首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We obtain within the action-angle variable approach new expressions, involving the Dirac delta function, for time periods and time averages of dynamical variables which are useful for nonlinear biological oscillator problems. We combine these with Laplace transformation techniques for evaluating the required perturbation expansions. The radii of convergence of these series are determined through a complex variable approach. The method is powerful enough to yield explicit results for such systems as the two species Volterra model, Goodwin's model of protein synthesis etc. and as an illustration, is applied here to Cowan's model of neuroelectric activity. We also point out the usefulness of the action integral in the case where parameters occurring in dynamics have slow time variations.  相似文献   

2.
Slatkin M  Excoffier L 《Genetics》2012,191(1):171-181
Range expansions cause a series of founder events. We show that, in a one-dimensional habitat, these founder events are the spatial analog of genetic drift in a randomly mating population. The spatial series of allele frequencies created by successive founder events is equivalent to the time series of allele frequencies in a population of effective size ke, the effective number of founders. We derive an expression for ke in a discrete-population model that allows for local population growth and migration among established populations. If there is selection, the net effect is determined approximately by the product of the selection coefficients and the number of generations between successive founding events. We use the model of a single population to compute analytically several quantities for an allele present in the source population: (i) the probability that it survives the series of colonization events, (ii) the probability that it reaches a specified threshold frequency in the last population, and (iii) the mean and variance of the frequencies in each population. We show that the analytic theory provides a good approximation to simulation results. A consequence of our approximation is that the average heterozygosity of neutral alleles decreases by a factor of 1-1/(2ke) in each new population. Therefore, the population genetic consequences of surfing can be predicted approximately by the effective number of founders and the effective selection coefficients, even in the presence of migration among populations. We also show that our analytic results are applicable to a model of range expansion in a continuously distributed population.  相似文献   

3.
A model is proposed for consecutive multivariate observations of pregnancy-related quantities for a particular mother assuming proportionally with an underlying univariate growth process. Apart from the longitudinal aspect of the multivariate time series, the cross-sectional distribution of growth curves is also discussed. The model is examined as regards problems of estimation and model checking, and the results are applied to data consisting of bivariate time series of symphyseal fundal distances and fetal weight estimates from 91 mothers. We find some evidence in the data on departures from the model.  相似文献   

4.
 Two types of pathological tremors, essential and Parkinsonian, are studied using dynamical systems theory. It is shown that pathological tremors can be characterized as diffusional processes. The time-scale range for the diffusional scaling law to be valid starts from about one to several tens of the mean oscillation period. This time-scale range contrasts sharply with the predictable time scale for deterministic chaos, which is usually only a small fraction of the mean oscillation period. The diffusions in pathological tremors are usually anomalous. A number of quantities are designed to characterize the diffusions in the tremor. Their relevance to potential clinical applications is discussed. It is argued that in order to discriminate between Parkinsonian and essential tremors, quantities not of purely dynamical origin may be more useful, since purely dynamical quantities emphasize more the dynamical similarities between the two types of tremors. Received: 30 May 2001 / Accepted in revised form: 6 November 2001  相似文献   

5.
We propose to define the complexity of an ecological model as the statistical complexity of the output it produces. This allows for a direct comparison between data and model complexity. Working with univariate time series, we show that this measure ‘blindly’ discriminates among the different dynamical behaviours a model can exhibit. We then search a model parameter space in order to segment it into areas of different dynamical behaviour and calculate the maximum complexity a model can generate. Given a time series, and the problem of choosing among a number of ecological models to study it, we suggest that models whose maximum complexity is lower than the time series complexity should be disregarded because they are unable to reconstruct some of the structures contained in the data. Similar reasoning could be used to disregard models’ subdomains as well as areas of unnecessary high complexity. We suggest that model complexity so defined better captures the difficulty faced by a user in managing and understanding the behaviour of an ecological model than measures based on a model ‘size’.  相似文献   

6.
The amount of information exchanged per unit of time between two nodes in a dynamical network or between two data sets is a powerful concept for analysing complex systems. This quantity, known as the mutual information rate (MIR), is calculated from the mutual information, which is rigorously defined only for random systems. Moreover, the definition of mutual information is based on probabilities of significant events. This work offers a simple alternative way to calculate the MIR in dynamical (deterministic) networks or between two time series (not fully deterministic), and to calculate its upper and lower bounds without having to calculate probabilities, but rather in terms of well known and well defined quantities in dynamical systems. As possible applications of our bounds, we study the relationship between synchronisation and the exchange of information in a system of two coupled maps and in experimental networks of coupled oscillators.  相似文献   

