首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ontogeny of basic, near-neutral and acidic glutathione S-transferase isoenzymes was studied by using chromatofocusing and ion-exchange chromatography. These isoenzyme sets demonstrated tissue-specific patterns of expression. For example, whereas basic isoenzymes were identified in all liver and adrenal cytosols obtained after 10 weeks gestation, these forms were not detected in kidney until 10 weeks post-natal age and in spleen until about 40 weeks post-natal age. Our data indicate that the basic monomers B1 and B2 are present in liver cytosol at 21 weeks gestation. Expression of the near-neutral isoenzymes was usually weak; for example, they were not generally expressed in liver until 30 weeks gestation, and no developmental patterns in their expression could be identified in adrenal, kidney and spleen. The acidic isoenzymes were usually strongly expressed in adrenal, kidney and spleen, although there was a decline in the level of expression in kidney after birth.  相似文献   

2.
Differential expression of glutathione S-transferase (GST) enzyme activity in various tissues of the camel was observed with a maximum activity in the liver. Compared with the rat and human livers, GST activity in camel liver was 50% lower than that of rat liver and similar to that of human liver. Extrahepatic tissues in camel have a comparable GST activity with those of similar tissues in the rat. Assay of GST activity using ethacrynic acid as substrate demonstrated maximum activity in the camel brain followed by intestine, liver and kidney. Microsomal GST activity in camel tissues was expressed in the order of liver > testis > intestine ≈ kidney ≈ brain. Phenotyping of GST was performed in camel hepatic and extrahepatic tissues using human specific antibodies to class α, μ, and π cytosolic GST isoenzymes and rat specific antibody to the microsomal GST. Western immunoblot and immunohistochemical analyses showed an abundant expression of GST α and μ in the camel liver, while π was very poorly expressed. Camel extrahepatic tissues however, had a significant expression of GST π. The camel GST isoenzymes were found to be predominantly expressed in the hepatocytes around the central vein with a gradual decrease in expression in the hepatocytes located toward the periphery. Kidney cortex exhibited a greater expression of the enzyme protein in the proximal tubules as compared to the glomeruli. Glutathione (GSH) concentration in rat tissues, except in the brain, was about 2-fold higher than that of camel tissues. Rate of NADPH-dependent microsomal lipid peroxidation was comparable both in the rat and camel tissues with the highest activity in the brain and lowest activity in the intestine. The differential expression of GST isoenzymes in different organs of the camel, GSH concentration and the rate of lipid peroxidation in different tissues may be important factors in determining the differential susceptibility of camel tissues to the toxic effects of xenobiotics.  相似文献   

3.
Studies were undertaken to provide information regarding cell-specific expression of mucin genes and their relation to developmental and neoplastic patterns of epithelial cytodifferentiation. In situ hybridization was used to study mRNA expression of mucin genes in duodenum and accessory digestive glands (liver, gallbladder, pancreas) of 13 human embryos and fetuses (6. 5-27 weeks' gestation), comparing these with normal and neoplastic adult tissues. These investigations demonstrated that the pattern of mucin gene expression in fetal duodenum reiterated the patterns we observed during gastric and intestinal ontogenesis, with MUC2 and MUC3 expression in the surface epithelium and MUC6 expression associated with the development of Brünner's glands. In embryonic liver, MUC3 was already expressed at 6.5 weeks of gestation in hepatoblasts. As in adults, MUC1, MUC2, MUC3, MUC5AC, MUC5B, and MUC6 were expressed in fetal gallbladder, whereas MUC4 was not. In contrast, MUC4 was strongly expressed in gallbladder adenocarcinomas. MUC5B and MUC6 were expressed in fetal pancreas, from 12 weeks and 26 weeks of gestation, respectively. Surprisingly, MUC3 which is strongly expressed in adult pancreas, was not detected in developmental pancreas. Taken together, these data show complex spatio-temporal regulation of the mucin genes and suggest a possible regulatory role for mucin gene products in gastroduodenal epithelial cell differentiation.  相似文献   

