首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiotensin II is synthesized locally in various tissues. However, the role of interstitial angiotensin II in the regulation of regional metabolism and tissue perfusion has not as yet been clearly defined. We characterized the effect of interstially applied angiotensin II in abdominal subcutaneous adipose tissue of young, normal-weight, healthy men (n = 8) and women (n = 6) using the microdialysis technique. Adipose tissue was perfused with 0.01, 0.1, and 1 micro M angiotensin II. Dialysate concentrations of ethanol, glycerol, glucose, and lactate were measured to assess changes in blood flow (ethanol dilution technique), lipolysis, and glycolysis, respectively. Baseline ethanol ratio and dialysate lactate were both significantly higher, whereas dialysate glucose was significantly lower in men vs. women. In men, ethanol ratio and dialysate glucose, lactate and glycerol did not change significantly during perfusion with angiotensin II. In women, however, angiotensin II induced a significant increase in ethanol ratio and dialysate lactate and a decrease in dialysate glucose close to values found for men and this response was almost maximal at the lowest angiotensin II concentration used. Dialysate glycerol did not change significantly. We conclude that baseline blood flow and glucose supply and metabolism is significantly higher in women than in men. In men, interstitial Ang II has only a minimal effect on adipose tissue blood flow and metabolism. In women, however, a high physiological concentration of interstitial angiotensin II can reduce blood flow down to values found in men. This is associated with an impaired glucose supply and metabolism. Additionally, Ang II inhibits lipolysis.  相似文献   

2.
Objective: Recent studies have revealed the presence of a local renin‐angiotensin system in adipose tissue. To examine the possible role of this system in adipose tissue, we performed microdialysis studies on the effect of angiotensin II (Ang II) on blood flow and metabolism in abdominal subcutaneous adipose tissue (aSAT) and femoral subcutaneous adipose tissue (fSAT) in young healthy men. Research Methods and Procedures: Using the microdialysis technique, two different protocols were run perfusion with Ringer's solution + 50 mM ethanol with the subsequent addition of 125, 250, and 500 μg/liter Ang II (n = 8) and Ringers's solution + 50 mM ethanol with the subsequent addition of isoproterenol (1 μM) alone and in combination with 500 μg/liter Ang II (n = 6). Dialysate concentrations of ethanol, glycerol, glucose, and lactate were measured for estimating blood flow (ethanol dilution technique), lipolysis, and glycolysis, respectively. Results: Perfusion with Ang II resulted in a dose‐dependent decrease in blood flow (fSAT > aSAT), lipolysis (fSAT > aSAT), and glucose uptake (fSAT = aSAT). Isoproterenol increased blood flow and lipolysis at both sites and those effects could be returned to baseline values by the addition of Ang II in aSAT but not fSAT. Discussion: In conclusion, our data indicate that in addition to its well‐known vasoconstricting effect, Ang II inhibits lipolysis in adipose tissue, whereby femoral fat depots seem to be more sensitive to this effect than abdominal depots.  相似文献   

