首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subunit structure of erythrocruorin from the cladoceran Daphnia magna was studied. The native protein was found to have a sedimentation coefficient (S2(20), w) of 17.9 +/- 0.2 S and a molecular weight, as determined by sedimentation equilibrium, of 494 000 +/- 33 000. Iron and haem determinations gave 0.312 +/- 0.011% and 3.84 +/- 0.04%, corresponding to minimal molecular weights of 17900 +/- 600 and 16 100 +/- 200 respectively. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis gave one band with mobility corresponding to a molecular weight of 31 000 +/- 1 500. The molecular weight of the polypeptide chain determined by sedimentation equilibrium in 6 M-guanidinium chloride and 0.1 M-2-mercaptoethanol is 31 100 +/- 1300. On a molecular-weight basis, Daphnia erythrocruorin is composed of 16 identical polypeptide chains carrying two haem groups each. The native structure is stable between pH5 and 8.5. At alkaline and acidic pH, a gradual decrease in the sedimentation coefficient down to 9.8S occurs. Above pH 10 and below pH4, a slow component with S20, w between 2.7S and 4.0S is observed. The 2.7S, 4.0S and 9.8S species are identified as single-chain subunits, subunit dimers and half-molecules respectively. We propose a model for the molecule composed of 16 2.7S subunits grouped in two layers stacked in an eclipsed orientation, the eight subunits of each layer occupying the vertices of a regular eight-sided polygon. Support for this arrangement is provided from electron microscopy and from analysis of the pH-dissociation pattern.  相似文献   

2.
Poly(A) containing ribonucleoprotein particles were prepared from rat liver nuclei and polyribosomes. The particles have sedimentation coefficients of 14 S and 9 S, respectively. In Cs2SO4 density gradients the particles banded at densities of 1.28–1.29 g cm-3. Both nuclear and polyribosomal poly(A)-RNP contain in addition to some minor polypeptides, two main polypeptides having molecular weights of 63 000 and 90 000 dalton, respectively indistinguishable from each other according to their electrophoretic mobilities.Abbreviations STKM 0.25 M sucrose, 0.05 M Tris-HCl, pH 7.2, 0.025 M KCl, 0.005 M MgCl2 - TKM 0.05 M Tris-HCl, pH 7.5, 0.025 M KCl, 0.005 M MgCl2 - STM II 0.1 M NaCl, 0.01 M Tris-HCl, pH 8, 0.001 M MgCl2 - DTT dithiothreitol - SDS sodium dodecylsulphate  相似文献   

