首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shen Z  Cheng F  Xu Y  Fu J  Xiao W  Shen J  Liu G  Li W  Tang Y 《PloS one》2012,7(3):e33500
Human microsomal cytochrome P450 2E1 (CYP2E1) can oxidize not only low molecular weight xenobiotic compounds such as ethanol, but also many endogenous fatty acids. The crystal structure of CYP2E1 in complex with indazole reveals that the active site is deeply buried into the protein center. Thus, the unbinding pathways and associated unbinding mechanisms remain elusive. In this study, random acceleration molecular dynamics simulations combined with steered molecular dynamics and potential of mean force calculations were performed to identify the possible unbinding pathways in CYP2E1. The results show that channel 2c and 2a are most likely the unbinding channels of CYP2E1. The former channel is located between helices G and I and the B-C loop, and the latter resides between the region formed by the F-G loop, the B-C loop and the β1 sheet. Phe298 and Phe478 act as the gate keeper during indazole unbinding along channel 2c and 2a, respectively. Previous site-directed mutagenesis experiments also supported these findings.  相似文献   

2.
Previously we showed that intact rat cytochrome P450 2E1, cytochrome P450 2B1 and truncated cytochrome P450 1A1 are targeted to mitochondria in rat tissues and COS cells. However, some reports suggest that truncated cytochrome P450 2E1 is targeted to mitochondria. In this study, we used a heterologous yeast system to ascertain the conservation of targeting mechanisms and the nature of mitochondria-targeted proteins. Mitochondrial integrity and purity were established using electron microscopy, and treatment with digitonin and protease. Full-length cytochrome P450 2E1 and cytochrome P450 2B1 were targeted both to microsomes and mitochondria, whereas truncated cytochrome P450 1A1 (+ 5 and + 33/cytochrome P450 1A1) were targeted to mitochondria. Inability to target intact cytochrome P450 1A1 was probably due to lack of cytosolic endoprotease activity in yeast cells. Mitochondrial targeting of cytochrome P450 2E1 was severely impaired in protein kinase A-deficient cells. Similarly, a phosphorylation site mutant cytochrome P450 2E1 (Ser129A) was poorly targeted to the mitochondria, thus confirming the importance of protein kinase A-mediated protein phosphorylation in mitochondrial targeting. Mitochondria-targeted proteins were localized in the matrix compartment peripherally associated with the inner membrane and their ethoxyresorufin O-dealkylation, erythromycin N-demethylase, benzoxyresorufin O-dealkylation and nitrosodimethylamine N-demethylase activities were fully supported by yeast mitochondrial ferredoxin and ferredoxin reductase.  相似文献   

3.
Kelley RW  Cheng D  Backes WL 《Biochemistry》2006,45(51):15807-15816
Mixed reconstituted systems containing CYP2B4, CYP1A2, and NADPH-cytochrome P450 reductase were previously shown to exhibit a dramatic inhibition of 7-pentoxyresorufin O-dealkylation (PROD) when compared to simple reconstituted systems containing reductase and a single P450 enzyme, results consistent with the formation of CYP1A2-CYP2B4 complexes where the reductase binds with high affinity to the CYP1A2 moiety of the complex. In this report, we provide evidence for an interaction between CYP1A2 and CYP2E1. Synergism of 7-ethoxyresorufin O-deethylation (EROD) and PROD was observed when these P450s were combined in mixed reconstituted systems at subsaturating reductase concentrations. Higher ionic strength attenuated the synergistic stimulation of both PROD and EROD in mixed reconstituted systems, consistent with disruption of heteromeric CYP2E1-CYP1A2 complexes. The effect of ionic strength was further examined as a function of reductase concentration. At lower ionic strength, there was a significant synergistic stimulation of EROD. This synergistic stimulation diminished with increasing reductase concentration, resulting in an additive response as reductase became saturating. Interestingly, at high ionic strength, the synergism of EROD in the mixed reconstituted system was not observed. In contrast, mixed reconstituted systems containing CYP2E1 and CYP2B4 did not provide evidence for the formation of these heteromeric P450-P450 complexes. The synergistic stimulation observed with the reductase-CYP1A2-CYP2E1 mixed reconstituted system is consistent with the formation of a CYP1A2-CYP2E1 complex. Taken together with the lack of a kinetically detectable interaction between CYP2B4 and CYP2E1, and the previously reported CYP1A2-CYP2B4 interaction, these results suggest that CYP1A2 may facilitate the formation of complexes with other P450 enzymes.  相似文献   

