共查询到20条相似文献,搜索用时 0 毫秒
1.
Sakamoto Atsushi; Ohsuga Hiroyuki; Wakaura Makoto; Mitsukawa Norihiro; Hibino Takashi; Masumura Takehiro; Sasaki Yukiko; Tanaka Kunisuke 《Plant & cell physiology》1993,34(6):965-968
A cDNA clone for copper/zinc-superoxide dismutase (Cu/Zn-SOD)was isolated from spinach (Spinacia oleracea L.) leaves. Itsnucleotide sequence showed that it codes for a precursor polypeptideof 222 amino acids, including the NH2-terminal 68-residue extensionwhich corresponds to a plastidic transit peptide. Northern hybridization,using plastidic and cytosolic Cu/Zn-SOD cDNAs as the probes,revealed that these two genes are differentially expressed inthe roots and leaves of spinach.
1Present address: Department of Biochemistry and Microbiology,Cook College, Rutgers University New Brunswick, NJ 08903-0231,U.S.A. 相似文献
2.
Purification and Characterization of Leu-Proteinase, the Leucine Specific Serine Proteinase from Spinach (Spinacia oleracea L.) Leaves
下载免费PDF全文

The leucine specific serine proteinase present in the soluble fraction of leaves from Spinacia oleracea L. (called Leu-proteinase) has been purified by acetone precipitation and a combination of gel-filtration, ion exchange, and adsorption chromatography. This enzyme shows a molecular weight of 60,000 ± 3,000 daltons, an isoelectric point of 4.8 ± 0.1, and a relative electrophoretic mobility of 0.58 ± 0.03. The Leu-proteinase catalyzed hydrolysis of p-nitroanilides of N-α-substituted(-l-)amino acids as well as of chromogenic macromolecular substrates has been investigated between pH 5 and 10 at 23 ± 0.5°C and I = 0.1 molar. The enzyme activity is characterized by a bell-shaped profile with an optimum pH value around 7.5, reflecting the acid-base equilibrium of groups with pKa values of 6.8 ± 0.1 and 8.2 ± 0.1 (possibly the histidyl residue present at the active site of the enzyme and the N-terminus group). Among the substrates considered, N-α-benzoyl-l-leucine p-nitroanilide shows the most favorable catalytic parameters and allows to determine an enzyme concentration as low as 1 × 10−9 molar. In agreement with the enzyme specificity, only N-α-tosyl-l-leucine chloromethyl ketone, di-isopropyl fluorophosphate and phenylmethylsulfonyl fluoride, among compounds considered specific for serine enzymes, strongly inhibit the Leu-proteinase. Accordingly, the enzyme activity is insensitive to cations, chelating agents, sulfydryl group reagents, and activators. 相似文献
3.
菠菜性别相关 EST-SSR 标记的开发及应用 总被引:1,自引:0,他引:1
为了明确菠菜EST序列中SSR的总体特点,开发菠菜EST-SSR引物;为利用EST-SSR引物进行菠菜性别相关特异序列的克隆奠定基础,本文从NCBI上获得1093条EST,利用在线软件SSRIT检测所含SSR序列,并进行分析。共检索出68条SSR序列,分布于64条EST中,检出率为6.22%,包括22种重复基元。其中二核苷酸重复基元的EST-SSR占主导地位,占总SSR数目的32.3%。利用在线引物设计软件Primer3.0设计了7对EST-SSR引物,在适合的PCR反应体系下,分别以雌、雄菠菜DNA基因组为模板,对设计的EST-SSR引物进行筛选,结果显示以EST序列HS097148设计的一对引物从菠菜雌雄基因组中扩增出一条雄性特异的条带,表明通过菠菜EST-SSR引物获得菠菜性别相关特异序列是可行的。 相似文献
4.
Kamachi Kazunari; Amemiya Yoshimiki; Ogura Nagao; Nakagawa Hiroki 《Plant & cell physiology》1987,28(2):333-338
The intracellular location of nitrate reductase in spinach leaveswas examined by applying an immunocytochemical method. Thinsections were first treated with immunopurified anti-nitratereductase monospecific antibodies, followed by incubation withcolloidal gold-labelled goat anti-rabbit immunoglobulin G asa marker. The nitrate reductase was specifically located inthe chloroplast. When anti-nitrate reductase antibodies wereomitted, or when pre-immune serum was used no label was observed. (Received October 30, 1986; Accepted December 25, 1986) 相似文献
5.