4.
Several forms of glutathione S-transferase (GST) are present in human kidney, and the overall isoenzyme pattern of kidney differs significantly from those of other human tissues. All the three major classes of GST isoenzymes (alpha, mu and pi) are present in significant amounts in kidney, indicating that GST1, GST2 and GST3 gene loci are expressed in this tissue. More than one form of GST is present in each of these classes of enzymes, and individual variations are observed for these classes. The structural, immunological and functional properties of GST isoenzymes of three classes differ significantly from each other, whereas the isoenzymes belonging to the same class have similar properties. All the cationic GST isoenzymes of human kidney except for GST 9.1 are heterodimers of 26,500-Mr and 24,500-Mr subunits. GST 9.1 is a dimer of 24,500-Mr subunits. All the cationic isoenzymes of kidney GST cross-react with antibodies raised against a mixture of GST alpha, beta, gamma, delta and epsilon isoenzymes of liver. GST 6.6 and GST 5.5 of kidney are dimers of 26,500-Mr subunits and are immunologically similar to GST psi of liver. Unlike other human tissues, kidney has at least two isoenzymes (pI 4.7 and 4.9) associated with the GST3 locus. Both these isoenzymes are dimers of 22,500-Mr subunits and are immunologically similar to GST pi of placenta. Some of the isoenzymes of kidney do not correspond to known GST isoenzymes from other human tissues and may be specific to this tissue.  相似文献   

5.
The development of glutathione S-transferase and glutathione peroxidase activities has been studied in human lung cytosols. Whilst no clear change in glutathione peroxidase activity was identified, expression of the acidic glutathione S-transferase isoenzyme decreased markedly after 15 weeks of gestation so that at birth the level of activity of this isoenzyme was only about 20% of that in samples obtained during the first trimester. Basic glutathione S-transferase isoenzymes were weakly expressed during development and usually comprised less than 10% of cytosolic activity. Ion-exchange studies identified several basic isoenzymes that may correspond to the alpha, beta, gamma, delta and epsilon set previously identified in liver. Weak expression of apparently near-neutral isoenzymes was also detected; they were detected in only a few cytosols.  相似文献   

6.
Changes in the activities and isoenzyme distribution of hexokinase were determined in a number of tissues during the development of the guinea pig. The total activity in the fetal liver showed a large fall during the second half of gestation to reach adult values by term. With normal diet the fetal, neonatal, and adult livers had isoenzymes I and III but little or no detectable IV (glucokinase). The fetal liver had predominantly type I, but the proportion of type III increased during development. The kinetics of the guinea pig isoenzymes were similar to those reported for the rat. Two additional isoenzymes with mobility between I and II were detected in the fetal liver and blood. They appear to have kinetic properties similar to type I. Detectable liver glucokinase activity was induced by glucose administration to adult guinea pigs. The total activity in kidney, brain and skeletal muscle showed a postnatal rise while in the fetal heart it was high and declined after birth. These tissues contained predominantly type I with varying proportions of type III hexokinase. The ratio of particulate-bound to soluble hexokinase varied from tissue to tissue. All except the liver showed a significant increase in binding after birth. The changes are discussed in relation to the control of glucose utilization in the fetal and neonatal periods.  相似文献   

7.
The developmental expression of the alpha, mu and pi class glutathione S-transferases has been defined in human liver using radioimmunoassay and immunohistochemistry. Expression of alpha and mu class isoenzymes increased significantly at birth, while that of the pi isoenzyme declined during the first trimester. Mu-class isoenzymes (GST1 1, GST1 2, GST1 2-1) were expressed in hepatocytes but not in other liver cell types.  相似文献   