3.
The molecular dimensions of the extracellular, hexagonal bilayer chlorocruorin of the polychaete Eudistylia vancouverii, determined by scanning transmission electron microscopy (STEM) of negatively stained specimens, were diameter of 27.5 nm and height of 18.5 nm. STEM mass measurements of unstained, freeze-dried specimens provided a molecular mass (Mm) of 3480 +/- 225 kDa. The chlorocruorin had no carbohydrate and its iron content was 0.251 +/- 0.021 wt%, corresponding to a minimum Mm of 22.4 kDa. Mass spectra and nuclear magnetic resonance spectra of the prosthetic group confirmed it to be protoheme IX with a formyl group at position 3. SDS/polyacrylamide gel electrophoresis, reversed-phase chromatography and N-terminal sequencing suggested that the chlorocruorin consists of at least three chains of approximately 30 kDa and five chains of approximately 16 kDa; the two types of subunits occur in the ratio 0.26:0.74(+/- 0.08). Complete dissociation of the chlorocruorin at neutral pH in the presence of urea or guanidine hydrochloride, followed by gel filtration, produced elution profiles consisting of three peaks, B, C and D. Fractions B and C consisted of the approximately 16 kDa chains and fraction D consisted of the approximately 30 kDa subunits. Mass measurements of particles in STEM images of unstained, freeze-dried fractions B and C provided Mm of 208 +/- 23 kDa and 65 +/- 12 kDa, respectively, in agreement with 191 +/- 13 kDa and 67 +/- 5 kDa obtained by gel filtration. Particles with Mm = 221 +/- 21 kDa were also observed in STEM images of unstained, freeze-dried chlorocruorin. These results imply that the chlorocruorin structure, in addition to the approximately 30 kDa linker subunits that have 0.26 to 0.47 heme groups/chain, comprises approximately 65 kDa tetramers and approximately 200 kDa dodecamers (trimers of tetramers) of globin chains. The stoichiometry of the tetramer and linker subunits calculated from molar amino acid compositions was 34 +/- 4 and 43 +/- 9. The complete dissociation of the chlorocruorin was accompanied by a 50 to 75% loss of the 55 +/- 14 Ca2+/mol protein, and was decreased to approximately 35% by the presence of 10 to 25 mM-Ca2+. Reassociation of dissociated chlorocruorin was maximal in the presence of 2.5 to 5 mM-Ca2+. The dodecamer and/or tetramer subunits in the absence or presence of Ca2+ exhibited very limited (less than 10%) reassociation into hexagonal bilayer structures, only in the presence of the linker subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The purified Ca2+-activated protease (CAF) isolated from porcine skeletal muscle and capable of removing Z-disks from intact myofibrils is optimally active on either myofibril or casein substrates at pH 7.5 and in the presence of 1 mM Ca2+ and at least 2 mM 2-mercaptoethanol. No CAF activity is detected when 1 mM Mg2+, Mn2+, Ba2+, Co2+, Ni2+, and Fe2+ are added singly. When added with 1 mM Ca2+, Co2+, Cu2+, Ni2+, and Fe2+ inhibit, whereas Mg2+, Mn2+, and Ba2+ have no effect on CAF activity. CAF is irreversibly inhibited by iodoacetate but is unaffected by soybean trypsin inhibitor. S0/20,W=5.90 S, and sedimentation equilibrium molecular weight - 112 000 for purified CAF. Because purified CAF migrates as two polypeptide chains with molecular weights of 80 000 and 30 000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the CAF molecule must consist of one each of these two polypeptide chains. Approximate molecular dimensions of 38 X 220 A can be calculated for CAF from calibrated gel permeation column data or from S0/20,W and the molecular weight. Amino acid composition and physical properties of purified CAF distinguish it from the known catheptic enzymes and from other proteases found in blood or in granulocytes. Purified CAF removes Z-disks the 400-A periodicity associated with troponin in the I band and partly degrades M lines but causes no other ultrastructurally detectable effects when incubated with myofibrils. These results agree with the earlier finding that purified CAF degrades troponin, tropomyosin, and C-protein but has no effect on myosin, actin, or alpha-actinin, and suggest that CAF may have a physiological role in disassembly of intact myofibrils during metabolic turnover of myofibrillar proteins.  相似文献   

5.
1. The hemocyanin of the chiton, Stenoplax conspicua, has a molecular weight determined by light-scattering of 4.2 X 10(6) daltons, (dt) and a sedimentation coefficient of 60 S. 2. The fully dissociated subunits in 6.0 and 8.0 M urea, and at pH 8.9-10 in the absence of divalent ions, have molecular weights of 4.15-4.30 x 10(5) and 4.17-4.75 x 10(5) dt, which is close to one-tenth of the molecular weight of the parent hemocyanin assembly. 3. The pH dependence of the molecular weights from pH 4.5 to 11 exhibit bell-shaped transition profiles, best accounted for by a three-species, decamer to dimer to monomer scheme of subunit dissociation, with one acidic and one basic ionizing group per dimer and 5-8 acidic and basic groups per monomer. 4. In the absence of stabilizing divalent ions S. conspicua hemocyanin is relatively unstable. At pH 7.4 in the presence of 0.01 M EDTA, it is predominantly in the dimeric state, characterized by a sedimentation constant of 18 S. It is also more readily dissociated to monomers at high pHs (8-9 and above) than are the C. stelleri and A. granulata hemocyanins. 5. Urea and GdmCl are effective dissociating agents of S. conspicua hemocyanin. The urea dissociation profile obtained at pH 8.5, 0.01 M Mg2+, 0.01 M Ca2+, and analyzed by means of the decamer-dimer-monomer scheme of subunit dissociation gave estimates of about 30 amino acid groups (Napp) at the dimer contacts within the hemocyanin decamers and about 120 groups per monomer within each dimer, suggesting hydrophobic stabilization of hemocyanin assembly.  相似文献   

