首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the linkage region of chondroitin sulfate chains attached to the hybrid proteoglycans of the Engelbreth-Holm-Swarm mouse tumor was investigated. The peptidoglycan fraction which contains oversulfated chondroitin sulfate rich in the GlcA beta 1-3GalNAc-4,6-diO-sulfate unit and undersulfated heparan sulfate rich in GlcA beta 1-4GlcNAc and GlcA beta 1-4GlcN-2N-sulfate units was isolated after exhaustive protease digestion of the acetone powder of the tumor tissue, (GlcA, glucuronic acid; GalNAc, 2-deoxy-2-N-acetylamino-D-galactose). Glycosaminoglycans were released by beta-elimination using NaB3H4 and digested with chondroitinase ABC. The linkage region fraction was separated from heparan sulfate by gel filtration and fractionated by HPLC on an amine-bound silica column. Six radiolabeled compounds (L1-L6) were obtained and structurally analyzed by cochromatography with authentic hexasaccharide alditols recently isolated by us from the linkage region, and by digestion using chondroitinase ACII, alkaline phosphatase and beta-galactosidase in conjugation with HPLC. These compounds shared the conventional hexasaccharide backbone structure: delta GlcA beta 1-3GalNAc beta 1-4GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl-ol, (delta GlcA, delta 4.5-GlcA or D-gluco-4-enepyranosyluronic acid). L1 was not sulfated or phosphorylated. L2 and L4 were monosulfated at C-6 and C-4 of the GalNAc residue, respectively. Upon alkaline phosphatase digestion, L3, L5 and L6 were converted to L1, L2 and L4, respectively. Analysis of the periodate oxidation products indicated that the phosphate group in L3, L5 and L6 is located at C-2 of Xyl-ol. These results suggest that Xyl-2-O-phosphate is associated with both 4-O-sulfated and 6-O-sulfated GalNAc units and does not directly determine the sulfation pattern of chondroitin sulfate.  相似文献   

2.
A previously published method for the analysis of glycosaminoglycan disaccharides by high pH anion exchange chromatography (Midura,R.J., Salustri,A., Calabro,A., Yanagishita,M. and Hascall,V.C. (1994), Glycobiology,4, 333-342) has been modified and calibrated for chondroitin and dermatan sulfate oligosaccharides up to hexasaccharide in size and hyaluronan oligosaccharides up to hexadecasaccharide. For hyaluronan oligosaccharides chain length controls elution position; however, for chondroitin and dermatan sulfate oligosaccharides elution times primarily depend upon the level of sulfation, although chain length and hence charge density plays a role. The sulfation position of GalNAc residues within an oligosaccharide is also important in determining its elution position. Compared to 4-sulfation a reducing terminal 6-sulfate retards elution; however, when present on an internal GalNAc residue it is the 4-sulfate containing oligosaccharide which elutes later. These effects allow discrimination between oligosaccharides differing only in the position of GalNAc sulfation. Using this simple methodology, a Dionex CarboPac PA-1 column with NaOH/NaCl eluents and detection by absorbance at 232 nm, a quantitative analytical fingerprint of a chondroitin/dermatan sulfate chain may be obtained, allowing a determination of the abundance of chondroitin sulfate, dermatan sulfate, and hyaluronan along with an analysis of structural features with a linear response to approximately 0.1 nmol. The method may readily be calibrated using either commercial disaccharides or the di- and tetrasaccharide products of a limit digest of commercial chondroitin sulfate by chondroitin ABC endolyase. Commercially available and freshly prepared shark, whale, bovine, and human cartilage chondroitin sulfates have been examined by this methodology and we have confirmed that freshly isolated shark cartilage CS contains significant amounts of the biologically important GlcA2Sbeta(1-3)GalNAc6S structure.  相似文献   