8.
This study describes immunohistochemical localization, purification and characterization of glutathione S-transferase (GST) of human urinary bladder. Even though all the three major classes of isoenzymes (alpha, mu, and pi) were expressed in human bladder, more than 90% of total GST activity was accounted for by a pi class anionic form. Human bladder alpha, mu, and pi class GSTs were immunologically related to respective isoenzymes of other human tissues. GST pi was present in all 13 samples analyzed, whereas GST alpha and mu were detected in nine and eleven samples, respectively. GST alpha of human bladder appeared to be unique, because unlike this class of GSTs of other human tissues, bladder enzyme had lower affinity for GSH linked to epoxy-activated Sepharose 6B affinity resin. Immunohistochemical staining indicated localization of GST alpha in epithelial surface cells, underlying submucosa and smooth muscle, whereas mu and pi class isoenzymes were predominantly distributed in epithelial surface cells. These results suggest that human bladder GSTs may play an important role in providing protection against xenobiotics because epithelium is considered a target for several carcinogens and all the three classes of isoenzymes are expressed in these cells.  相似文献   

9.
The glutathione transferases (GSTs) from maize (Zea mays L.) with activities toward the chloroacetanilide herbicide metolachlor and the diphenyl ether herbicide fluorodifen were fractionated into two pools based on binding to affinity columns. Pool 1 GSTs were retained on Orange A agarose and were identified as isoenzymes Zea mays (Zm) GST I-I, Zm GST I-II and Zm GST I-III, which have been described previously. Pool 2 GSTs selectively bound to S-hexyl-glutathione-Sepharose and were distinct from the pool 1 GSTs, being composed of a homodimer of 28.5 kDa subunits, termed Zm GST V-V, and a heterodimer of the 28.5 kDa polypeptide and a 27.5 kDa subunit, termed Zm GST V-VI. Using an antibody raised to Zm GST V-VI, a cDNA expression library was screened and a Zm GST V clone identified showing sequence similarity to the type-III auxin-inducible GSTs previously identified in tobacco and other dicotyledenous species. Recombinant Zm GST V-V showed high GST activity towards the diphenyl ether herbicide fluorodifen, detoxified toxic alkenal derivatives and reduced organic hydroperoxides. Antibodies raised to Zm GST I-II and Zm GST V-VI were used to monitor the expression of GST subunits in maize seedlings. Over a 24 h period the Zm GST I subunit was unresponsive to chemical treatment, while expression of Zm GST II was enhanced by auxins, herbicides, the herbicide safener dichlormid and glutathione. The Zm GST V subunit was more selective in its induction, only accumulating significantly in response to dichlormid treatment. During development Zm GST I and Zm GST V were expressed more in roots than in shoots, with Zm GST II expression limited to the roots.  相似文献   

10.
A mouse glutathione S-transferase (GST) isozyme designated as GST 5.7 or mGSTA4-4 belongs to a distinct subclass of the α-class isozymes of GST. It is characterized by kinetic properties intermediate between the α- and π-classes of GSTs. We have recently cloned and expressed this isozyme (rec-mGSTA4-4) in E. coli and have reported its complete primary sequence (Zimniak, P. et al. (1992) FEBS Lett., 313, 173–176). Using antibodies raised against the homogenous rec-mGSTA4-4 expressed in E. coli, we now demonstrate that an ortholog of this isozyme was selectively expressed in various human tissues. The human ortholog of mGST A4-4 purified from liver had a pI value of 5.8 and constituted approx. 1.7% of total GST protein of human liver. Similar to other α-class GSTs, the N-terminus of this isozyme (GST 5.8) was also blocked. CNBr digestion of the enzyme yielded two major fragments with Mr values of 12 kDa and 6 kDa. The sequences of these two fragments showed identities in 16 out of 20 residues and 17 out of 20 residues with the corresponding sequences of its mouse ortholog (mGSTA4-4), and showed significant homologies with the rat and chicken orthologs, GST 8-8 and GST CL3. Human liver GST 5.8 showed more than an order of magnitude higher activity towards t-4-hydroxy-2-nonenal as compared to 1-chloro-2,4-dinitrobenzene. This isozyme also expressed glutathione-peroxidase activity towards fatty acid, as well as phospholipid hydroperoxidase suggesting its role in protection mechanisms against the toxicants generated during lipid peroxidation. Western blot analysis of human tissues revealed that this GST isozyme was selectively expressed in human liver, pancreas, heart, brain and bladder tissues, but absent in lung, skeletal muscle, spleen and colon.  相似文献   