3.
Training increases insulin sensitivity of both whole body and muscle in humans. To investigate whether training also increases insulin sensitivity of adipose tissue, we performed a three-step hyperinsulinemic, euglycemic clamp in eight endurance-trained (T) and eight sedentary (S) young men [insulin infusion rates: 10,000 (step I), 20,000 (step II), and 150,000 (step III) microU x min(-1) x m(-2)]. Glucose and glycerol concentrations were measured in arterial blood and also by microdialysis in interstitial fluid in periumbilical, subcutaneous adipose tissue and in quadriceps femoris muscle (glucose only). Adipose tissue blood flow was measured by (133)Xe washout. In the basal state, adipose tissue blood flow tended to be higher in T compared with S subjects, and in both groups blood flow was constant during the clamp. The change from basal in arterial-interstitial glucose concentration difference was increased in T during the clamp but not in S subjects in both adipose tissue and muscle [adipose tissue: step I (n = 8), 0.48 +/- 0.18 mM (T), 0.23 +/- 0.11 mM (S); step II (n = 8), 0.19 +/- 0.09 (T), -0.09 +/- 0.24 (S); step III (n = 5), 0.47 +/- 0.24 (T), 0.06 +/- 0.28 (S); (T: P < 0.001, S: P > 0.05); muscle: step I (n = 4), 1. 40 +/- 0.46 (T), 0.31 +/- 0.21 (S); step II (n = 4), 1.14 +/- 0.54 (T), -0.08 +/- 0.14 (S); step III (n = 4), 1.23 +/- 0.34 (T), 0.24 +/- 0.09 (S); (T: P < 0.01, S: P > 0.05)]. Interstitial glycerol concentration decreased faster in T than in S subjects [half-time: T, 44 +/- 9 min (n = 7); S, 102 +/- 23 min (n = 5); P < 0.05]. In conclusion, training enhances insulin sensitivity of glucose uptake in subcutaneous adipose tissue and in skeletal muscle. Furthermore, interstitial glycerol data suggest that training also increases insulin sensitivity of lipolysis in subcutaneous adipose tissue. Insulin per se does not influence subcutaneous adipose tissue blood flow.  相似文献   

4.
With the use of the microdialysis method, exercise-induced lipolysis was investigated in subcutaneous adipose tissue (SCAT) in obese subjects and compared with lean ones, and the effect of blockade of alpha(2)-adrenergic receptors (ARs) on lipolysis during exercise was explored. Changes in extracellular glycerol concentrations and blood flow were measured in SCAT in a control microdialysis probe at rest and during 60-min exercise bouts (50% of heart rate reserve) and in a probe supplemented with the alpha(2)-AR antagonist phentolamine. At rest and during exercise, plasma norepinephrine and epinephrine concentrations were not different in obese compared with lean men. In the basal state, plasma and extracellular glycerol concentrations were higher, whereas blood flow was lower in SCAT of obese subjects. During exercise, the increase of plasma glycerol was higher in obese subjects (115 +/- 35 vs. 65 +/- 21 micromol/l). Oppositely, the exercise-induced increase in extracellular glycerol concentrations in SCAT was five- to sixfold lower in obese than in lean subjects (50 +/- 14 vs. 318 +/- 53 micromol/l). The exercise-induced increase in extracellular glycerol concentration was not significantly modified by phentolamine infusion in lean subjects but was strongly enhanced in the obese subjects and reached the concentrations found in lean sujects (297 +/- 46 micromol/l). These findings demonstrate that the physiological stimulation of SCAT adipocyte alpha(2)-ARs during exercice-induced sympathetic nervous system activation contributes to the blunted lipolysis noted in obese men.  相似文献   

5.
The effect of non-selective (theophylline) inhibition of cyclic AMP breakdown on norepinephrine stimulated lipolysis rate was investigated in subcutaneous adipose tissue of obese subjects. In addition, changes in interstitial glucose and lactate concentration were assessed by means of the microdialysis technique. The interaction of endogenous released insulin and theophylline on adipocyte metabolism was determined. Theophylline and norepinephrine alone increased glycerol outflow significantly. When both agents were perfused in combination, interstitial glycerol concentration increased further. The enhanced glycerol level due to theophylline application was slightly decreased by insulin. In the presence of theophylline, extracellular glucose concentration increased, in contrast to the catecholamine. Norepinephrine decreased interstitial glucose level. When both drugs were added in combination, the level of interstitial glucose increased to about 1 mM, greater than with theophylline alone. With each intervention, lactate was synthesized. Local adipose tissue blood flow was increased by theophylline and theophylline plus norepinephrine. In conclusion, post-receptor mechanisms increased norepinephrine maximal stimulated lipolysis rate in subcutaneous adipose tissue. Glucose uptake was inhibited by the non-specific inhibitor of phosphodiesterase. The effect of insulin on inhibition of lipolysis was modest but sustained in the presence of high theophylline (10(-4) M) concentration. Phosphodiesterase activity may be relatively low in obese subjects in comparison with lean subjects. In lean subjects theophylline caused a transient reversal of the antilipolytic effect of insulin.  相似文献   