3.
We have shown previously that a highly sulfated sequence, GalNAc(4,6-SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), is present at the nonreducing terminal of chondroitin sulfate (CS), and this structure was synthesized from a unique sequence, GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)), by sulfation with N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase. Uronosyl 2-O-sulfotrasferase (2OST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 2 of the GlcA residue of CS, is expected to be involved in synthesis of these structures; however, the specificity of 2OST concerning recognition of the sulfation pattern of the acceptor has largely remained unclear. In the present study, we examined the specificity of 2OST in terms of recognition of the sulfation pattern around the targeting GlcA residue. The recombinant 2OST could sulfate CS-A, CS-C, and desulfated dermatan sulfate. When [(35)S]glycosaminoglycans formed from CS-A after the reaction with the recombinant 2OST and [(35)S]PAPS were subjected to limited digestion with chondroitinase ACII, a radioactive tetrasaccharide (Tetra A) was obtained as a sole intermediate product. The sequence of Tetra A was found to be DeltaHexA-GalNAc(4SO(4))-GlcA(2SO(4))-GalNAc(6SO(4)) by enzymatic and chemical reactions. These observations indicate that 2OST transfers sulfate preferentially to the GlcA residue located in a unique sequence, -GalNAc(4SO(4))-GlcA-GalNAc(6SO(4))-. When oligosaccharides with different sulfation patterns were used as the acceptor, GalNAc(4SO(4))-GlcA-GalNAc(6SO(4)) and GlcA-GalNAc(4SO(4))-GlcA-GalNAc(6SO(4)) were the best acceptors for 2OST among trisaccharides and tetrasaccharides, respectively. These results suggest that 2OST may be involved in the synthesis of the highly sulfated structure found in CS-A.  相似文献   

4.
In 0.5 M solution at pH 7.6, interaction of spermidine and 5'-AMP is demonstrated by downfield proton NMR shifts. Shifts of ribose and adenine protons support a model in which triprotonated spermidine engages the phosphate, anion with the C-3 diamine segment in a conformation to maximize interaction and the C-4 ammo segment extended to interact with adenine N-7 (base anti, 2'endo, g'g' and gg nucleoside conformation). Changes in carbon-13 chemical shifts for ribose C-5' (downfield), C-2' C-3', and C-4' (upfield) and for adenine C-6 and C-8 (upfield) support this model. In 0.006 M solution no significant changes in proton shifts and therefore no evidence for interaction was found. Spermidine and 5'-UMP (0.006 M) showed interaction at pH 10.5 (small upfield shifts in the proton nmr) interpreted as changing conformation by solvent interaction. In 0.006 M 3'-UMP at pH 10.5 small downfield proton shifts induced by spennidine are attributed to interactions with phosphate anion.  相似文献   

5.
From the carbohydrate-protein linkage region of whale cartilage proteoglycans, which bear predominantly chondroitin 4-sulfate, one nonsulfated, two monosulfated and one disulfated hexasaccharide alditols were isolated after exhaustive digestions with Actinase E and chondroitinase ABC, and subsequent beta-elimination. Their structures were analyzed by chondroitinase ACII digestion in conjunction with HPLC and by 500-MHz 1H-NMR spectroscopy. The nonsulfated compound (A) had the following conventional structure: delta GlcA(beta 1-3)-GalNAc(beta 1-4)GlcA(beta 1-3)Gal(beta 1-4)Xylol, where GlcA, delta GlcA and GalNAc are glucuronic acid; 4,5-unsaturated glucuronic acid and 2-deoxy-2-N-acetylamino-D-galactose, respectively. The other compounds were sulfated derivatives of compound A. Two monosulfated compounds (B and C) had an ester sulfate on C4 or C6 of the GalNAc residue, respectively and the disulfated compound (D) had two ester sulfate groups, namely, one on C4 of the GalNAc and the other on C4 of the Gal residue substituted by GlcA. The molar ratio of A/B/C/D was 0.21:0.16:0.36:0.27. The compound containing Gal-4-O-sulfate was previously isolated by us in the form of a sulfated glycoserine [delta GlcA(beta 1-3)GalNAc(4-O- sulfate)(beta 1-4)GlcA(beta 1-3)Gal(4-O-sulfate)(beta 1-3)-Gal(beta 1- 4)Xyl beta 1-O-Ser] from the carbohydrate-protein linkage region of rat chondrosarcoma chondroitin-4-sulfate proteoglycans [Sugahara K., Yamashina, I., DeWaard, P., Van Halbeek, H. & Vliegenthart, J.F.G. (1988) J. Biol. Chem. 263, 10,168-10,174]. The discovery of this structure in the carbohydrate-protein linkage region of chondroitin 4-sulfate proteoglycans from nontumorous cartilage indicates that it is not a tumor-associated product but rather a physiological biosynthetic product since it represents a significant proportion. The biological significance of this structure is discussed in relation to glycosaminoglycan biosynthesis.  相似文献   