A virus inhibiting protein (VI) was isolated from spinach (Spinacia oleracea L.). The VI inhibited infections of test plants with plus- and minus-strand RNA viruses. Inoculation of both local lesion and systemic hosts with TMV in the presence of varying amounts of the VI resulted in typical dose response curves for the number of local lesions or the amount of virus respectively. The lowest concentration of VI leading to a significant reduction in the number of local lesions was 0.06 μg/ml. The VI was found to inhibit local lesion formation only when applied within 2–3 h p.i. but still reduced the number of local lesions when applied up to 9 h prior to virus inoculation. The antiviral activity could be attributed to a protein of molecular weight 29,000 dalton with an isoelectric point of 10.3. Its activity was destroyed by heating for 30 min to 70°C. These characteristics resemble those of other virus inhibiting proteins described for members of the order Caryophyllales such as the Phytolacca inhibitor against which a serological relationship was obtained. 相似文献
6.
Spinach (Spinacia oleracea L. cv. Clermont) leaves grown in open-top chambers and exposed to three different concentrations of ozone were measured for gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation at the end of growing season. High O3 concentration reduced Fv/Fm, indicating that the efficiency in the energy conversion of photosystem 2 (PS2) was altered. The rate of non-cyclic electron transport rate and the capacity to reduce the quinone pool were also affected. The development of non-photochemical quenching was not high enough to decrease the photon excess in the PS2. The limitation of photosynthetic activity was probably correlated with stomata closure and with an increase in intercellular CO2 concentration. Under oxidative stress, superoxide dismutase (SOD) activity was stimulated in parallel with lipid peroxidation. We did not find any differences in the ascorbate (AsA) pool and ascorbate peroxidase (APX) or glutathione reductase (GR) activities between air qualities. Small, but similar responses were observed in spinach leaves exposed to ambient ozone concentration. 相似文献
7.
Regulation of Peroxidase-Dependent Oxidation of Phenolics in the Apoplast of Spinach Leaves by Ascorbate 总被引:12,自引:0,他引:12
The aqueous phase of the cell walls inside leaves (apoplast)of spinach contained ascorbate (AA) and dehydroascorbate (DHA).Ratios of AA to AA plus DHA were between 0.4 and 0.9, whereasthose inside leaves were higher than 0.9. The amounts of AAplus DHA in the apoplast were between 15 and 60 nmol (g fr wt)1of leaves. If the volume of the apoplast is about 10% of totalvolume of leaf cells, the concentrations of AA plus DHA werebetween 0.15 and 0.6 mM. Apoplastic AA was oxidized by hydrogenperoxide, and the oxidation was stimulated by phenolics suchas caffeic acid or ferulic acid by a factor of 10, suggestingthe presence in apoplast of peroxidases which are differentfrom AA peroxidase. The stimulation was due to the oxidationof AA by the primary oxidation products of phenolics with apoplasticperoxidase. Based on the data, the physiological significanceof the occurrence of AA in the apoplast is discussed in relationto the regulation of the apoplastic oxidation of phenolics. (Received January 8, 1992; Accepted February 28, 1992) 相似文献
8.