6.
We studied eight normal-weight male subjects to examine whether the lipolytic rate of deep subcutaneous and preperitoneal adipose tissues differs from that of superficial abdominal subcutaneous adipose tissue. The lipolytic rates in the superficial anterior and deep posterior subcutaneous abdominal adipose tissues and in the preperitoneal adipose tissue in the round ligament were measured by microdialysis and (133)Xe washout under basal, postabsorptive conditions and during intravenous epinephrine infusion (0.15 nmol. kg(-1). min(-1)). Both in the basal state and during epinephrine stimulation, the superficial subcutaneous adipose tissue had higher interstitial glycerol concentrations than the two other depots. Similarly, the calculated glycerol outputs from the superficial depot were significantly higher than those from the deep subcutaneous and the preperitoneal depots. Thus, it is concluded that the lipolytic rate of the superficial subcutaneous adipose tissue on the anterior abdominal wall is higher than that of the deep subcutaneous adipose tissue on the posterior abdominal wall and that of the preperitoneal adipose tissue in the round ligament.  相似文献   

7.
8.
The purpose of our study was to evaluate the potential inhibition of adipose tissue mobilization by lactate. Eight male subjects (age, 26. 25 +/- 1.75 yr) in good physical condition (maximal oxygen uptake, 59.87 +/- 2.77 ml. kg-1. min-1; %body fat, 10.15 +/- 0.89%) participated in this study. For each subject, two microdialysis probes were inserted into abdominal subcutaneous tissue. Lactate (16 mM) was perfused via one of the probes while physiological saline only was perfused via the other, both at a flow rate of 2.5 microl/min. In both probes, ethanol was also perfused for adipose tissue blood flow estimation. Dialysates were collected every 10 min during rest (30 min), exercise at 50% maximal oxygen consumption (120 min), and recovery (30 min) for the measurement of glycerol concentration. During exercise, glycerol increased significantly in both probes. However, no differences in glycerol level and ethanol extraction were observed between the lactate and control probes. These findings suggest that lactate does not impair subcutaneous abdominal adipose tissue mobilization during exercise.  相似文献   

9.
We recently demonstrated that natriuretic peptides and especially the atrial natriuretic peptide (ANP) are powerful lipolytic agents on isolated human fat cells. To search for a possible influence of obesity on ANP responsiveness, we compared the lipolytic effects of human ANP (h-ANP) on isolated subcutaneous abdominal adipose tissue (SCAAT) fat cells from young healthy lean and obese men. The lipid-mobilizing effects of an intravenous infusion of h-ANP was studied, as well as various metabolic and cardiovascular parameters that were compared in the same subjects. h-ANP (50 ng/min/kg) was infused iv for 60 min. Microdialysis probes were inserted in SCAAT to measure modifications of the extracellular glycerol concentrations during h-ANP infusion. Spectral analysis of blood pressure and heart rate oscillations that were recorded using digital photoplethysmography were used to assess changes in autonomic nervous system activity. h-ANP induced a marked and similar increase in glycerol and nonesterified fatty acids, and a weak increase in insulin plasma levels in lean and obese men. Plasma norepinephrine concentrations rose similarly during h-ANP infusion in lean and obese men. The effects of h-ANP infusion on the autonomic nervous system were similar in both groups, with an increase in the spectral energy of the low-frequency band of systolic blood pressure variability and a decrease in the spectral energy of the high-frequency band of heart rate. In SCAAT, h-ANP infusion increased extracellular glycerol concentration and decreased blood flow similarly in both groups. The increase in extracellular glycerol observed during h-ANP infusion was not modified when 0.1 mM propranolol was added to the microdialysis probe perfusate to prevent beta-adrenoceptor activation. These data show that ANP is a potent lipolytic hormone independent of the activation of the sympathetic nervous system, and that obesity did not modify the lipid-mobilizing effect of ANP in young obese subjects.  相似文献   