6.
In the framework of a project aimed at generating heparin-like sulfation patterns and biological activities in biotechnological glycosaminoglycans, different approaches have been considered for simulating the alpha(1-->4)-linked 2-O-sulfated L-iduronic acid (IdoA2SO(3))-->N,6-O-sulfated D-glucosamine (GlcNSO(3)6SO(3)) disaccharide sequences prevalent in mammalian heparins. Since the direct approach of sulfating totally O-desulfated heparins, taken as model compounds for C-5-epimerized sulfaminoheparosan (N-deacetylated, N-sulfated Escherichia coli K5 polysaccharide), preferentially afforded heparins O-sulfated at C-3 instead than at C-2 of the iduronate residues, leading to products with low anticoagulant activities, the problem of re-generating a substantial proportion of the original IdoA2SO(3) residues was circumvented by performing controlled solvolytic desulfation (with 9:1 v/v DMSO-MeOH) of extensively sulfated heparins. The order of desulfation of major residues of heparin GlcN and IdoA and of the minor one D-glucuronic acid was: GlcNSO(3)>GlcN6SO(3)>IdoA3SO(3) congruent with GlcA2SO(3) congruent with GlcN3SO(3)>IdoA2SO(3) congruent with GlcA3SO(3). Starting from a 'supersulfated' low-molecular weight heparin, we obtained products with up to 40% of iduronate residues O-sulfated exclusively at C-2 and up to 40% of their glucosamine residues O-sulfated at both C-6 and C-3. Upon re-N-sulfation, these products displayed an in vitro antithrombotic activity (expressed as anti-factor Xa units) comparable with those of current low-molecular weight heparins.  相似文献   

7.
Eight hexasaccharide fractions were isolated from commercialshark cartilage chondroitin sulfate D by means of gel nitrationchromatography and HPLC on an amine-bound silica column afterexhaustive digestion with sheep testicular hyaluronidase. Capillaryelectrophoresis of the enzymatic digests as well as one- andtwo-dimensional 500 MHz 1H-NMR spectroscopy demonstrated thatthese hexasaccharides share the common core saccharide structureGlcAß1-3GalNAcß1-4GlcAß1-3GalNAcß1-4GlcAß1-3GalNAcwith three, four, or five sulfate groups in different combinations.Six structures had the same sulfation profiles as those of theunsaturated hexasaccharides isolated from the same source afterdigestion with chondroitinase ABC (Sugahara et al., Eur. J.Biochem., 293, 871–880, 1996) and the other two have notbeen reported so far. In the new components, a D disaccharideunit, GlcA(2-sulfate)ß1-3GalNAc(6-sulfate), characteristicof chondroitin sulfate D was arranged on the reducing side ofan A disaccharide unit, GlcAß1-3GalNAc(4-sulfate),forming an unusual A-D tetrasaccharide sequence, GlcAß1-3GalNAc(4-sulfate)-4GlcA(2-sulfate)ß1-3GaINAc(6-sulfate)which is known to be recognized by the monoclonal antibody MO225.These findings support the notion that the tetrasaccharide sequence,GlcAß1-3GalNAc(4-sulfate)ß1-4GlcAß1-3GalNAc(6-sulfate)is included in the acceptor site of a hitherto unreported 2-O-sulfotransferaseresponsible for its synthesis. The sulfated hexasaccharidesisolated in this study will be useful as authentic oligosaccharideprobes and enzyme substrates in studies of sulfated glycosaminogly-cans. sulfated hexasaccharides chondroitin sulfate D hyaluronidase 1 H-NMR  相似文献   