The Diurnal Pattern of Nitrate Uptake and Reduction by Spinach (Spinacia oleracea L.) 总被引:2,自引:0,他引:2
Spinach plants were grown in bowls of aerated nutrient solutionin a controlled environment chamber for 24 h, and harvestedevery 3·5-5 h to record their growth, nitrate and wateruptake, and plant nitrate concentration. Twelve such experimentsare described, either with a 14/10 h dark/light regime, or continuouslight or darkness. The irradiance was either 110, 320, or 510µmol m-2 s-1 (PPFD). All these regimes began at the endof the light period of a 14/10 h dark/light regime (510 µmolm-2 s-1) lasting approximately 2 weeks. Nitrate uptake rate per g of dry weight of plant continued almostunabated at about 17 µmol h-1 through the initial 14-hdark period, and then fell away sharply if the light was notrestored, but increased slightly when it was. With continuouslight at 510 µmol m-2 s-1, uptake rate rose steadily forthe first 24 h of light, and then fell sharply for about 6 h.Shoot nitrate concentration increased about three-fold in thedark phase, and declined in the light at a rate which was positivelyrelated to the irradiance. Root nitrate concentration was severaltimes higher than that of the shoot: its diurnal change wassmaller (relative to the mean) than that of the shoot. Nitratereduction occurred to a small extent in the dark, and increasedrapidly as soon as the lights came on, to remain at a roughlyconstant rate (related to the irradiance) throughout the lightphase. Dry matter increase in the light was related to irradiance,but with little increase above 320 µmol m-2 s-1. Respiratoryweight loss in the dark was not detectable. Rate of fresh weightincrease was approximately constant throughout light and darkperiods. The results compare quite well with the predictions of a simplesimulation model, based on the pump/leak principle.Copyright1994, 1999 Academic Press Spinacia oleracea, nitrate, uptake, reduction, influx, efflux, diurnal, regulation, model, simulation 相似文献
9.
Steady-state and pre-steady-state kinetics for the hydrolysis of p-nitrophenyl esters of N-α-carbobenzoxy(-l-)amino acids catalyzed by leucine-proteinase were determined between pH 5 and 10 (I = 0.1 molar) at 23 ± 0.5°C. For the substrates considered: (a) the acylation step is rate-limiting in catalysis; (b) the pH profiles of kcat and kcat/Km reflect the ionization of two groups with pKa values ranging between 6.5 and 6.9, and 8.1 and 8.3 (probably, the histidine residue involved in the catalytic triad and the N-terminus, respectively); and (c) values of Km are pH independent. Among the substrates examined, N-α-carbobenzoxy-l-leucine-p-nitrophenyl ester shows the most favorable catalytic parameters and allows to determine an enzyme concentration as low as 5 × 10−10 molar at the optimum pH value (approximately 7.5). 相似文献
10.
In experiments in which RuDP carboxylase activity was used asa marker for the integrity of isolated chloroplasts, more than90% of the starch synthase activity and more than 80% of theADP-glucose pyrophosphorylase activity of spinach leaves wasfound to be located in chloroplasts. Less than 2% of the UDP-glucosepyrophosphorylase was associated with chloroplasts. The activityof starch synthase per chloroplast remained almost constantduring plastid replication in developing leaves on whole plantsand in leaf discs cultured for 7 d on agar under different lightconditions. The ADP-glucose pyrophosphorylase activity of chloroplastsincreased during leaf development and was much lower in dark-growntissues. The results suggest that the synthesis of starch iscontrolled by the synthesis of ADP-glucose pyrophosphorylaseas well as by the previously known control of activity by metabolitessuch as 3-phosphoglyceric acid and inorganic phosphate. 相似文献
11.
Thylakoid membranes (TM) of the cyanobacterium Synechococcus elongatus were exposed for 30 min to the influence of 0, 10, 100, and 1 000 mM CdCl2 (= Cd0, Cd10, Cd100, and Cd1000). Cd10 and Cd100 caused some increase in activity of photosystem 2, PS2 (H2O DCPIP), while distinct inhibition was observed with Cd1000. We also observed a similar effect when measuring oxygen evolution (H2O PBQ + FeCy). Chloroplasts of spinach (Spinacia oleracea L.) were incubated for 30 min with 0, 15, 30, and 60 mM CdCl2 (= Cd0, Cd15, Cd30, and Cd60). All concentrations studied inhibited the PS2 activity, the effect being stronger with increasing concentration of Cd2+. The photosynthetic oxygen evolution activity was also influenced most distinctly by the highest concentration employed, i.e. Cd60. Electrophoretic analysis of the protein composition of cyanobacterium TM showed chief changes in the molecular mass regions of Mr 29 000 and 116 000, while with spinach chloroplasts the most distinct differences were observed in the regions of Mr 15 000 and 50 000. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) activity in cyanobacterial spheroplasts still remained on the 40 % level in the case of Cd1000, but it decreased down to approx. 2.5 % in the Cd60 sample of spinach chloroplasts. 相似文献
12.