10.
We measured whole body and regional lipolytic and adipose tissue blood flow (ATBF) sensitivity to epinephrine in 8 lean [body mass index (BMI): 21 +/- 1 kg/m(2)] and 10 upper body obese (UBO) women (BMI: 38 +/- 1 kg/m(2); waist circumference >100 cm). All subjects underwent a four-stage epinephrine infusion (0.00125, 0.005, 0.0125, and 0.025 microgram. kg fat-free mass(-1). min(-1)) plus pancreatic hormonal clamp. Whole body free fatty acid (FFA) and glycerol rates of appearance (R(a)) in plasma were determined by stable isotope tracer methodology. Abdominal and femoral subcutaneous adipose tissue lipolytic activity was determined by microdialysis and (133)Xe clearance methods. Basal whole body FFA R(a) and glycerol R(a) were both greater (P < 0.05) in obese (449 +/- 31 and 220 +/- 12 micromol/min, respectively) compared with lean subjects (323 +/- 44 and 167 +/- 21 micromol/min, respectively). Epinephrine infusion significantly increased FFA R(a) and glycerol R(a) in lean (71 +/- 21 and 122 +/- 52%, respectively; P < 0.05) but not obese subjects (7 +/- 6 and 39 +/- 10%, respectively; P = not significant). In addition, lipolytic and ATBF sensitivity to epinephrine was blunted in abdominal but not femoral subcutaneous adipose tissue of obese compared with lean subjects. We conclude that whole body lipolytic sensitivity to epinephrine is blunted in women with UBO because of decreased sensitivity in upper body but not lower body subcutaneous adipose tissue.  相似文献   

11.
In this study, the difference in lipolytic response in inguinal subcutaneous and epididymal adipose tissues of male Sprague-Dawley rats was assessed in vivo by microdialysis. Probes were perfused with Ringer solution in which increasing concentrations of isoproterenol (10(-7) - 10(-4) mol/L) were added. Glycerol release, expressed as extracellular glycerol concentration, was used as lipolytic index. The effect of isoproterenol on local blood flow was investigated using the ethanol technique. No differences were found in the interstitial glycerol concentration between both adipose tissues under basal conditions. When isoproterenol was perfused, a dose-response increase in glycerol production was induced in both tissues. Interstitial glycerol concentration from epididymal adipose tissue was higher than that of inguinal subcutaneous depot at all isoproterenol concentrations. No vasodilatory effect of isoproterenol was found. These results suggest that epididymal adipose tissue is more responsive in vivo to beta-adrenergic lipolysis stimulation than is subcutaneous fat pad from the inguinal region.  相似文献   

12.
ANG II applied to the interstitial space influences carbohydrate and lipid metabolism in a tissue-specific fashion. Thus endogenous ANG II may have a tonic effect on tissue metabolism that could be reversed with ANG II type 1 (AT1) receptor blockade, particularly during adrenergic stimulation. We studied 14 obese men. They were treated for 10 days with the AT1 receptor blocker irbesartan or with placebo in a double-blind and crossover fashion. At the end of each treatment period, we assessed skeletal muscle and adipose tissue metabolism using the microdialysis technique. The ethanol dilution technique was applied to follow changes in tissue blood flow. Measurements were obtained at baseline and during application of incremental isoproterenol concentrations through the microdialysis catheter. Blood pressure decreased from 133 +/- 3/84 +/- 3 to 128 +/- 3/79 +/- 2 mmHg for systolic and diastolic blood, respectively (P = 0.02 and 0.006, respectively) with AT1 receptor blockade. Isoproterenol perfusion caused a dose-dependent increase in dialysate glycerol in adipose tissue and in skeletal muscle. Irbesartan slightly reduced the isoproterenol-induced glycerol response in adipose tissue (P < 0.05 by ANOVA). Ethanol ratio, interstitial glucose supply, and lactate production in adipose tissue and skeletal muscle were similar with placebo and irbesartan. We conclude that AT1 receptor blockade in obese men does not reveal a major tonic ANG II effect on interstitial glucose supply, lipolysis, or glycolysis in skeletal muscle, either at rest or during beta-adrenergic stimulation. Endogeneous ANG II may slightly increase adipose tissue lipolysis. The mechanism may promote the redistribution of triglycerides from adipose tissue toward other organs.  相似文献   