8.
We have previously cloned N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the C-6 hydroxyl group of the GalNAc 4-sulfate residue of chondroitin sulfate A and forms chondroitin sulfate E containing GlcA-GalNAc(4,6-SO(4)) repeating units. To investigate the function of chondroitin sulfate E, the development of specific inhibitors of GalNAc4S-6ST is important. Because GalNAc4S-6ST requires a sulfate group attached to the C-4 hydroxyl group of the GalNAc residue as the acceptor, the sulfated GalNAc residue is expected to interact with GalNAc4S-6ST and affect its activity. In this study, we synthesized phenyl alpha- or -beta-2-acetamido-2-deoxy-beta-D-galactopyranosides containing a sulfate group at the C-3, C-4, or C-6 hydroxyl groups and examined their inhibitory activity against recombinant GalNAc4S-6ST. We found that phenyl beta-GalNAc(4SO(4)) inhibits GalNAc4S-6ST competitively and also serves as an acceptor. The sulfated product derived from phenyl beta-GalNAc(4SO(4)) was identical to phenyl beta-GalNAc(4,6-SO(4)). These observations indicate that derivatives of beta-D-GalNAc(4SO(4)) are possible specific inhibitors of GalNAc4S-6ST.  相似文献   

9.
Regiospecifically sulfated chondroitin sulfate repeating tetrasaccharides, CS-OO, GlcAβ-GalNAcβ-GlcAβ-GalNAcβ;CS-EE, GlcAβ-GalNAc(4S6S)β-GlcAβ-GalNAc(4S6S)β; and CS-AA, GlcAβ-GalNAc(4S)β-GlcAβ-GalNAc(4S)β, having biotin linked with a hydrophilic linker at the reducing terminal were synthesized effectively by a coupling of the corresponding disaccharide units and regioselective sulfation. CS-EE showed greater affinity for midkine than CS-AA and CS-OO.  相似文献   

10.
Glycosaminoglycan was isolated from the body wall of sea cucumber Stichopus japonicus by a method consisting of enzymatic digestion, gel filtration, and ion-exchange chromatography. One gram of sea cucumber glycosaminoglycan was composed of 2.50 mmol of sulfate, 0.47 mmol of N-acetylgalactosamine (GalNAc), 0.53 mmol of glucuronic acid (GlcA), 1.73 mmol of fucose, and a small amount of peptide. When mildly hydrolyzed with 0.1 N H2SO4, this glycosaminoglycan released two products, one consisting of fucose plus sulfate and the other of fucose only. Partially hydrolyzed glycosaminoglycan thus obtained was composed of sulfate, GalNAc, GlcA, and fucose at a molar ratio of 3:2:2:1. Partially hydrolyzed glycosaminoglycan was easily digested with chondroitinase AC II. In ion-exchange chromatography, the digest exhibited four sharp peaks whose retention times agreed with those of unsaturated 0-(delta Di-0S), mono-(delta Di-4S and delta Di-6S), and di-(delta Di-SE) sulfated disaccharide, respectively. The disaccharide unit of sea cucumber glycosaminoglycan was composed of 22.4% chondroitin sulfate E, 11.2% chondroitin, 10.4% chondroitin 4-sulfate, and 56.0% chondroitin 6-sulfate.  相似文献   

11.
Shark cartilage proteoglycans bear predominantly chondroitin 6-sulfate. After exhaustive protease digestion, reductive beta-elimination, and subsequent chondroitinase ABC digestion, 13 hexasaccharide alditols, which are nonsulfated, sulfated, and/or phosphorylated, were obtained from the carbohydrate-protein linkage region. Six compounds, containing 0 or 1 sulfate and/or phosphate residue, represent approximately 40% of the isolated linkage hexasaccharide alditols. They were analyzed by chondroitinase ACII or alkaline phosphatase digestion in conjunction with high performance liquid chromatography, and by 500 MHz one- and two-dimensional 1H NMR spectroscopy. All six compounds have the conventional structure in common. Delta 4,5-GlcA beta 1-3GalNAc beta 1-4GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl-ol One compound has no sulfate nor phosphate. Two of the monosulfated compounds have a O-sulfate on C-6 or on C-4 of the GalNAc residue. The third monosulfated compound has a novel O-sulfate on C-6 of the Gal residue attached to xylitol. The two phosphorylated compounds have O-phosphate on C-2 of Xyl-ol, and one of them has in addition sulfate on C-6 of GalNAc.  相似文献   