7.
Stochastic dynamical systems governed by the chemical master equation find use in the modeling of biological phenomena in cells, where they provide more accurate representations than their deterministic counterparts, particularly when the levels of molecular population are small. The analysis of parametric sensitivity in such systems requires appropriate methods to capture the sensitivity of the system dynamics with respect to variations of the parameters amid the noise from inherent internal stochastic effects. We use spectral polynomial chaos expansions to represent statistics of the system dynamics as polynomial functions of the model parameters. These expansions capture the nonlinear behavior of the system statistics as a result of finite-sized parametric perturbations. We obtain the normalized sensitivity coefficients by taking the derivative of this functional representation with respect to the parameters. We apply this method in two stochastic dynamical systems exhibiting bimodal behavior, including a biologically relevant viral infection model.  相似文献   

8.
STEM: a tool for the analysis of short time series gene expression data   总被引:2,自引:0,他引:2  

Background  

Time series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3–8 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data.  相似文献   

9.
Amoeboid cell motility is essential for a wide range of biological processes including wound healing, embryonic morphogenesis, and cancer metastasis. It relies on complex dynamical patterns of cell shape changes that pose long-standing challenges to mathematical modeling and raise a need for automated and reproducible approaches to extract quantitative morphological features from image sequences. Here, we introduce a theoretical framework and a computational method for obtaining smooth representations of the spatiotemporal contour dynamics from stacks of segmented microscopy images. Based on a Gaussian process regression we propose a one-parameter family of regularized contour flows that allows us to continuously track reference points (virtual markers) between successive cell contours. We use this approach to define a coordinate system on the moving cell boundary and to represent different local geometric quantities in this frame of reference. In particular, we introduce the local marker dispersion as a measure to identify localized membrane expansions and provide a fully automated way to extract the properties of such expansions, including their area and growth time. The methods are available as an open-source software package called AmoePy, a Python-based toolbox for analyzing amoeboid cell motility (based on time-lapse microscopy data), including a graphical user interface and detailed documentation. Due to the mathematical rigor of our framework, we envision it to be of use for the development of novel cell motility models. We mainly use experimental data of the social amoeba Dictyostelium discoideum to illustrate and validate our approach.  相似文献   

10.
Despite centuries of interest in species range limits, few studies have taken a whole community into consideration. Actually, multiple species may simultaneously respond to environmental changes, for example, global warming, leading a series of dynamical communities toward the advancing front. We investigated multiple species range expansions through the analysis of a two‐species dispersion model and simulations of multiple species assemblages regulated by neutral and fecundity–survival trade‐offs (FSTs), respectively, and found that species assemblages regulated by different mechanisms would initiate different expanding patterns in geographic ranges in response to environmental changes. The neutral model generally predicts a higher biodiversity near the core of an expanding range, and a lower community similarity compared with a FST model. Without considering the evolution of life history traits, an assortment of the reproduction ability happens at the advancing front under FSTs at the expense of a higher death rate or lower competitive ability. These results emphasize the importance of community assembly rules to the biodiversity maintenance of range expanding communities.  相似文献   

11.
The biological effects of radiations are studied on the basis of a general probabilistic model of successive transformations (Markoff chains). The process of recovery is taken into account as a series of reverse transitions. The theory gives methods for calculating the probability of subjecting a microorganism to an observable change within an assigned time during a process of irradiation of a homogeneous aggregate of microorganisms. Two methods of calculation are given: one requires the solution of a secular equation, the other one consists of expansions in power series of the intensities of recovery.  相似文献   

12.
A simple model of a population of asexually reproducing individuals, evolving in a flat fitness landscape, is defined. It is shown that the model is equivalent to a dynamical system with stochastic dynamics, the Annealed Random Map Model. Thus, it is possible to solve exactly for the genealogy statistics and for the genetic variability of the population. Fluctuations of quantities, like the average relatedness and the variability, which also take place in the limit of an infinitely large population, are computed.  相似文献   

13.
Random field models for fitness landscapes   总被引:1,自引:0,他引:1  
 In many cases fitness landscapes are obtained as particular instances of random fields by randomly assigning a large number of parameters. Models of this type are often characterized reasonably well by their covariance matrices. We characterize isotropic random fields on finite graphs in terms of their Fourier series expansions and investigate the relation between the covariance matrix of the random field model and the correlation structure of the individual landscapes constructed from this random field. Correlation measures are a good characteristic of “rugged landscapes” models as they are closely related to quantities like the number of local optima or the length of adaptive walks. Our formalism suggests to approximate landscape with known autocorrelation function by a random field model that has the same correlation structure. Received: 10 November 1995 / Revised version: 19 February 1996  相似文献   

14.
Recently, several two-dimensional spiking neuron models have been introduced, with the aim of reproducing the diversity of electrophysiological features displayed by real neurons while keeping a simple model, for simulation and analysis purposes. Among these models, the adaptive integrate-and-fire model is physiologically relevant in that its parameters can be easily related to physiological quantities. The interaction of the differential equations with the reset results in a rich and complex dynamical structure. We relate the subthreshold features of the model to the dynamical properties of the differential system and the spike patterns to the properties of a Poincaré map defined by the sequence of spikes. We find a complex bifurcation structure which has a direct interpretation in terms of spike trains. For some parameter values, spike patterns are chaotic.  相似文献   