13.
The selective alpha1 -adrenoceptor antagonist doxazosin has apparently beneficial effects on insulin sensitivity and on plasma lipid concentrations. In order to understand these effects better, we investigated the acute effects of doxazosin on adipose tissue and forearm blood flow and on postprandial lipid metabolism in healthy subjects. Nine subjects were studied in a balanced, placebo-controlled design. Pulse rate, blood pressure, forearm and subcutaneous adipose tissue blood flow were measured before and for 6 h after a mixed meal, with concomitant measurements of blood metabolites and insulin. Doxazosin increased pulse rate (p = 0.02) and forearm blood flow (p < 0.01 in fasting state), and decreased vascular resistance in forearm (p < 0.05 for fasting values) and subcutaneous abdominal adipose tissue (p = 0.04). Fasting plasma non-esterified fatty acid concentrations were increased by 40 % (p < 0.05). No other metabolic effects were detected. The effects on adipose tissue vascular resistance and lipolysis (reflected in elevated non-esterified fatty acid concentrations) were unexpected, as these are usually considered to be mediated by the balance of alpha2 - and beta-adrenoceptor activity in humans. We conclude that alpha1 -adrenoceptor activity may be more important in regulation of human lipid metabolism than previously recognized.  相似文献   

14.
Regional variation in adipose tissue lipolysis in lean and obese men.   总被引:7,自引:0,他引:7  
Biopsies of adipose tissue were obtained from two subcutaneous regions (abdominal and femoral) in a sample of 54 men (32 obese and 22 lean subjects). Clonidine-induced antilipolysis in femoral adipose cells was similar in both groups, whereas subcutaneous abdominal adipocytes of obese individuals showed a higher alpha 2-adrenergic response than did subcutaneous abdominal adipose cells from lean subjects. In addition, epinephrine had a biphasic effect in subcutaneous abdominal adipocytes from obese individuals, as it induced antilipolysis at low concentrations, and a net lipolytic response at higher doses. In contrast, the physiological amine promoted lipolysis in subcutaneous abdominal adipose cells of lean subjects. Epinephrine- and clonidine-induced antilipolysis of subcutaneous abdominal adipocytes was positively associated with the level of subcutaneous abdominal fat measured by computed tomography (CT). Finally, men with a high alpha 2-adrenergic response of subcutaneous abdominal fat cells were fatter than those with a low alpha 2-adrenergic component. These results suggest that, in men with a wide range of body fatness, variations in the lipolytic response of subcutaneous abdominal adipose cells to epinephrine appear to involve changes in the functional balance between alpha 2- and beta-adrenoceptors.  相似文献   

15.
The abdominal subcutaneous interstitium is easily accessible for monitoring glucose for Diabetes Mellitus research and management. The available glucose sensing devices demand frequent blood sampling by finger pricking for calibration. Moreover, there is controversy about the exact relationship between the levels of glucose in the subcutis and blood. In the present study ultra-slow microdialysis was applied for subcutaneous fluid sampling, allowing continuous measurement of glucose in an equilibrated fluid using a nanolitre size sensor. The present method avoids in vivo calibration. During an oral glucose tolerance test glucose levels were measured simultaneously in blood, in adipose tissue and loose connective tissue layers of the abdominal subcutis in seven healthy subjects. Fasting glucose levels (mM) were 2.52 +/- 0.77 in adipose tissue and 4.67 +/- 0.17 in blood, this difference increasing to 6.40 +/- 1.57 and 11.59 +/- 1.52 at maximal glucose concentration. Moreover, the kinetics of glucose in blood and adipose tissue were different. In contrast, connective tissue glucose levels differed insignificantly (4.71 +/- 0.21 fasting and 11.70 +/- 1.96 at maximum) from those in blood and correlated well (r2 = 0.962). Ultra-slow microdialysis combined with a nanolitre glucose sensor could be of benefit to patients in intensive diabetes therapy. Frequent blood sampling for in vivo calibration can be avoided by monitoring glucose in the abdominal subcutaneous loose connective tissue, rather than in the adipose tissue.  相似文献   