12.
Chondroitin sulfates were fragmented using the enzymes chondroitin sulfate ABC endolyase and chondroitin ACII lyase; both disaccharide and tetrasaccharide fragments were isolated after reduction to the corresponding 2-deoxy-2-N-acetylamino-D-galactitol (GalNAc-ol) form. These have the structures: Delta UA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S-ol, Delta UA2S(beta 1--3)GalNAc6S-ol, Delta UA(beta 1--3)GalNAc4S(beta 1--4)L-IdoA(alpha 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc4S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol, Delta UA(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc6S-ol, Delta UA2S(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc4S-ol and Delta UA2S(beta 1--3)GalNAc6S(beta 1--4)GlcA(beta 1--3)GalNAc6S-ol, where Delta UA represents a 4,5-unsaturated hexuronic acid (4-deoxy-alpha-Lthreo-hex-4-enepyranosyluronic acid) and 6S/4S/2S represent O-ester sulfate groups at C6/C4/C2 sites. Complete (1)H-NMR and (13)C-NMR data are derived for these species, which may help to alleviate some of the significant difficulties resulting from signal complexity that are currently hindering the characterization and assignment of major and minor structural components within chondroitin sulfate and dermatan sulfate polymers.  相似文献   

13.
Oversulfated chondroitin sulfate E (CS-E) derived from squid cartilage exhibits intriguing biological activities, which appear to reflect the biological activities of mammalian CS chains containing the so-called E disaccharide unit [GlcAbeta1-3GalNAc(4,6-O-disulfate)]. Previously, we isolated novel tetra- and hexasaccharides containing a rare GlcA(3-O-sulfate) at the nonreducing end after digestion of squid cartilage CS-E with testicular hyaluronidase. In this study, squid cartilage CS-E was extensively digested with chondroitinase AC-II, which yielded five highly sulfated novel tetrasaccharides and two odd-numbered oligosaccharides (tri- and pentasaccharides) containing D-Glc. Their structures were determined by fast atom bombardment mass spectrometry and (1)H NMR spectroscopy. The results revealed an internal GlcA(3-O-sulfate) residue for all the novel tetrasaccharide sequences, which rendered the oligosaccharides resistant to the enzyme. The results suggest that GlcA(3-O-sulfate) units are not clustered but rather interspersed in the CS-E polysaccahride chains, being preferentially located in the highly sulfated sequences. The predominant structure on the nearest nonreducing side of a GlcA(3-O-sulfate) residue was GalNAc(4-O-sulfate) (80%), whereas that on the reducing side was GalNAc(4,6-O-disulfate) (59%). The structural variety in the vicinity of the GlcA(3-O-sulfate) residue might represent the substrate specificity of the unidentified chondroitin GlcA 3-O-sulfotransferase. The results also revealed a trisaccharide and a pentasaccahride sequence, both of which contained a beta-d-Glc branch at the C6 position of the constituent GalNAc residue. Approximately 5 mol % of all disaccharide units were substituted by Glc in the CS-E preparation used.  相似文献   

14.
The potential relationship of an intact membrane organization for the synthesis of chondroitin and chondroitin 4-sulfate was examined after modification of a mouse mast cell microsomal system with the nonionic detergent, Triton X-100. The results indicated that Triton X-100 had no effect on the rate of polymerization but had a slight effect on the size of glycosaminoglycan chains. An "all or nothing" pattern of sulfation of newly formed chondroitin was obtained in both the presence and the absence of Triton X-100, and this pattern did not change whether sulfation was initiated concurrent with or subsequent to polymerization. Sulfation of exogenous [14C]chondroitin and exogenous proteo[3H]chondroitin by the microsomal system required Triton X-100 but still produced an all or nothing pattern rather than a random sulfation pattern. When a 100,000 x g supernatant fraction was utilized for sulfation of [14C]chondroitin or proteo[3H]chondroitin, Triton X-100 was not needed, and a partial sulfation pattern was obtained. However, it was similar to the all or nothing pattern in that it still produced two populations, with some chains nonsulfated and others approximately 50% sulfated. When chondroitin hexasaccharide was used with 3'-phosphoadenylylphospho[35S]sulfate, multiple GalNAc residues of the individual hexasaccharides were found to be sulfated. This was relatively independent of Triton X-100 or the concentration of the hexasaccharide acceptors. With soluble enzyme, sulfation of multiple GalNAc residues on the individual hexasaccharide molecules was even greater, so that trisulfated products were found. These results suggest that efficient sulfation of chondroitin is related to enzyme-substrate interaction more than to membrane organization.  相似文献   

