首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
通过半薄及超薄切片,比较了正常和受白粉菌感染的小麦叶片细胞的显微及超微结构的差异。观察结果发现(1)受感染小麦叶肉细胞的细胞壁上局部沉积大量团状电子致密颗粒;(2)叶绿体形状由原来的椭圆形转变成圆形,叶绿体膜破裂,类囊体膨大,基粒片层排列疏松,同时,叶绿体内嗜锇性颗粒数量增加;(3)线粒体膜解体,内含物分散到了细胞质中  相似文献   

2.
CO2倍增对3种禾本科植物叶绿体超微结构的影响   总被引:5,自引:0,他引:5  
本对CO2正常浓度(350μL/L)倍增(700μL/L)条件下,小麦、水稻和高粱等3种禾本科植物叶肉及维管束鞘细胞中叶绿体的数目,叶绿体的超微结构等进行了比较研究。在光镜和透射电镜下的观测结果表明:高浓度CO2可促进3种禾本科植物叶绿体的发育,使之数量增多、体积增大;叶绿体中淀粉粒积累增多、体积增大。其中,C4植物的高粱叶绿体中淀粉粒数量明显增加,而叶绿体光合膜的结构却受到很大破坏;C3植物的小  相似文献   

3.
小麦经200mmol NaCl溶液培养3天后,采用改进的焦锑酸钾方法对叶肉细胞中Na~+及Cl~-进行超微结构定位。电镜观察及电子探针X-射线显微分析表明,Cl~-主要分布在细胞间隙、细胞壁及细胞质膜中。用电子探针X~-射线能谱仪在这些部位中未探测出Na~+,提示Cl~-比Na~+更多地进入小麦的叶肉细胞。此外,在叶肉细胞的细胞核、线粒体及叶绿体中也可见到离子沉淀颗粒。经氯化钠溶液培养的小麦幼苗,其叶肉细胞的叶绿体、线粒体的超微结构受损,植株生长受到抑制。  相似文献   

4.
烟草腺毛发育过程中叶绿体形态学研究   总被引:1,自引:1,他引:0  
应用荧光显微技术和电镜技术,对不同发育时期烟草叶面腺毛的叶绿素荧光和叶绿体结构进行了比较研究.结果发现,在腺毛发育初期,腺头细胞叶绿素荧光明显,叶绿体类囊体结构清晰;随着腺头细胞的分裂和生长,叶绿素荧光逐渐增强,叶绿体数目逐渐增多,类囊体发达,嗜锇颗粒产生;在腺毛发育成熟以后,叶绿素荧光减弱,类囊体膜降解,嗜锇颗粒增多;随着腺毛的分泌活动增强,叶绿体完全降解,磷脂双层膜消失,嗜锇颗粒扩散到细胞质中,并最终聚集在细胞质膜附近.  相似文献   

5.
单个隐性基因控制的小麦叶片黄化   总被引:10,自引:0,他引:10  
小麦材料AIM9的叶片失绿表现型是受一对隐性单基因控制的,该基因暂命名为CD5。在10个源于杂交组合CN17/AIM9的F3分离家系中失绿植株和对照植株在许多生理指标和收获指标上呈现显著差异。相关性分析表明收获指标与生理指标,如净光合速率、气孔导度、叶绿素含量等呈显著正相关;而与细胞间CO2浓度及丙二醛含量呈显著负相关。透射电镜观察发现失绿叶片中的叶绿体发生不可逆的向心运动,整个过程大致经历以下几个阶段:(1)叶绿体从叶绿体长轴垂直于光线转变至叶绿体长轴平行于光线;(2)叶绿体的形状从椭圆形转变为圆形;(3)叶绿体脱离细胞壁向细胞中心运动。  相似文献   

6.
小麦叶片中叶绿体细胞分裂素结合蛋白的定位张华敏,刘愚,王美琪,沈允钢(中国科学院上海植物生理研究所,上海200032)关键词:小麦叶片细胞,CTK结合蛋白,放射自显影,胶体金自从Berridge等(1970)首次在高等植物的核糖体上发现了细胞分裂素(...  相似文献   

7.
小麦经200mmol NaCl溶液培养3天后,采用改进的焦锑酸钾方法对叶肉细胞中Na+及Cl-进行超微结构定位。电镜观察及电子探针X-射线显微分析表明,Cl-主要分布在细胞间隙、细胞壁及细胞质膜中。用电子探针X~-射线能谱仪在这些部位中未探测出Na+,提示Cl-比Na+更多地进入小麦的叶肉细胞。此外,在叶肉细胞的细胞核、线粒体及叶绿体中也可见到离子沉淀颗粒。经氯化钠溶液培养的小麦幼苗,其叶肉细胞的叶绿体、线粒体的超微结构受损,植株生长受到抑制。  相似文献   