4.
A protein of 75 kDa is found in large quantities throughout the blood stages of the human malarial parasite, Plasmodium falciparum. Based on a partial amino acid sequence for p75, previously deduced from a cDNA clone encoding approximately 40% of the molecule, secondary structural predictions were made. The potential role of long range effects on the tertiary structure of the protein stabilized by disulfide bridges was determined by reduction and alkylation of the fusion protein. Five regions were then chosen for peptide modeling. Peptides of 16, 28, 49, 64, and 76 residues were synthesized and used to immunize rabbits. All but the 16-residue peptides were capable of stimulating boostable IgG antibody responses in rabbits, but the antibody produced against the 49 mer did not react with the native parasite protein. Thus, the 28, 64, and 76 residue peptides represent good immunologic models for portions of the P. falciparum 75-kDa protein capable of stimulating both T and B cells in rabbits. The peptides were also used to probe whether any of the selected regions contain epitopes which react with antibodies from owl monkeys immune to P. falciparum. Of these peptides, two were found to be consistently recognized in ELISA by four owl monkey antisera raised in response to malarial infection. Because these two peptides model a cysteine-containing region of the protein, owl monkey sera were also used as probes of the importance of disulfide bonding in maintaining the native structure. The results obtained were consistent with a folding pattern for p75 that incorporates a disulfide bond between cysteines 161 and 194. These results also suggest that most of the epitopes recognized in this part of p75 by the immune system of the monkey are created by folding of the molecule.  相似文献   

5.
Porphyria cutanea tarda is a liver disease characterized by excess production of uroporphyrin. We previously reported that acetone, an inducer of CYP2E1, enhances hepatic uroporphyrin accumulation in mice treated with iron dextran (Fe) and 5-aminolevulinic acid (ALA). Cyp2e1(-/-) mice treated with Fe and ALA were used to investigate whether CYP2E1 is required for the acetone effect. Hepatic uroporphyrin accumulation was stimulated by acetone in Cyp2e1(-/-) mice to the same extent as in wild-type mice. In the absence of acetone, uroporphyrin accumulated in Cyp2e1(-/-) mice treated with Fe and ALA, but less than in wildtype mice. However, in Cypla2(-/-) mice, uroporphyrin accumulation caused by Fe and ALA, with or without acetone, was completely prevented. Acetone was not an inducer of hepatic CYP1A2 in the wild-type mice. Although acetone is an inducer of CYP2E1, CYP1A2 appears to have the essential role in acetone-enhancement of uroporphyria.  相似文献   

6.
Considering the dynamic nature of CYPs, methods that reveal information about substrate and enzyme dynamics are necessary to generate predictive models. To compare substrate dynamics in CYP2E1 and CYP2A6, intramolecular isotope effect experiments were conducted, using deuterium labeled substrates: o-xylene, m-xylene, p-xylene, 2,6-dimethylnaphthalene, and 4,4'-dimethylbiphenyl. Competitive intermolecular experiments were also conducted using d(0)- and d(6)-labeled p-xylene. Both CYP2E1 and CYP2A6 displayed full isotope effect expression for o-xylene oxidation and almost complete suppression for dimethylbiphenyl. Interestingly, (k(H)/k(D))(obs) for d(3)-p-xylene oxidation ((k(H)/k(D))(obs)=6.04 and (k(H)/k(D))(obs)=5.53 for CYP2E1 and CYP2A6, respectively) was only slightly higher than (k(H)/k(D))(obs) for d(3)-dimethylnaphthalene ((k(H)/k(D))(obs)=5.50 and (k(H)/k(D))(obs)=4.96, respectively). One explanation is that in some instances (k(H)/k(D))(obs) values are generated by the presence of two substrates-bound simultaneously to the CYP. Speculatively, if this explanation is valid, then intramolecular isotope effect experiments should be useful in the mechanistic investigation of P450 cooperativity.  相似文献   

7.
8.
Addition of adrenalin to primary rat hepatocytes caused a 3- and 2-fold increase in [32P]-incorporation into CYP2E1 and CYP2B1, respectively. Adrenalin also increased the rate of CYP2E1 degradation at similar concentrations as needed for phosphorylation of the protein (r = 0.93), but did not influence the degradation rate of CYP2B1. Ethanol (75 mM) completely protected from adrenalin dependent phosphorylation and degradation of CYP2E1, but did not influence CYP2B1 on these parameters. Examination of para-nitrophenol hydroxylase revealed that ethanol stabilized the catalytically active form of CYP2E1. Insulin treatment caused a stabilization of CYP2E1, but did not affect CYP2B1 degradation. It is concluded that degradation of CYP2E1 is the subject of hormonal control, whereas CYP2B1 decomposition is accomplished in a different and a less regulated manner.  相似文献   

