatment with naltrexone i.p. blocked these responses. Injection of naltrexone into the hypothalamus lowered prolactin release. In rats with a surgically formed hypothalamic island systemic administration of morphine or naltrexone altered prolactin release in the same manner as was observed in intact animals. In contrast no effects of β-endorphin or naltrexone were observed on the spontaneous secretion of prolactin invitro. In addition β-endorphin did not alter the inhibition of prolactin release produced by apomorphine invitro. The ED50 for stimulation of prolactin release following intraventricular administration of β-endorphin or the synthetic enkephalin analog FK 33-824 was the same, approximately 0.1 ng/rat. However FK 33-824 at 0.2 ng/rat was able to produce much greater analgesia and catatonia than β-endorphin. The metabolism and distribution of β-endorphin was examined but did not account for these differential effects. These results indicate that opiate agonists and antagonists can act at the hypothalamic but not the anterior pituitary level to alter release of prolactin, growth hormone and luteinizing hormone. In addition the data suggest that the opiate receptors mediating release of prolactin may have a different pharmacological specificity from those involved with analgesia and catatonia.  相似文献   

10.
Two antisera against human β-endorphin were generated in rabbits. They were found to differ largely in their specificities. One antiserum did not recognize rabbit β-endorphin. This antiserum was used to investigate the permeation of human β-endorphin into rabbit brain and cerebrospinal fluid after systemic injection of the synthetic peptide (50 μg/kg). Over a period of two hours, a low but significant permeation was found to occur only into the hypothalamus. All other brain areas remained below radioimmunoassay detection limits of 100 fmoles/g. Post-injectional cerebrospinal fluid concentrations of human β-endorphin showed very low values (90 fmoles/ml maximally). A regional distribution of rabbit brain β-endorphin, very similar to other species, was found using the antiserum which detected rabbit β-endorphin.  相似文献   

11.
Human β-endorphin (15 μg) administered intracisternally increased concentrations of serotonin (5HT) and its metabolite, 5-hydroxyindoleacetic. acid (5-HIAA), in brain stem and hypothalamus and decreased 5-HIAA concentrations in hippocampus. These data are compatible with the hypothesis that β-endorphin increases 5HT turnover in brain stem and hypothalamus and decreases 5HT turnover in hippocampus. β-endorphin increased in brain stem and hypothalamus and decreased in hippocampus the rate of pargyline-induced decline of 5-HIAA. β-endorphin decreased the rate of pargyline-induced accumulation of 5HT in all these brain regions. The probenecid-induced accumulation of 5-HIAA in brain stem was decreased by β-endorphin. These data are compatible with the hypothesis that β-endorphin increases release of 5HT from neurons in brain stem and hypothalamus and decreases release of 5HT from neurons in hippocampus. The data require further a hypothesis that β-endorphin either decreases 5HT reuptake in these three brain regions or increases 5-HIAA egress from brain.  相似文献   

12.
The brain concentration and distribution of β-endorphin immunoreactivity in the brain have been studied in intact and hypophysectomized rats. The results obtained with different methods for killing the animals and extracting β-endorphin are compared. Different methodologies of killing the rat and extracting the brain yield concentrations of β-endorphin which vary ten fold. Consistently the highest concentrations of β-endorphin have been found in the hypothalamus, midbrain and hindbrain. After hypophysectomy major reduction of β-endorphin concentration in the brain was observed.  相似文献   

13.
Enkephalins are degraded rapidly by homogenates of rat brain and by ultrafiltrates of mouse brain supernatant with release of N-terminal tyrosine followed later by Met (or Leu), Phe and Gly as measured by amino acid analysis and by microdansylation techniques. Fragments of β-lipotropin (sequences 61–76, α-endorphin and 61–91, β-endorphin) were degraded more slowly with evidence for multiple sites of cleavage by aminopeptidases (N-terminal release of tyrosine), carboxypeptidases, and various endopeptidases active at neutral pH including some with tryptic-like specificity. The slow appearance of Gly and the accumulation of Gly-Gly in digests of enkephalin and fragment 61–76 points to the presence in brain extracts of a glycyl-glycine dipeptidase which is rate-limiting. Rates of degradation observed appear to accord with their duration of action in vivo based on their behavioral and analgesic properties.  相似文献   

14.
The effect of an opiate alkaloid and an opioid-like peptide was studied on the electrically evoked twitching of the vas deferens of 3 common laboratory rodents. Normorphine and the synthetic opioid peptide D-Alanine2 methionine enkephalinamide (D-Ala2) produced dose dependent inhibitions of the twitching response in the mouse vas deferens. In the rat vas, while β-endorphin (β-EP) caused an inhibitory effect in three strains of rats to a similar degree, morphine produced a dose related enhancement of the twitching. In the guinea pig, both morphine and β-EP caused an increased in the muscular twitch. The results are interpreted in terms of an heterogenous mixture of opiate receptors present in the vas deferens from these rodents. The mouse appears to contain mainly δ receptors while the rat has mostly ε receptors characterized by their specificity and sensitivity to the action of β-EP. The guinea pig vas deferens has apparently lost the sensitivity to the inhibitory influence of the opioids, suggesting the absence of μ or δ opiate receptors in this tissue.  相似文献   