15.
In order to evaluate models for the acid denaturation of DNA and to assess the potential importance of protonated bases in mutations and gene expression, an NMR investigation of DNA and nucleotides in the pH range 7-2 has been conducted. The changes in the imino proton spectral region are readily observed and quite dramatic on lowering pH. At pH 7.0, calf thymus DNA has imino proton signals for AT (13.6 ppm, 56% area) and GC (12.6 ppm, 44% area) base pairs but no peaks in the 10-12 ppm region. At pH 5 a broad peak(s) between 10 and 11 ppm was (were) observed, and it narrowed and shifted to 10.9 ppm at pH 3.2. The original GC area was lost by pH 3.2 while the AT area was reduced by 50%. Below pH 3 the remainder of the AT signal was lost, and the area of the 10.9 ppm peak increased. Over this pH range the aromatic proton signals of DNA sharpened, and the cytosine amino proton signals in DNA narrowed and shifted downfield. Addition of pyrazole in the pH 4-6 range caused broadening of the new resonance but had very little effect on the original signals. Addition of Cu2+ in the pH 4-6 range resulted in a large loss in area of the GC and the new upfield peak(s). However, at lower pH, the upfield peak was not totally broadened by Cu2+. At pH below 7, the broad 31P signal of calf thymus DNA shifted slightly downfield and sharpened.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Hybrid chondroitin/dermatan sulfate (CS/DS) glycosaminoglycan chains, derived from decorin secreted by human skin fibroblasts, were shown to interact with FGF-2, as did oligosaccharides derived therefrom by chondroitin B lyase digestion. In a first attempt to identify the biologically active sequence, a novel protocol for structural analysis of enzyme-resistant oligosaccharides larger than standard trisulfated hexasaccharides was developed. The method bases on capillary electrophoresis (CE) for separating oversulfated species in offline combination with nanoelectrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoESI-QTOF-MS/MS) in the negative ion mode. Under optimized CE and ESI-MS conditions, up to 12-mer oligosaccharides with different degrees of sulfation were identified. A novel tandem MS protocol (CID-VE) was applied to elucidate the structure of a previously undescribed pentasulfated CS/DS hexasaccharide, Delta-4,5-IdoAGalNAc[GlcAGalNAc]2(5S). In this molecular species, detected as a triply charged ion at m/z 511.38, three sulfates are found in the IdoAGalNAcGlcA moiety offering two structural variants: one containing sulfated IdoA together with a disulfated GalNAc moiety and in the other one both uronic acids, that is, GlcA and IdoA and the amino sugar each carry a sulfate ester group.  相似文献   

17.
A microsomal preparation from chondroitin 4-sulfate-synthesizing cultured mouse mastocytoma cells was incubated with UDP-[3H]GalNAc, UDP-GlcA, and 3'-phosphoadenylylphosphosulfate (PAPS) for 30 s at 10 degrees C and with UDP-[14C]GlcA, UDP-GalNAc, and PAPS for 4 h at 37 degrees C for synthesis of 3H- and 14C-labeled chondroitin/chondroitin sulfate. The latter incubation provided more than 100 times as much product as did the short incubation at 10 degrees C. Upon chromatography of the isolated labeled glycosaminoglycans on a Sepharose CL-6B column, most of the [14C]glycosaminoglycan from the 4 h, 37 degrees C incubation was excluded from the column, indicating that this nascent glycosaminoglycan had been polymerized fully. In contrast, most of the [3H]glycosaminoglycan from the 30 s, 10 degrees C incubation was mostly retarded upon cochromatography on this same column, indicating that the nascent glycosaminoglycan was still growing in size. The labeled fractions representing chondroitin/chondroitin sulfate of varying sizes were analyzed for degree of sulfation by degradation with chondroitin ABC lyase followed by paper electrophoresis of the products. Results indicated that the [14C]chondroitin/chondroitin sulfate formed in the 4-h incubation was 60-70% sulfated. Incomplete chains of [3H]chondroitin/chondroitin sulfate formed in the 30-s incubation were also sulfated as much as 20-25%. As the size of the [3H]chondroitin/chondroitin sulfate increased, there was a concomitant increase in sulfation. These results demonstrate that in this microsomal system sulfation takes place while the nascent chondroitin glycosaminoglycan chains are still actively growing in length, although the sulfation lags somewhat behind the polymerization. This not only indicates a common membrane location for both polymerization and sulfation of chondroitin but also demonstrates that the sulfation of chondroitin by these mastocytoma cells may occur during the process of glycosaminoglycan polymerization rather than subsequent to completion of the glycosaminoglycan chains.  相似文献   