11.
12.
Human muscle glutathione S-transferase isozyme, GST zeta (pI 5.2) has been purified by three different methods using immunoaffinity chromatography, DEAE cellulose chromatography, and isoelectric focusing. GST zeta prepared by any of the three methods does not recognize antibodies raised against the alpha, mu, or pi class glutathione S-transferases of human tissues. GST zeta has a blocked N-terminus and its peptide fingerprints also indicate it to be distinct from the alpha, mu, or pi class isozymes. As compared to GSTs of alpha, mu, and pi classes, GST zeta displays higher activities toward t-stilbene oxide and Leukotriene A4 methyl ester. GST zeta also expresses GSH-peroxidase activity toward hydrogen peroxide. The Kms of GST zeta for CDNB and GSH were comparable to those reported for other human GSTs but its Vmax for CDNB, 7620 mol/mol/min, was found to be considerably higher than that reported for other human GSTs. The kinetics of inhibition of GST zeta by hematin, bile acids, and other inhibitors also indicate that it was distinct from the three classes of GST isozymes. These studies suggest that GST zeta corresponds to a locus distinct from GST1, GST2, and GST3 and probably corresponds to the GST4 locus as suggested previously by Laisney et al. (1984, Human Genet. 68, 221-227). The results of peptide fingerprints and kinetic analysis indicate that as compared to the pi and alpha class isozymes, GST zeta has more structural and functional similarities with the mu class isozymes. Besides GST zeta several other GST isozymes belonging to pi and mu class have also been characterized in muscle. The pi class GST isozymes of muscle have considerable charge heterogeneity among them despite identical N-terminal sequences.  相似文献   

13.
A plasmid, termed pTacGST2, which contains the complete coding sequence of a GST2 (glutathione S-transferase 2) subunit and permits the expression of the protein in Escherichia coli was constructed. The expressed protein had the same subunit Mr as the enzyme from normal human liver and retained its catalytic function with both GST and glutathione peroxidase activity. Antiserum raised against the bacterially synthesized protein cross-reacted with all the basic GST isoenzymes in human liver. The electrophoretic mobility in agarose of the bacterially expressed isoenzyme suggested that its pI is identical with that of the cationic isoenzyme from human liver previously termed GST2 type 1. The available evidence suggests that the three common cationic isoenzymes found in human liver are the products of two very similar gene loci.  相似文献   

14.
The adult patterns of arginase isoenzymes in rat intestine, kidney, and brain are nearly identical and consist of two forms, cationic A1 and anionic A4. In this paper, the organ-specific maturation of the enzyme equipment in these tissues is reported. The activity of arginase in all tissues studied could be detected on the 13th to 16th days of gestation. In fetal intestine and kidney the arginase activity is low, and persists up to the weaning time when the rapid, 10-fold rise of the enzyme activity occurs. However, the adult pattern of arginase isoenzymes in these tissues is accomplished in different ways. In the intestine, arginase A1 appears in fetal life and is the only form of the enzyme till the 19th to 21st days of postnatal life when the second form of arginase, A4, appears and rapidly accumulates, being exclusively responsible for the rise of the total enzyme activity at the time of weaning. In kidney, arginase A1 alone is present in the early fetal period. Arginase A4 appears 3-4 days before birth and its activity persists unchanged within the first 2 weeks of postnatal life. The intensive rise in total specific activity of kidney arginase at weaning is due to the accumulation of preexisting arginase A4. In brain, the adult pattern of arginase isoenzymes is achieved earlier than in other tissues. Both forms, A1 and A4, occur on Days 13-14 of gestation.  相似文献   