The distribution of proteins across leaves may have significantimpact on optimal photosynthetic performance of leaves, howeverlittle is known about the distribution of proteins and proteinsynthesis across C3 leaves. We report here a detailed investigationof 35S-methionine incorporation into polypeptides and the steady-statepolypeptide profiles at different leaf depths across spinachleaves. About 10 highly incorporating polypeptides (three with apparentmolecular masses of 23 kDa, 21 kDa and 17 kDa were especiallydominant) were detected in a few medial leaf sections. Thesehighly incorporating polypeptides were soluble proteins, exceptfor the 17 kDa polypeptide, which was associated with thylakoidmembranes. All of the highly incorporating polypeptides werenuclearly encoded. Light significantly enhanced 35S-methionineincorporation into the highly incorporating polypeptides in"sun" grown leaves, but not in "shade" grown leaves. Microautoradiographyshowed that the highly incorporating polypeptides were associatedmainly with the phloem tissue. A specific identity or functionfor the polypeptides is not known. The concentration of most polypeptides on an areal basis appearedto increase with leaf depth from the adaxial leaf surface, reachinga maximum around 25% of the leaf depth, and then declined graduallytowards the abaxial surface. The periphery of cells exhibitedhigh levels of 35S-methionine incorporation, and microautoradiographyshowed that the label was mainly located in the symplast. Ingeneral, polypeptides exhibited higher rates of 35S-methionineincorporation in the palisade mesophyll than in the spongy mesophy,probably due to cytoplasmic density and light. The data showthat it may be possible to study vascular bundle proteins usingparadermal leaf sections. In addition, we now can investigatehow factors such as light or CO2 might control protein distributionacross leaves, and further explore the complex interactionsamong photosynthesis, leaf anatomy, and light.
1The research was supported by grants from the Competitive ResearchGrants Office, U.S. Department of Agriculture (No. 91-37100-6672and No. 93-37100-8855). 相似文献
13.
The polar lipid components in the roots of spinach (Spinacia oleracea) plant were identified as phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, monogalactosyl-diglycerides, digalactosyldiglycerides, polygalactosyldiglycerides, sulpholipids and three unknown glycosides. Phospholipids constituted only 10% of the polar lipid fraction and 90% was of nonphosphatidic nature. This latter fraction was highly unsaturated and contained linoleic acid as the major fatty acid component. 相似文献
14.
Tamás Visnovitz Mostefa Touati Anthony J. Miller Wieland Fricke 《Journal of Plant Growth Regulation》2013,32(1):131-139
Apoplast acidification associated with growth is well documented in roots, coleoptiles, and internodes but not in leaves. In the present study, advantage was taken of the high cuticle permeability in the elongation zone of barley leaves to measure apoplast pH and growth in response to application of test reagents. The role of the plasma membrane H+-ATPase (PM-H+-ATPase) and K+ in this process was of particular interest. pH microelectrodes and an in vitro gel system with bromocresol purple as pH indicator were used to monitor apoplast pH. Growth was measured in parallel or in separate experiments using a linear variable differential transformer. Test reagents that blocked (vanadate) or stimulated (fusicoccin) PM-H+-ATPase or that reduced (Cs+, tetraethylammonium) K+ uptake were applied. Apoplast pH was lower in growing than in nongrowing leaf tissue and increased in the elongation zone with increasing apoplast K+. Vanadate increased apoplast pH and reduced growth, whereas fusicoccin caused the opposite effects. It is concluded that barley leaves exhibit acid-growth-type mechanisms in that apoplast pH is lower in elongating leaf tissue. Both growth and apoplast pH depend on the activity of the PM-H+-ATPase and K+ transport processes. However, not all of the growth displayed by leaves is dependent on a lower apoplast pH in the elongation zone; up to 50 % of growth is retained when apoplast pH in the elongation zone increases to a value observed in mature tissue. 相似文献
15.