6.
The stabilizing effects of Ca2+ and Mg2+ ions on the decameric structure of hemocyanins from two representative chitons, Stenoplax conspicua and Mopalia muscosa were investigated by light-scattering molecular weight measurements, ultracentrifugation, absorbance, and circular dichroism methods. The dissociation profiles at any given pH resulting from the decrease in divalent ion concentration, investigated at a fixed protein concentration of 0.1 g.liter-1, could be fitted by a decamer-to-dimer-to monomer scheme of subunit dissociation. The initial decline in the light-scattering molecular weight curves required one or two apparent binding sites per hemocyanin dimer formed as intermediate dissociation product, with apparent dissociation constants (kD,2) for Ca2+ ions of 0.7 to 7 X 10(-4) M, not very different from the value of 2.5 X 10(-4) M obtained by Makino by equilibrium dialysis for the hemocyanin of the opistobranch, Dolabella auricularia. The binding of Mg2+ ion to S. conspicua and M. muscosa hemocyanins appears to be both weaker than the binding of Ca2+ and more pH dependent, with kD,2 values ranging from the 3 X 10(-4) to 4 X 10(-2) M at pH 8.5 to 9.5. The dissociation the decameric hemocyanin species (sedimentation coefficient ca. 60 S) is also observed in the ultracentrifugation with the initial appearance of 18-20 S dimers, followed by a shift in equilibrium to monomeric species of lower sedimentation rates of 11-12 S as the divalent ion concentration is reduced below 1 X 10(-4) M Ca2+ and Mg2+. The dissociation of dimers to monomers in the second step of the reaction is characterized by one or two binding sites per subunit and a somewhat stronger affinity for divalent ions, indicated by apparent dissociation constants (kD,1) of 0.7 X 10(-4) to 3 X 10(-3) M. Circular dichroism and absorbance measurements at 222 and 346 nm suggest no significant changes in the conformation of the hemocyanin subunits produced by the different stages of subunit dissociation.  相似文献   

7.
The hemocyanin of the giant Pacific chiton, Cryptochiton stelleri has a molecular weight of 4.2 +/- 0.3 X 10(6), determined by light-scattering, and a sedimentation coefficient of 60S. The fully dissociated subunits in nondenaturing solvents, at pH 10.6, 1 X 10(-2)M EDTA and in 8.0 M urea, pH 7.4 have molecular weights of 4.10 X 10(5) and 4.35 X 10(5), close to one-tenth of the molecular mass of the parent hemocyanin decamers. In the pH region from about 3.5 to 11 the molecular weight (Mw), determined at constant protein concentration of 0.10 g1(-1) exhibits a bell-shaped molecular weight profile centering about the physiological pH of the hemolymph of 7.2. The pH-Mw profile is best accounted for in terms of a three state, decamer-dimer-monomer dissociation scheme. Analysis of the Mg2+ and Ca2+ effects on the molecular weight transitions suggest stabilization of the hemocyanin decamers through one bound divalent ion per hemocyanin monomer or dimer. Urea, GdmCl, and the higher members of the chaotropic salt series are effective dissociating agents for Cryptochiton stelleri hemocyanin. The dissociation profile obtained with urea at pH 8.5, 0.01 M Mg2+, 0.01 M Ca2+ has been analyzed in terms of both the two- and three-species schemes of subunit-dissociation. Hydrophobic stabilization of the subunit contacts is suggested by the large number of apparent amino acid groups (Napp), of the order of 30 between dimers stabilizing the decamers, and 120 apparent amino acid groups between each monomer forming the constituent dimers.  相似文献   