15.
The aim of this research was to study fetal and infant mortality in Sweden between 1973 and 1996 in twins vs singletons in relation to gestational duration. Analysis was of fetal and infant mortality based on the number of pregnancies at risk as the denominator rather than the number of deliveries each week. The analysis was based on information stored at the Medical Birth Registry (MBR), the National Board of Health and Welfare, Stockholm. The MBR keeps records on virtually all pregnancies (> 99%) regarding delivery and neonatal information, and for infant mortality up to 1 year of age. During the study period, 2,206,738 singleton and 52,658 twin births were registered. Risk evaluation was made as odds ratio (OR) with a 95% confidence interval. The material was stratified according to parity, maternal age, year of delivery, and delivery unit. Results showed the OR for twin births before 34 weeks gestation was 6 to 8-fold increased compared with singletons. The OR for fetal mortality was increased in all gestational weeks, and like-sexed twins had a consistently poorer prognosis compared to unlike-sexed. Between 1989-96, unlike-sexed twins had a fetal mortality approaching that of singletons. In conclusion, real progress in reduction of infant mortality in twins may be impossible until the high incidence of preterm births can be decreased. Hypothetically, about 100 twin labors would have to be induced to avoid one fetal death in like-sexed twin pregnancies.  相似文献   

16.
Fetal neuroendocrine development in late gestation is critical for maintenance of fetal homeostasis, growth, and readiness for birth. We designed the present study to identify the regional patterns of expression of the two main isoforms of the estrogen receptor, ER-alpha and ER-beta, in the developing ovine fetal brain. Fetal (80, 100, 120, 130, and 145 days gestation), neonatal (1 and 7 days), and adult sheep were euthanized and the following tissues were collected: pituitary, hypothalamus, hippocampus, cerebral cortex, and brainstem. Both ER's are expressed in the ovine brain as early as 80 days gestation, and the expression of both receptors appears to be developmentally regulated. We conclude that both forms of the estrogen receptor are expressed in fetal brain and pituitary throughout the latter half of gestation.  相似文献   

17.
Hepatocyte growth factor (HGF) is a mesenchymal-derived factor which induces mitosis, cell movement and morphogenesis of tissue-like structure. We analyzed changes in HGF mRNA and its receptor, the c-met proto-oncogene product, in the liver, kidney and lung during late fetal and postnatal development in rats. In the liver, the HGF-mRNA level was very low during late gestation and in neonates, it increased remarkably and reached a maximum two weeks postnatally, to be followed by a decrease to 33% of the maximum. HGF mRNA in the kidney and lung was either undetectable or very low during late gestation and the neonatal period and increased markedly to reach a maximum, respectively, 3-4 weeks postnatally. HGF-mRNA level in the adult rat lung was fivefold higher than that in the liver and kidney. The number of HGF receptors on plasma membranes of these tissues was low in neonates but there was a rapid increase after birth and a maximum was reached within three weeks. The number of HGF receptors/ng plasma membrane protein at the maximal level was highest in the liver and lowest in the lung. c-met/HGF-receptor mRNA in the liver was also low during late-gestation or in early neonatal periods and increased postnatally. Since HGF-mRNA and HGF-receptor levels changed differently in liver, kidney and lung, the expression of HGF and its receptor may be independently regulated in each organ. However, in these organs, HGF mRNA and the HGF receptor increased within a few weeks of birth, HGF may play roles in organ growth, organ maturation and the maintenance of tissue homeostasis during the postnatal period, presumably through its potential to act as mitogen, motogen and morphogen.  相似文献   