9.
The enzyme, thyroid peroxidase (TPO), is a dominant antigen in thyroid autoimmune diseases. Autoantibodies recognised two major dominant conformational epitopes termed A and B. The epitopes have been defined by mAbs, but the amino acid residues which constitute these determinants remain unknown. Using a model of TPO, built from the structure of myeloperoxidase (MPO), we have synthesised peptides corresponding to exposed loops and generated rabbit antibodies to the peptides. Antisera to peptide sequence 599-617 (peptide 14) representing a highly protrusive loop on the TPO, showed the highest inhibition in 65 sera from patients positive with anti-TPO antibodies. The inhibition was by 15-80% (mean 41%), and no other antibody showed any inhibition. Binding of hFabs to the B determinant on TPO was inhibited by anti-peptide 14 antibodies more then 85%, but not Fabs to the A determinant. In conclusion, the peptide 14 defines a sequence taking part in building up the B major conformational epitope. None of generated anti-peptide antibodies alone inhibited the binding of human Fabs to the A epitope, however a combination of four anti-peptide antibodies (P1, P12, P14 and P18) inhibits Fabs binding to the A determinant by more then 60% and autoantibodies binding from 65% to 94%. Combination of antibodies reacting with peptides outside the surface defined by those four antipeptide antibodies did not give any inhibition of Fabs to TPO. The inhibition of Fabs and auto Abs to TPO by this combination of anti-peptide Abs is the result of steric hindrance as none of these Abs individually inhibited auto Abs' or Fabs' binding to TPO. The four peptides define an area on the enzyme surface where the A and B major conformational epitopes are localised.  相似文献   

10.
Human paraoxonase 1 (huPON1) is a calcium-dependent esterase responsible for hydrolysis of a wide variety of substrates including organophosphates, esters, lactones, and paraoxon. Although its natural substrate is unknown, the action of PON as an antioxidant is well documented. Because recent reports have suggested glycation may induce reduced PON activity in diabetes, we investigated the structural features of huPON1 and its glycated mutant by template-based modeling, docking, and molecular dynamics (MD) simulations. Our results corroborated the importance of the His115–His134 dyad in both the lactonase and paraoxonase activity of huPON1. Structural alterations in the glycated model reflected weak interactions between the docked substrate and the active site cleft. We also used MD simulation to gain insight into glycation-induced conformational changes of huPON1 and the implication of this on depleted enzymatic activity. The catalytic calcium found on the surface interacts with the side chain oxygen of residues, including Asn224, Asn270, Asn168, Asp269, and Glu53, and this interaction with the respective residues undergoes minor displacement on glycation. The root-mean-square fluctuation had high motional flexibility in the non-glycated model whereas the conformation of the glycated structure was comparatively stable. Our findings emphasize the consequence of glycation-induced alterations and their effect on overall enzymatic activity.  相似文献   

11.
12.
CYP2E1 and oxidative liver injury by alcohol   总被引:3,自引:0,他引:3  
Ethanol-induced oxidative stress seems to play a major role in mechanisms by which ethanol causes liver injury. Many pathways have been suggested to contribute to the ability of ethanol to induce a state of oxidative stress. One central pathway seems to be the induction of cytochrome P450 2E1 (CYP2E1) by ethanol. CYP2E1 metabolizes and activates many toxicological substrates, including ethanol, to more reactive, toxic products. Levels of CYP2E1 are elevated under a variety of physiological and pathophysiological conditions and after acute and chronic alcohol treatment. CYP2E1 is also an effective generator of reactive oxygen species such as the superoxide anion radical and hydrogen peroxide and, in the presence of iron catalysts, produces powerful oxidants such as the hydroxyl radical. This review article summarizes some of the biochemical and toxicological properties of CYP2E1 and briefly describes the use of cell lines developed to constitutively express CYP2E1 and CYP2E1 knockout mice in assessing the actions of CYP2E1. Possible therapeutic implications for treatment of alcoholic liver injury by inhibition of CYP2E1 or CYP2E1-dependent oxidative stress will be discussed, followed by some future directions which may help us to understand the actions of CYP2E1 and its role in alcoholic liver injury.  相似文献   