16.
Objective: To evaluate the effect of a 4‐day carbohydrate overfeeding on whole body net de novo lipogenesis and on markers of de novo lipogenesis in subcutaneous adipose tissue of healthy lean humans. Research Methods and Procedures: Nine healthy lean volunteers (five men and four women) were studied after 4 days of either isocaloric feeding or carbohydrate overfeeding. On each occasion, they underwent a metabolic study during which their energy expenditure and net substrate oxidation rates (indirect calorimetry), and the fractional activity of the pentose‐phosphate pathway in subcutaneous adipose tissue (subcutaneous microdialysis with 1, 613C2, 6, 62H2 glucose) were assessed before and after administration of glucose. Adipose tissue biopsies were obtained at the end of the experiments to monitor mRNAs of key lipogenic enzymes. Results: Carbohydrate overfeeding increased basal and postglucose energy expenditure and net carbohydrate oxidation. Whole body net de novo lipogenesis after glucose loading was markedly increased at the expense of glycogen synthesis. Carbohydrate overfeeding also increased mRNA levels for the key lipogenic enzymes sterol regulatory element‐binding protein‐1c, acetyl‐CoA carboxylase, and fatty acid synthase. The fractional activity of adipose tissue pentose‐phosphate pathway was 17% to 22% and was not altered by carbohydrate overfeeding. Discussion: Carbohydrate overfeeding markedly increased net de novo lipogenesis at the expense of glycogen synthesis. An increase in mRNAs coding for key lipogenic enzymes suggests that de novo lipogenesis occurred, at least in part, in adipose tissue. The pentose‐phosphate pathway is active in adipose tissue of healthy humans, consistent with an active role of this tissue in de novo lipogenesis.  相似文献   

17.
Fatty acid transporter protein (FATP)-1 mRNA expression was investigated in skeletal muscle and in subcutaneous abdominal adipose tissue of 17 healthy lean, 13 nondiabetic obese, and 16 obese type 2 diabetic subjects. In muscle, FATP-1 mRNA levels were higher in lean women than in lean men (2.2 +/- 0.1 vs. 0.6 +/- 0.2 amol/microg total RNA, P < 0.01). FATP-1 mRNA expression was decreased in skeletal muscle in obese women both in nondiabetic and in type 2 diabetic patients (P < 0.02 vs. lean women in both groups), and in all women there was a negative correlation with basal FATP-1 mRNA level and body mass index (r = -0.74, P < 0.02). In men, FATP-1 mRNA was expressed at similar levels in the three groups both in skeletal muscle (0.6 +/- 0.2, 0.6 +/- 0.2, and 0.8 +/- 0.2 amol/microg total RNA in lean, obese, and type 2 diabetic male subjects) and in adipose tissue (0.9 +/- 0.2 amol/microg total RNA in the 3 groups). Insulin infusion (3 h) reduced FATP-1 mRNA levels in muscle in lean women but not in lean men. Insulin did not affect FATP-1 mRNA expression in skeletal muscle in obese nondiabetic or in type 2 diabetic subjects nor in subcutaneous adipose tissue in any of the three groups. These data show a gender-related difference in the expression of the fatty acid transporter FATP-1 in skeletal muscle of lean individuals and suggest that changes in FATP-1 expression may not contribute to a large extent to the alterations in fatty acid uptake in obesity and/or type 2 diabetes.  相似文献   