18.
We synthesized the biotinylated chondroitin sulfate tetrasaccharides CS-CC [-3)βGalNAc6S(1–4)βGlcA(1-]2 and CS-DD [-3)βGalNAc6S(1–4)βGlcA2S(1-]2 which possess sulfate groups at O-6 of GalNAc and an additional sulfate group at O-2 of GlcA, respectively. We also analyzed interactions among CS-CC and CS-DD and the antibodies 2H6 and LY111, both of which are known to bind with CS-A, while CS-DD was shown for the first time to bind with both antibodies.  相似文献   

19.
The coordination of N-deacetylation and N-sulfation of heparan sulfate was examined in wild-type Chinese hamster ovary cells and mutant pgsE-606. This mutant expresses about 3-fold less N-sulfotransferase activity, which causes the proportion of N-sulfated GlcN residues in heparan sulfate to decline from 39 to 21% of total GlcN (Bame, K.J., and Esko, J.D. (1989) J. Biol. Chem. 264, 8059-8065). In this report, we show that microsomes from pgsE-606 cells have about twice the N-deacetylase activity found in microsomes from wild-type cells. However, N-deacetylation in vivo was actually depressed since heparan sulfate preparations from the mutant contained very few unsubstituted GlcN residues and 2-fold less N-sulfated GlcN residues. Treatment of mutant cells with chlorate, a general inhibitor of sulfation, depressed adenosine 3'-phosphate-5'-phosphosulfate pools more than 10-fold and further reduced the extent of N-sulfation from 21% to less than 6% of total GlcN. Unsubstituted GlcN residues accumulated under these conditions to the extent that N-sulfated residues declined. Thus, N-deacetylation remained depressed in the mutant in the presence of chlorate. These findings show that N-deacetylation is regulated in vivo and support the idea that the activity of N-deacetylase may be linked to N-sulfotransferase.  相似文献   

20.
Pathogenic Streptococcus agalactiae produces polysaccharide lyases and unsaturated glucuronyl hydrolase (UGL), which are prerequisite for complete degradation of mammalian extracellular matrices, including glycosaminoglycans such as chondroitin and hyaluronan. Unlike the Bacillus enzyme, streptococcal UGLs prefer sulfated glycosaminoglycans. Here, we show the loop flexibility for substrate binding and structural determinants for recognition of glycosaminoglycan sulfate groups in S. agalactiae UGL (SagUGL). UGL also degraded unsaturated heparin disaccharides; this indicates that the enzyme released unsaturated iduronic and glucuronic acids from substrates. We determined the crystal structures of SagUGL wild-type enzyme and both substrate-free and substrate-bound D175N mutants by x-ray crystallography and noted that the loop over the active cleft exhibits flexible motion for substrate binding. Several residues in the active cleft bind to the substrate, unsaturated chondroitin disaccharide with a sulfate group at the C-6 position of GalNAc residue. The sulfate group is hydrogen-bonded to Ser-365 and Ser-368 and close to Lys-370. As compared with wild-type enzyme, S365H, S368G, and K370I mutants exhibited higher Michaelis constants toward the substrate. The conversion of SagUGL to Bacillus sp. GL1 UGL-like enzyme via site-directed mutagenesis demonstrated that Ser-365 and Lys-370 are essential for direct binding and for electrostatic interaction, respectively, for recognition of the sulfate group by SagUGL. Molecular conversion was also achieved in SagUGL Arg-236 with an affinity for the sulfate group at the C-4 position of the GalNAc residue. These residues binding to sulfate groups are frequently conserved in pathogenic bacterial UGLs, suggesting that the motif "R-//-SXX(S)XK" (where the hyphen and slash marks in the motif indicate the presence of over 100 residues in the enzyme and parentheses indicate that Ser-368 makes little contribution to enzyme activity) is crucial for degradation of sulfated glycosaminoglycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号