13.
14.
Nekouzadeh A  Rudy Y 《PloS one》2011,6(5):e20186
A modeling framework was developed to simulate large and gradual conformational changes within a macromolecule (protein) when its low amplitude high frequency vibrations are not concerned. Governing equations were derived as alternative to Langevin and Smoluchowski equations and used to simulate gating conformational changes of the Kv7.1 ion-channel over the time scale of its gating process (tens of milliseconds). The alternative equations predict the statistical properties of the motion trajectories with good accuracy and do not require the force field to be constant over the diffusion length, as assumed in Langevin equation. The open probability of the ion-channel was determined considering cooperativity of four subunits and solving their concerted transition to the open state analytically. The simulated open probabilities for a series of voltage clamp tests produced current traces that were similar to experimentally recorded currents.  相似文献   

15.
B Mao 《Biophysical journal》1991,60(3):611-622
Atomic motions in protein molecules have been studied by molecular dynamics (MD) simulations; dynamics simulation methods have also been employed in conformational studies of polypeptide molecules. It was found that when atomic masses are weighted, the molecular dynamics method can significantly increase the sampling of dihedral conformation space in such studies, compared to a conventional MD simulation of the same total simulation time length. Herein the theoretical study of molecular conformation sampling by the molecular dynamics-based simulation method in which atomic masses are weighted is reported in detail; moreover, a numerical scheme for analyzing the extensive conformational sampling in the simulation of a tetrapeptide amide molecule is presented. From numerical analyses of the mass-weighted molecular dynamics trajectories of backbone dihedral angles, low-resolution structures covering the entire backbone dihedral conformation space of the molecule were determined, and the distribution of rotationally stable conformations in this space were analyzed quantitatively. The theoretical analyses based on the computer simulation and numerical analytical methods suggest that distinctive regimes in the conformational space of the peptide molecule can be identified.  相似文献   

16.
Alcohol and tobacco are frequently co-abused. Increased alcohol use and alcoholism are associated with smoking, and vice versa. Functional and/or metabolic cross-tolerance may contribute to this occurrence. This review summarizes recent studies published from our laboratory focusing on metabolic aspects of tolerance, which demonstrate that in rat, subchronic, behaviourally relevant doses of ethanol induce hepatic nicotine-metabolizing cytochrome P450 (CYP) 2B1, and that subchronically administered nicotine, at behaviourally relevant doses, induces hepatic ethanol-metabolizing CYP2E1. Increased CYP2B1 protein, mRNA and CYP2B1-mediated nicotine metabolism was observed following ethanol treatments. CYP2E1 protein and activity were induced by nicotine, but no changes were seen in levels of CYP2E1 mRNA. These data indicate that metabolic cross-tolerance may occur between nicotine and ethanol, suggesting that nicotine use may increase the elimination of ethanol, and ethanol use may increase the elimination of nicotine. Other implications, such as altered pharmacology and toxicology of drugs metabolized by these enzymes, as well as changes in pro-carcinogen and pro-toxin activation are also discussed.  相似文献   

17.
18.
Knowledge-based modeling has proved significantly accurate for generating the quality models for proteins whose sequence identity with the structurally known targets is greater than or equal to 40%. On the other hand, models obtained for low sequence identities are not reliable. Hence, a reliable and alternative strategy that uses knowledge of domains in the protein can be used to improve the quality of the model generated by the homology method. Here, we report a method for developing a 3D-model for the envelope glycoprotein (Egp) of west nile virus (WNV), using knowledge of structurally conserved functional domains amongst the target sequence (Egp of WNV) and its homologous templates belonging to the same protein family, flaviviridae. This strategy is found to be highly effective in reducing the root mean square deviation (RMSD) value at the C positions of the target and its experimental homologues. The 3D structure of a protein is a prerequisite for structure-based drug design as well as for identifying the conformational epitopes that are essential for the designing vaccines. The conformational epitopes are mapped from the 3D structure of Egp of WNV modeled using the concept of an antigenic domain. A total of five such epitope regions/sites have been identified. They have been found distributed in the loop regions (surface) of the whole protein model composed of dimerization, central and immunological domains. These sites are proposed as the binding sites for HLA proteins/B-cell receptors. Binding is required to activate the immune response against WNV.Figure The conformational epitopes that are distributed in all the domains. They are found out by the algorithm by Kolaskar et al.  相似文献   

19.
20.
Four types of antigenic sites found in viruses are discussed: cryptotopes, neotopes, metatopes and neutralization epitopes. The role played by conformation on the specificity of viral epitopes is illustrated in the case of tobacco mosaic virus and influenza virus. It appears that mechanisms reminiscent of induced fit contribute to the recognition of viral epitopes by antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号