15.
The evolution of an infectious disease outbreak in an isolated population is split into two stages: a stochastic Markov process describing the initial contamination and a linked deterministic dynamical system with random initial conditions for the continued development of the outbreak. The initial contamination stage is well approximated by the randomized SI (susceptible/infected) model. We obtain the probability density function for the early behavior of the epidemic. This provides an appropriate distribution for the initial conditions with which to describe the subsequent deterministic evolution of the system. We apply the method of matching asymptotic expansions to link the two stages. This allows us to estimate the standard deviation of the number of infectives in the developed outbreak, and the statistical characteristics of the outbreak time. The potential trajectories caused by the stochastic nature of the contamination stage show greatest divergence at the initial and fade-out stages and coincide most tightly just after the peak of the epidemic. The time to the peak of the outbreak is not strongly dependent on the initial trajectory.  相似文献   

16.
Most ecological networks are analysed as static structures, where all observed species and links are present simultaneously. However, this is over-simplified, because networks are temporally dynamical. We resolved an arctic, entire-season plant-flower visitor network into a temporal series of 1-day networks and compared the properties with its static equivalent based on data pooled over the entire season. Several properties differed. The nested link pattern in the static network was blurred in the dynamical version, because the characteristic long nestedness tail of flower–visitor specialists got stunted in the dynamical networks. This tail comprised a small food web of pollinators, parasitoids and hyper-parasitoids. The dynamical network had strong time delays in the transmission of direct and indirect effects among species. Twenty percent of all indirect links were impossible in the dynamical network. Consequently, properties and thus also robustness of ecological networks cannot be deduced from the static topology alone.  相似文献   

17.
When making investments in railway infrastructure it is important to be able to identify the limits for freight transportation in order to not only use the infrastructure in the best possible way, but to also guide future capacity investments. This paper presents a model to assess the capacity of railway freight transportation on a long term strategic level. The model uses an hourly time discretization and analyses the impact of railway network expansions based on future demand forecasts. It provides an optimal macroscopic freight train schedule and can indicate the time and place of any congestion. In addition, two expansions of the primary model are developed. The first can be used to determine the minimal number of expansions needed to ensure all freight can be feasibly routed, while the second can be used to schedule freight trains at hours not congested by passenger trains using variable penalties for the different passenger busy time slots. As part of a European Union project, all models are applied to a realistic case study that focuses on analyzing the capacity of railway network, in Denmark and Southern Sweden using demand forecasts for 2030. Results suggest that informative solutions can be found quickly with the proposed approach.  相似文献   

18.
This study presents a least mean squares (LMS) algorithm for the ensemble modeling of a multivariate ARMA process. Generally, an LMS algorithm makes possible the tracking of parameters for nonstationary time series. Our estimation incorporates multiple process observations that improve the accuracy of the parameter estimation. As a consequence, the estimation sequences come close to the true model parameters with a fast adaptation speed. This advantage also holds true of spectral quantities (e.g., the momentary coherence), which are derived from the model parameters. Thus the extension of the ARMA fitting from one to multiple trajectories allows the investigation of nonstationary biological signals with an increased time resolution. The applicability of the algorithm is demonstrated for event-related EEG coherence analysis of the Sternberg task. The changing interaction between posterior association cortex and anterior brain area was shown for verbal and nonverbal stimuli by means of the time-variant theta coherence.  相似文献   

19.

Background  

Modelling of time series data should not be an approximation of input data profiles, but rather be able to detect and evaluate dynamical changes in the time series data. Objective criteria that can be used to evaluate dynamical changes in data are therefore important to filter experimental noise and to enable extraction of unexpected, biologically important information.  相似文献   

20.
We present an ab initio molecular dynamics study of the roles of fluctuating hydrogen bonds and free ND modes in the dynamics of ND stretch frequency fluctuations in deuterated liquid ammonia. We have also looked at some of the other dynamical quantities such as diffusion and orientational relaxation and also structural quantities such as pair correlations and hydrogen bonding properties which are relevant in the current context. The time correlation function of ND stretch frequencies is found to decay with primarily two time scales: A short-time decay with a time scale of less than 100 fs arising from intermolecular motion of intact hydrogen bonds and also from fast hydrogen bond breaking and a longer time scale of about 500 fs which can be assigned to the lifetime of free ND modes. Unlike water, in liquid ammonia an ND mode is found to remain free for a longer period than it stays hydrogen bonded and this longer lifetime of free ND modes determines the long-time behaviour of frequency fluctuations. Our hole dynamics calculations produced results of vibrational spectral diffusion that are similar to the decay of frequency time correlation. Inclusion of dispersion corrections is found to make the dynamics slightly faster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号