18.
It has been well documented that the extracellular matrix components fibronectin and laminin promote or regulate morphogenesis of the myocardial cells in mammalian heart. However, their chronological change of expression (or localization) in the human heart remains elusive. In this study, fibronectin and laminin in the left ventricle of forty-two human fetuses aged from 8 to 26 weeks gestation and left ventricular tissues obtained from a 2-week old infant and two adults were investigated by Western blot analyses and indirect immunofluorescence technique with monoclonal antibodies. In the fetal heart, fibronectins were present along the endocardium, epicardium, and linings of larger blood vessels. In 14-16 weeks gestation, fibronectin immunofluorescence became stronger but not evenly dispersed in the interstitium. After 24 weeks gestation, they were strongly positive only in the relatively larger blood vessels, as well as those in the infant and adult cardiac tissues. Laminins were strongly positive along the endocardium and basement membrane of the myocardial cells and fibroblasts during fetal life. After birth, laminins formed fine fibrillar network along the basement membrane in association with the transverse tubules of myocardial cell; these morphological characteristics remained in the adult cardiac tissues. These results indicate that fibronectin expression is relatively constant during fetal life but decreases after birth; in contrast, laminin expression is not age-dependent and constant throughout the life.  相似文献   

19.
1. The hepatic glutathione S-transferase (GST) isoenzymes were isolated and characterized from salmon, sea trout and rainbow trout. 2. In all three species the predominant GST expressed comprised subunits of Mr 24,800. These subunits each co-migrated with the rat pi-class Yf polypeptide during SDS/polyacrylamide gel electrophoresis. 3. Western blotting experiments demonstrated immunochemical cross-reactivity between the major salmonid and the rat pi-class GSTs. 4. The salmon GST of subunit Mr 24,800 was digested with cyanogen bromide and the peptides, once purified by reverse-phase HPLC, were subjected to automated amino acid sequencing. 5. Over the region sequenced, the salmon GST possessed about 65% homology with the rat and human pi-class GST.  相似文献   

20.
Species in the genus Oncorhynchus express complicated isocitrate dehydrogenase (IDHP) isozyme patterns in many tissues. Subcellular localization experiments show that the electrophoretically distinct isozymes of low anodal mobility expressed predominantly in skeletal and heart muscle are mitochondrial forms (mIDHP), while the more anodal, complex isolocus isozyme system predominant in liver and eye is cytosolic (sIDHP). The two loci encoding sIDHP isozymes are considered isoloci because the most common allele at one of these loci cannot be separated electrophoretically from the most common allele of the other. Over 12 electrophoretically detectable alleles are segregating at the two sIDHP* loci in chinook salmon. Careful electrophoretic comparisons of the sIDHP isozyme patterns of muscle, eye, and liver extracts of heterozygotes reveal marked differences between the tissues with regard to both relative isozyme staining and the expression of several common alleles. Presumed single-dose heterozygotes at the sIDHP isolocus isozyme system exhibit approximate 9:6:1 ratios of staining intensity in liver and eye, while they exhibit approximate 1:2:1 ratios in skeletal muscle. The former proportions are consistent with the equal expression of two loci (isolocus expression), while the latter are consistent with the expression of a single locus. Screening of over 10,000 fish from spawning populations and mixed-stock fishery samples revealed that certain variant alleles (*127, *50) are detectable only in liver and eye, while other alleles (*129, *94, and *74) are strongly expressed in muscle, eye, and liver. The simplest explanation for these observations is that the "isolocus" sIDHP system of chinook salmon (and that of steelhead and rainbow trout) results from the expression of two distinct loci (sIDHP-1* and sIDHP-2*) that have the same common allele (as defined by electrophoretic mobility). IDHP expression in skeletal muscle is due to the nearly exclusive expression of the sIDHP-1* locus, while IDHP expression in eye and liver tissues is due to high levels of expression of both sIDHP-1* and sIDHP-2*--giving rise to the isolocus situation in these latter tissues. Direct inheritance studies confirm this model of two genetically independent (disomic) loci encoding sIDHP in chinook salmon. Extensive geographic surveys of chinook salmon populations from California to British Columbia reveal marked differences in allele frequencies at both sIDHP-1* and sIDHP-2* and considerably more interpopulation differentiation than was recognized previously when sIDHP was treated as an isolocus system with only five recognized alleles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号