8.
The hemocyanin from the crayfish Jasus edwardsii(=lalandii) has been studied using ultracentrifugation, viscosity, circular dichroism and oxygen binding techniques. Sedimentation velocity experiments at pH 7.0 indicated the presence of principal species with S 20w=16.4 S, and at higher pH the presence of a species with S20,w=5.2S. Sedimentation equilibrium experiments yielded molecular weights of 490 000 and 81 000 respectively, indicating that the larger unit is a hexamer of the monomer unit. However, preliminary experiments with gel filtration and electrophoresis under denaturing conditions indicate that more than one monomer species may be present with molecular weight in the range 76-100 000. Circular dichroism (CD) spectra are presented at pH 7.0,8.6,10.0 and 11.0 for oxy-, deoxy- and apo-hemocyanins. Slight differences were observed in the magnitude of the bands in the presence or absence of Mg++. Oxygen binding studies have been made at pH 6.1,7.0,8.8 and 10.6, in the presence of 0.01 M MgCl2. The extent of cooperative binding was indicated by a maximum value of n=3.7, and a pronounced bohr effect was observed.  相似文献   

9.
1. The hemocyanin of the Californian whelk, Kelletia kelleti, investigated at pH and ionic conditions close to physiological, has a molecular weight close to 9.0 x 10(6) and a sedimentation constant of 114S, characteristic of the di-decameric structure of molluscan hemocyanins. Light-scattering measurements at pH 8.0, 0.05 M Mg2+, 0.01 M Ca2+ gave a molecular weight of 9.0 +/- 0.6 x 10(6), and scanning transmission electron microscopy produced nearly the same particle mass of 9.22 +/- 0.50 x 10(6) daltons (Da). 2. Light-scattering measurements on the fully dissociated monomers in the presence of 8.0 M urea and at pHs 10.6 and 11.0 gave molecular weights of 4.50 x 10(5)-4.91 x 10(5), that are close to one-twentieth of the mass of the parent di-decameric hemocyanin assembly. 3. Changes in pH produced a bell-shaped molecular weight profile, with molecular weights close to 9.0 x 10(6) in the pH region of about 5.5-8.0, and progressive dissociation to 4.5 x 10(5) Da monomers in the region below pH 4.0 and above pH 9.0 or 10, depending on the absence or presence of stabilizing Mg2+ ions (0.01 M). 4. In the absence of divalent ions some aggregation of hemocyanin was found at pHs close to 5.0, with observed molecular weights above 10 x 10(6) (investigated at a hemocyanin concentration of 0.10 g/l). The early studies of Condie and Langer (Science 144, 1138-1140, 1964) had shown that Kelletia kelleti hemocynanin aggregates at acidic pHs close to the isoelectric point, forming linear polymers of the hemocyanin di-decamers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
1. The immunological relatedness of several annelid extracellular hemoglobins and chlorocruorins was investigated using ELISAs and Western blotting to determine the binding of purine polyclonal and monoclonal antibodies to Lumbricus terrestris hemoglobin with the hemoglobins of Tubifex tubifex, Tylorrhynchus heterochaetus, Arenicola marina and Macrobdella decora and the chlorocruoins of Myxicola infundibulum and Eudistylia vancouverii. 2. Polyclonal antibodies to Lumbricus terrestris hemoglobin bound to all the other hemoglobins and chlorocruorins. However, the titers were in all cases one to several orders of magnitude smaller than with Lumbricus terrestris hemoglobin. 3. Polyclonal antibodies to Eudistylia vancouverii chlorocruorin bound to the hemoglobins of Lumbricus terrestris, Tubifex tubifex, Arenicola marina, Tylorrhynchus heterochaetus and Macrobdella decora. 4. Of the nine monoclonal antibodies to Lumbricus terrestris hemoglobin isolated, two (No. 24 and No. 26) bound to the other hemoglobins and to Myxicola chlorocruorin, but the binding was again weaker than with Lumbricus hemoglobin. Antibody No. 26 also bound to Eudistylia chlorocruorin. Although antibody No. 24 appears to recognize a conformation-dependent epitope, antibody No. 26 recognizes a common epitope in each of the four subunits M, D1, D2, and T of unreduced Lumbricus hemoglobin. 4. An additional two monoclonal antibodies to Lumbricus hemoglobin (No. 21 and No. 25) bound also only to Tubifex hemoglobin. Antibody No. 21 recognizes subunits D1 and M of Lumbricus hemoglobin and No. 25 appears to recognize a conformation-dependent epitope.  相似文献   