16.
Identification of a Protein That Inhibits the Phosphorylated Form of Nitrate Reductase from Spinach (Spinacia oleracea) Leaves 总被引:43,自引:3,他引:43
下载免费PDF全文

The low-activity, phosphorylated form of nitrate reductase (NR) became activated during purification from spinach (Spinacia oleracea) leaves harvested in the dark. This activation resulted from its separation from an approximately 110-kd nitrate reductase inhibitor protein (NIP). Readdition of NIP inactivated the purified phosphorylated NR, but not the active dephosphorylated form of NR, indicating that the inactivation of NR requires its interaction with NIP as well as phosphorylation. Consistent with this hypothesis, NR that had been inactivated in vitro in the presence of NR kinase, ATP-Mg, and NIP could be reactivated either by dephosphorylation with protein phosphatase 2A or by dissociation of NIP from NR. 相似文献
17.
The molecular organization of fatty acid synthetase system in spinach (Spinacia oleracea L. var. Viroflay) leaves was examined by a procedure similar to that employed for the safflower system (Carthamus tinctorius var. UC-1). The crude extract contained all the component activities (acetyl-CoA:ACP transacylase, malonyl-CoA:ACP transacylase, β-ketoacyl-ACP synthetase, β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase [I]) involved in the synthesis of fatty acids, but enoyl-ACP reductase (II) present in safflower seeds extract could not be detected spectrophotometrically. By polyethylene glycol fractionation followed by several chromatographic procedures, i.e. Sephadex G-200, hydroxyapatite, and blue-agarose, the component enzymes were clearly separated from one another. Properties of β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase (I) from spinach were compared with the same enzymes in safflower seeds and Escherichia coli. 相似文献
18.
《Chemical Speciation and Bioavailability》2013,25(4):265-272
AbstractThis paper introduces a fractionation scheme using water, acetone, chloroform, diethyl ether, ethanol, n-hexane, and methanol as extractants for the determination of manganese in spinach samples by inductively coupled plasma-mass spectrometry (ICP-MS). Simulated gastric and intestinal digestions as well as n-octanol extraction and activated carbon adsorption were performed for the bioavailability assessments. Comparative studies of the various extraction treatments were evaluated for confirmation analysis. The total elemental concentrations were determined after digesting the samples in a microwave digestion system. The method validation parameters were defined in terms of the detection limits, accuracy, and precision. Additional validation was performed by comparing the ICP-MS method with atomic absorption spectrometry. The limits of detection and quantification were 0.046 and 0.154 mg kg-1, respectively. Additionally, the repeatability and reproducibility, calculated from the relative standard deviation (%RSD), were 2.4% and 3.7%, respectively. 相似文献
19.
Cytokinin-active ribonucleosides have been isolated from tRNA of whole spinach (Spinacia oleracea L.) leaves and isolated spinach chloroplasts. The tRNA from spinach leaf blades contained: 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine (cis and trans isomers), 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine, and 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-d -ribofuranosylpurine (cis and trans isomers). A method for isolation of large amounts of intact chloroplasts was developed and subsequently used for the isolation of chloroplast tRNA. The chloroplast tRNA contained 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine and 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-d -ribofuranosylpurine (the cis isomer only). The structures of these compounds were assigned on the basis of their chromatographic properties and mass spectra of trimethylsilyl derivatives which were identical with those of the corresponding synthetic compounds. The results of this study indicate that ribosylzeatin was present in spinach leaf tRNA, but absent from the purified chloroplast tRNA preparation. 相似文献
20.
A system for somatic embryogenesis and plant regeneration of spinach from hypocotyl segments has been established. Callus
was induced on solid media supplemented with 8.5–15.0 mg.l−1 of indole-3-acetic acid and 3.46–34.64 mg.l−1 gibberellic acid. Callus was then subcultured on different media (solid or liquid) with or without IAA, or continuously maintained
on the initiating media. Somatic embryos were obtained in subcultures on IAA-containing media as well as in long-term cultures
on initiating media. The best results were achieved in liquid subcultures. About 60% of plantlets survived after transplanting
in pots. 相似文献