18.
Objective: Recent studies in rats suggest an important effect of α1‐adrenoreceptor stimulation on glucose uptake in white adipocytes. It is not known if α1‐adrenoreceptor stimulation elicits similar metabolic effects in humans. Research Methods and Procedures: Three microdialysis catheters in abdominal subcutaneous adipose tissue were perfused with 0.00, 0.01, 0.10, 1.00, and 10.00 μM isoproterenol, phenylephrine, or phenylephrine plus 100 μM propranolol. Dialysate concentrations of ethanol, glycerol, glucose, and lactate were measured for estimating blood flow (ethanol‐dilution technique), lipolysis, and glycolysis, respectively. Results: Phenylephrine, with or without propranolol, did not elicit a change in ethanol ratio. In contrast, the ethanol ratio decreased markedly with isoproterenol. Dialysate glucose concentration decreased with phenylephrine with and without propranolol and increased with isoproterenol. Phenylephrine caused a dose‐dependent increase in dialysate glycerol concentration, with a maximal effect similar to that of isoproterenol. The effect was attenuated with propranolol. Discussion: Our findings suggest that α1‐adrenoreceptor stimulation by phenylephrine increases glucose uptake and metabolism in human abdominal adipose tissue. Furthermore, phenylephrine elicits a marked increase in lipolytic activity in white adipose tissue through β‐adrenoreceptor activation.  相似文献   

19.
Upper-body/visceral obesity is associated with abnormalities of free fatty acid (FFA) metabolism and greater risk of developing type 2 diabetes compared with lower-body obesity. In lean subjects lipolysis is readily suppressed by insulin; however, metabolic inflexibility with respect to antilipolysis is a frequent finding in obesity, partly determined by body composition. This study investigates effects of insulin on regional adipose tissue lipolysis and lactate levels in upper-body overweight/obese (UBO), lower-body overweight/obese (LBO), and lean women. The microdialysis technique was used to assess adipose tissue glycerol and lactate concentrations in abdominal and femoral fat during a 5-h basal period and a 2-h hyperinsulinemic euglycemic clamp. The main findings were that the antilipolytic effect of insulin was attenuated in abdominal fat of UBO (glycerol reduction, abd (%): UBO 40.4 (-14 to 66), LBO 46.0 (-8 to 66), lean 66.2 (2-78), ANOVA, P < 0.05), and in femoral fat in both obese groups (glycerol reduction, fem (%): UBO 44.4 (35-67), LBO 44.4 (0-63), lean 65.0 (43-79), ANOVA, P < 0.05). Further, abdominal fat insulin-mediated increase in lactate concentration was greater in lean women compared with UBO women (lactate increase, abd (%): UBO -6.1 (-37.1 to 57.4), LBO 16.5 (-32.2 to 112.5), lean 51.4 (-45.7 to 162.9), P < 0.05), whereas no differences were found between groups in femoral fat (lactate increase, fem (%), UBO -12.9 (-43 to 24), LBO 12.7 (-30.7 to 92), lean 27.6 (-9.5 to 123.8), not significant). Respiratory exchange ratio (RER) increased significantly and similarly in all groups. So, UBO women were metabolically inflexible with respect to insulins antilipolytic and lactate increasing effects in abdominal adipose tissue. These phenomena are probably both consequences of insulin resistance of adipose tissue.  相似文献   

20.
ZAG, a lipid mobilizing adipokine, is downregulated in human obesity   总被引:1,自引:0,他引:1  
The main goal of this study was to compare the expression of Zinc-alpha2-glycoprotein (ZAG), a recently described adipokine, in obese and lean subjects. ZAG expression was determined by Real-time PCR analysis in subcutaneous abdominal adipose tissue of eighteen young men, 9 lean (BMI = 23.1 +/- 0.4 kg/m2) and 9 obese (34.7 +/- 1.2 kg/m2) with a similar habitual dietary intake of fat and physical activity, which were assessed by validated methods. Our data revealed that ZAG gene was downregulated (-70%; p < 0.05) in subcutaneous adipose tissue of obese compared to lean subjects. Moreover, statistically significant positive correlations between ZAG gene expression and serum adiponectin (r = 0.89; p < 0.01) and a negative correlation with the plasma levels of leptin (r = -0.82; p < 0.05) and waist circumference (r = -0.64; p < 0.05) were found in obese subjects. Our data suggest that this novel adipokine could play a role in human susceptibility to obesity related disorders and that upregulation of ZAG could be a promising therapeutic target for metabolic syndrome treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号