11.
Treatment of demembranated sea urchin sperm axonemes with an extraction solution containing 0.6 M NaCl, pH 7.0 for 10 min at 4 degrees C yields a solution of dynein 1 having a low, latent specific ATPase activity of about 0.25 mumol of Pi mg(-1) min(-1). Exposure of this dynein solution to 0.1% Triton-X-100 for 10 min at 25 degrees C causes an increase in its ATPase activity to about 3 mumol of Pi mg(-1) min(-1). A similar activation can be obtained by treating at 42 degrees C or by reacting with 60 mol of p-chloromercuribenzene sulfonate/10(6) g of protein. The effects of these activating procedures are not additive, suggesting that they lead to a common activated state. Purification of the latent activity dynein 1 by sucrose density gradient centrifugation yields a monodisperse preparation sedimenting at 21 S, and having a molecular weight of 1,250,000 as determined by sedimentation diffusion and sedimentation equilibrium. Activation of the latent dynein 1 with Triton X-100 converts it to a form sedimenting at 10 to 14 S. The 21 S dynein is also converted to a 10 S form by dialysis against 5 mM imidazole/NaOH buffer, 0.1 mM EDTA, 5 mM 2-mercaptoethanol, pH 7, although in this case, the ATPase activity is increased only about 3-fold, with another 3-fold activation being obtainable upon subsequent treatment with Triton X-100. The 21 S latent form of dynein 1 may represent the intact dynein arms that form moving cross-bridges and generate active sliding between adjacent doublet tubules of the flagellar axoneme. Electrophoretic analysis on polyacrylamide gels in the presence of sodium dodecyl sulfate suggests a model in which the 21 S dynein 1 particle is composed of three subunits of about 330,000 daltons and one of each of three medium weight subunits of 126,000, 95,000, and 77,000 daltons. When latent dynein 1 is added back to NaCl-extracted axonemes in the presence of 0.15 M NaCl, it recombines stoichiometrically and restores the arms on the doublet tubules with a 6-fold activation of its ATPase activity measured in the absence of KCl.  相似文献   

12.
In the presence of Mg2+ or Ca2+ the membranes of the anaerobic glycolytic bacterium Lactobacillus casei hydrolyze 0.1-0.2 mumole ATP/min/mg of protein with a pH optimum 6.4. This activity is inhibited by N,N'-dicyclohexylcarbodiimide and is insensitive to oligomycin, ouabain, vanadate and hydroxylamine. A soluble ATPase was isolated and purified from L. casei membranes. The specific activity of this ATPase is 3.0-4.0 mumole ATP/min/mg of protein. The enzyme homogeneity was established by analytical polyacrylamide gel disc electrophoresis and by analytical centrifugation (S20, omega = 12 +/- 0,5). The molecular weight of the enzyme is 270 000. Polyacrylamide gel electrophoresis of ATPase denaturated by 1% SDS and 8 M urea in the presence of SDS revealed one type of subunits with Mr = 43 000. These subunits could not be separated by isoelectrofocusing in polyacrylamide gel in the presence of 8 M urea and migrated as a single peptide with pI at 4.2. The experimental results suggest that the soluble ATPase from L. casei consists of six identical subunits with Mr of 43 000.  相似文献   

13.
A nucleoside-dependent protein kinase (EC 2.7.1.37) was partially purified from Trypanosoma gambiense, the pathogenic agent of sleeping sickness. This enzyme catalyzes the phosphorylation of histone and protamine. Various nucleosides at the concentration of 10(-4) M stimulated the histone kinase activity about two-fold, whereas cyclic AMP and cyclic GMP were without effect. The pH-optimum for histone phosphorylation was at about pH 7.0. The enzyme activity absolutely depends on Mg2+, Mn2+ or Co2+. The apparent Km-value for histone was 0.3 mg/ml and those for ATP were 2 - 10(-4) M and 6 - 10(-5) M in the absence or presence of 10(-4) M adenosine respectively. IDP and ADP complete with ATP. The inhibition constants were calculated to be 2 - 10(-4) M and 2.5 - 10(-4) M, respectively. The molecular weight of the histone kinase was found to be 95 000 by gel filtration and 88 000 by sedimentation in a sucrose gradient.  相似文献   