15.
The behavioral effects of β-endorphin, enkephalin analogs, morphine and etorphine were briefly compared. In the tail-flick test in mice and in the wet shake test in rats, β-endorphin and D-Ala2-D-Leu5-enkephalin had equal antinociceptive activity; D-Ala2 -Met-enkephalinamide and D-Leu5-enkephalin were less active. The order of activity of the enkephalin analogs and opiate alkaloids for stimulating locomotor activity in mice paralleled their analgesic activities; β-endorphin, however, had only minimal stimulatory actions. Morphine sulfate, 50 μg injected into the periaqueductal gray, produced hyperactivity but this effect was not observed with etorphine or opioid peptides. By contrast, “wet dog” shakes was observed with the opioid peptides but not with either opiate alkaloid. These heterogenous behavioral responses, which were all antagonized by naloxone, indicate that multiple types of receptors mediate the effects of opiates in the central nervous system.  相似文献   

16.
Specific binding of human β-endorphin is demonstrated to sites that are present in endotoxin-treated, but not in native, human serum. Binding is saturable and reversible and is mediated by a nonopioid segment of βH-endorphin to sites that are located on the terminal SC5b-9 complement complex. Since endotoxemia causes both the secretion of β-endorphin into blood (1) and the formation of specific β-endorphin binding sites therein, both effects might be elements of a common physiological process.  相似文献   

17.
H N Bhargava 《Life sciences》1981,29(19):1945-1949
Repeated intraventricular injections of human β-endorphin to rats every eight hours for three days resulted in the development of super-sensitivity of brain dopamine receptors as evidenced by an enhanced locomotor activity response to apomorphine, a dopamine receptor agonist. Daily subcutaneous injections of Pro-Leu-Gly-NH2 or its cyclic analog, cyclo (Leu-Gly) blocked the enhanced apomorphine-induced stimulation of locomotor activity in β-endorphin treated rats. Thus, the development of brain dopamine receptor supersensitivity induced by chronic β-endorphin administration may be regulated by the hypothalamic peptides.  相似文献   

18.
Humural endorphin, a recently discovered endogenous opioid factor stimulates the release of growth hormone and, to some extent of prolactin, similarly to other endogenous (enkephalin, β-endorphin) and exogenous (morphine) opiates. This stimulatory effect is dose-dependent with peak values at 30 minutes following intraventricular injection to newborn rats. However, in contrast to the other opioid ligands, the effect of humoral endorphin is not blocked in a dose-dependent fashion by naloxone, the potent opiate antagonist. Thus, while moderate doses of naloxone partially inhibit the stimulatory effect, higher doses which completely block morphine, enkephalin and β-endorphin, are ineffective in antagonizing humoral endorphin. This peculiar interaction between naloxone and humoral endorphin resembles the effect of the opiate antagonist on spontaneous release of growth hormone and prolactin, suggesting the involvement of humoral endorphin in the physiological regulation of hypophysial secretion.  相似文献   

19.
Double-label immunocytochemistry was used to determine whether estradiol-induced progestin receptors and either β-endorphin or leucine-enkephalin are colocalized in female guinea pig brain. Ovariectomized, adult guinea pigs were implanted with capsules containing estradiol-17β to induce high levels of progestin receptors, and injected intracerebroventricularly with co chicine to improve visualization of the opiate peptides. Sections through the hypothalamus and preoptic area were processed for progestin receptor, followed by β-endorphin or leucine-enkephalin immunocytochemistry. As reported previously, high concentrations of progestin receptor-immunoreactive (PR-IR) cells were found in the preoptic area (medial and periventricular portions, medial preoptic nucleus) and hypothalamus (anterior hypothalamic and arcuate nuclei, ventrolateral area). Many β-endorphin-IR cells contained PR-IR in the arcuate nucleus and its surroundings (33%) and in the dorsomedial area of the hypothalamus (64%). Scattered enkephalin-IR cells were found in the septal nucleus, medial and lateral preoptic area, bed nucleus of the stria terminalis, and the arcuate nucleus. The ventromedial nucleus of the hypothalamus and dorsolateral magnocellular nucleus, respectively, contained moderate and heavy concentrations of enkephalin-IR cells. Although some of these areas also contained PR-IR, enkephalin-IR was colocalized consistently with PR-IR only in a small number of cells in the arcuate nucleus and ventromedial/ventrolateral area of the hypothalamus. These data, taken together with earlier observations that virtually all cells containing estradiol-induced PR-IR also contain estrogen receptor-IR, provide neuroanatomical evidence that hypothalamic actions of progesterone and estradiol may be mediated by β-endorphin and/or enkephalin.  相似文献   

20.
Putative enkephalin precursors in bovine adrenal medulla.   总被引:16,自引:0,他引:16  
Extracts from bovine adrenal medulla and adrenal medullary chromaffin granules were found to contain three proteins, 20,000, 10,000 and 5,000 approximate molecular weights which yield tryptic peptides with opioid activity. The opioid activity of these peptides was demonstrated with a radioreceptor assay and two radioimmunoassays. The three proteins yield the same active peptides all of which are chromatographically distinct from the tryptic opioid nonapeptide β-LPH 61–69, generated by trypsin digestion of pituitary endorphins and their precursors. Furthermore, these endorphins and their precursors do not appear to be present in the adrenal medulla. These findings further support the hypothesis that the enkephalin biosynthetic pathway is distinct from that leading to β-endorphin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号