14.
Haemoglobin from the tadpole shrimp, Lepidurus apus lubbocki, was found to have a sedimentation coefficient (s020,w) of 19.3 +/- 0.2 S and a molecular weight, as determined by sedimentation equilibrium, of 798000 +/- 20000. The amino acid composition showed the lack of cysteine and cystine residues. A haem content of 3.55 +/- 0.03% was determined, corresponding to a minimal mol.wt. of 17400 +/- 200. The pH-independence in the range pH 5-11 of the sedimentation coefficient indicates a relatively high stability of the native molecule. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis gave one band with mobility corresponding to a mol.wt. of 34000 +/- 1500. The molecular weight of the polypeptide chain was determined to be 32800 +/- 800 by sedimentation equilibrium in 6 M-guanidinium chloride and 0.1 M-2-mercaptoethanol. The findings indicate that Lepidurus haemoglobin is composed of 24 identical polypeptide chains, carrying two haem groups each.  相似文献   

15.
The effects of divalent cations (Zn2+, Cd2+, Ca2+, Mg2+) on the cytosol androgen receptor were determined by sedimentation into sucrose gradients. At low ionic strength (25 mM KCl, 50 mM Tris, pH 7.4), Zn2+ (200 microM total, which calculates to 130 nM free Zn2+ in 10 mM mercaptoethanol) causes a shift in the sedimentation coefficient of the rat Dunning prostate tumor (R3327H) cytosol receptor and rat ventral prostate cytosol receptor from 7.5 +/- 0.3 S to 8.6 +/- 0.3 S. Zn2+ stabilizes the 8.6 S receptor form in salt concentrations up to 0.15 M KCl in 50 mM Tris, pH 7.2. In low ionic strength gradients containing Ca2+ (greater than or equal to 200 microM) or Mg2+ (greater than or equal to 1 mM), the receptor sediments as 4.7 +/- 0.3 S. The dissociating effects of Ca2+ and Mg2+ can be fully reversed by sedimentation into gradients containing Zn2+ (200 microM total) or Cd2+ (10 microM total). In the presence of Zn2+ (200 microM total), Ca2+ (10 microM to 3 mM) converts the receptor to an intermediate form with sedimentation coefficient 6.2 +/- 0.2 S, Stokes radius 73 A, and apparent Mr approximately 203,000. The potentiating effect of Zn2+ on formation of the 8.6 S receptor (in the absence of Ca2+) and the 6.2 S receptor (in the presence of Ca2+) requires both the 4.5 S receptor and the 8 S androgen receptor-promoting factor. Sodium molybdate stabilizes the untransformed cytosol receptor but, unlike Zn2+, does not promote reconstitution of the 8.6 S receptor from its partially purified components. These results indicate that divalent cations alter the molecular size of the androgen receptor in vitro and thus may have a role in altering the state of transformation of the receptor.  相似文献   

16.
1. Pyridine nucleotide transhydrogenase of Azotobacter vinelandii purified by affinity chromatography consists of a mixture of polydisperse rods at neutral pH. No other structures are seen by electron microscopy. 2. At high pH (8.5--9.0) the rods depolymerize. Complete depolymerization can be achieved in 0.1 M Tris-Cl pH 9.0. The depolymerized enzyme has a molecular weight of 421000 (sedimentation equilibrium), its sedimentation coefficient s20, w = 15 S and its Stokes' radius Rs = 7 nm. Since gel electrophoresis in the presence of sodium dodecyl sulphate shows that transhydrogenase consists of a single polypeptide chain of molecular weight (54 +/- 2) X 10(3) it follows that the depolymerized enzyme has an octameric quaternary structure. We propose that this octamer serves as the functional monomeric unit ('unimer') from which the polymeric form of transhydrogenase is constructed. 3. Gel filtration and sucrose gradient centrifugation studies of cell-free extracts from A. vinelandii show the unimer to be the predominant active species.  相似文献   

17.
Effects of pH, ionic strength, kind of salts and disulfide bond cleaving agent (2-mercaptoethanol) on conformation changes revealed on ultracentrifugal patterns of a 7S protein in soybean globulins were investigated. In the solution with lower pH than isoelectric point, this protein dissociated into two components in low ionic strength, but showed a 7S sedimentation pattern in higher ionic strength than 0.1. On the other hand, in the solution with higher pH than isoelectric point, this protoin showed aggregation to a 9S isomer in lower ionic strength than 0.1. Between ionic strength of 0.1 and 0.5, the mixture of 7S and 9S forms existed and in higher ionic strength than 0.5, the protein kept a 7S form stablely. These reactions were reversible and effect of 2-mercaptoethanol was scarcely observed but those of salts were observed.

The molecular weight of the 9S isomer was approximately 370,000 and the s20,w value was 12.30S. Therefore, the 9S isomer was considered to be a dimer of the 7S protein.  相似文献   

18.
Inorganic pyrophosphatase [EC 3.6.1.1] was purified from Bacillus stearothermophilus to a homogeneous state both ultracentrifugally and electrophoretically. Ultracentrifugal analysis revealed that the molecular weight of the enzyme is 122,000 and the sedimentation coefficient (S0.34%/20, W) is 5.2S. The enzyme molecule in 0.1% sodium dodecylsulfate solution containing 1 mM 2-mercaptoethanol had an estimated molecular weight of 70,000 on the basis of SDS-polyacrylamide gel electrophoresis results, which indicates that the enzyme may consist of two subunits. Divalent cations such as Mg2+, Mn2+, and Co2+ are required for the enzymatic activity. Pyrophosphate is the only substrate for the enzyme. ATP and p-chloromercuribenzoate inhibit the enzyme reaction markedly.  相似文献   

19.
Pseudomonas cytochrome oxidase (EC 1.9.3.2) is composed of two subunits. Each subunit has a molecular weight of approx. 63000 and, according to the iron determination, contains two hemes. Cytochrome oxidase was subjected to various dissociation procedures to determine the stability of the dimeric structure. Progressive succinylation of 14 to 68% of the lysine residues of the enzyme increases the amount of the protein appearing in the subunit form (S20,W approximately 4 S) from 18 to 92%. At a high degree of succinylation a component with a sedimentation coefficient of approx. 2 S appears. The subunits with sedimentation coefficients of approx. 4 S and 2 S are also formed when the pH is below 4 or above 11. The same molecular weight (63000) was found for these two components in sodium dodecylsulphate electrophoresis. No dissociation of cytochrome oxidase was observed in salt solutions like 3 M NaC1 and 1 M Na2SO4, or in 6 M urea. The slight decrease in the sedimentation coefficients in NaC1 solutions is partly explained by preferential hydratation of the protein.  相似文献   

20.
1. The hemocyanin from the marine snail, Fasciolaria tulipa has a molecular weight of 8.6 +/- 0.6 x 10(6) determined by light-scattering and a sedimentation constant of (105.9 +/- 1.1)S. 2. The dissociated subunits at pH 11 and in 8.0 M urea (pH 7.4) had molecular weights of 4.4 x 10(5) and 4.7 x 10(5), close to one-twentieth of the parent didecameric assembly. 3. The pH dependence of the molecular weight profile exhibited bell-shaped transitions in both the presence and absence of Ca2+ and Mg2+ ions. In the physiological pH range of about 7.5-8.2 in divalent ion-containing buffers neither the molecular weight behavior nor the sedimentation patterns suggest any significant dissociation. 4. Both the urea and the Hofmeister salt series were found to dissociate the didecameric hemocyanin assembly. The ureas exhibit increasing effectiveness as dissociating agents with the higher alkyl substituted members of the series, suggesting hydrophobic stabilization of the subunit assembly. 5. Denaturation of the hemocyanin subunits by the urea series follows the same trend in effectiveness as the dissociation reaction; the reagent concentrations required to cause unfolding of the globular domains of the hemocyanin chains were, however, much higher than those needed for dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号