8.
小麦纹枯病菌侵染过程的组织学研究   总被引:5,自引:0,他引:5  
刘雪梅  肖建国 《菌物系统》1999,18(3):288-293
本文报道了小麦纹枯病菌侵染小麦的过程,病菌在穿透寄主之前产生侵染热 丝圈以及形态简单的单附着胞等侵染结构,由染垫基部丝或附产丰胞产生的侵染菌丝直接或通过气孔侵入寄主,也可见菌丝直接侵入寄主;菌丝侵入寄主表皮后,迅速在受侵细胞内呈网状产扩展,并直接穿透毗邻细胞壁,向其它细胞纵横扩展,受病组织出现细胞变形,变空;接近菌丝的质膜发生质壁分离,质膜断裂,叶绿体有,变小或接近消失,类本被破坏,叶绿体内嗜颗粒  相似文献   

9.
UV-B辐射对几种木本植物幼苗生长和叶绿体超微结构的影响   总被引:10,自引:0,他引:10  
在实验室条件下研究了UV-B辐射对广东省南亚热带森林中5种木一植物九节,鸭脚木,猴耳环,半枫荷,山乌桕和绿化树种大叶合欢的幼苗形态和细胞超微结构。特别是叶绿体超微结构的影响。结果表明,UV-B辐射抑制幼苗主根伸长和减少侧根数,抑制茎伸长,减少叶数和叶面积。UV-B辐射破坏叶片细胞膜细胞,特别是叶绿体膜结构,但不同种受影响的程度不同,所表现的症状也不完全相同,鸭脚木的质膜收缩,导致质壁分离;鸭脚木,半枫荷和猴耳环的叶绿体膨胀,前二者的甚至破裂,鸭脚木的质膜收缩,导致质壁分离;鸭脚木,半枫荷和猴耳环的叶绿体膨胀,前二者的甚至破裂;鸭脚木和半枫荷的类囊体膨胀粘连;猴耳环的线粒体出现空泡化,半枫荷和猴耳环的叶绿体内大的淀粉粒增多;鸭脚木和山乌桕的叶绿体内或膜上黑色颗粒增多,鸭脚木的线粒体膜上也出现黑色颗粒。  相似文献   

10.
叶片阶段性白化小麦是一种非常特殊的色素突变体。本文对其白色、白绿相嵌及转绿叶片的叶绿体光化活性分别进行了测定。试验表明:(1)白化和白绿相嵌叶片的叶绿体色素合成处于停滞阶段,转绿叶片则处于色素迅速合成阶段;(2)白化、白绿相嵌和转绿叶片叶绿体的激发能传递呈递增趋势;(3)三者对绿体的PSⅡ活性和原初光能转化效率也呈递增趋势;(4)白化叶片叶绿体缺乏PSⅠ和PSⅡ外周天线色素蛋白,白绿相嵌和转绿叶片的类囊体膜多肽组分与正常叶片相近似。  相似文献   

11.
(1) The proportion of infected B. megatherium cells which develop lysogenic colonies depends on the number and kind of infecting virus particles and on the culture medium in which the cells are growing. (2) Cells infected with 100 or more T virus particles (from megatherium 899) in yeast extract peptone disintegrate, produce very few virus particles, and less than one lysogenic colony per 107 infected cells. Cells infected with one or a few particles produce 500 to 1000 virus particles each and about 30 lysogenic colonies per 107 infected colonies. (3) T phage obtained from lysogenic magatherium KM cultures produces many more lysogenic cells than does the original megatherium 899 virus. (4) Cells infected with megatherium 899 T virus in peptone medium and then transferred to asparagine medium give rise to 106 lysogenic colonies per 107 infected cells and this transformation will occur even after the infected cells have been in peptone for 60 to 90 minutes and are beginning to produce virus particles. (5) Continued growth of KM strain with either C or T virus from megatherium 899 for several hundred generations in the steady state apparatus results in a lysogenic strain which produces several different types of virus.  相似文献   

12.
Ultrastructural responses of tobacco cells infected with a newly discovered satellite virus (STMV) that has an isometric morphology and is associated with rigid rodshaped tobacco mosaic virus (TMV) were studied in situ. In cells infected with TMV alone,TMV particles occurred as crystalline arrays in the cytoplasm and were usually associated with TMV-characteristic X bodies. In cells infected with both TMV and STMV, particles of STMV occurred only in cells that contained TMV particles, which suggests a correlation between the satellite and helper virus presence. However, the replication and/or accumulation sites of STMV appear to be independent from its helper virus. Unlike TMV particles, STMV particles were associated with several cytopathic structures such as granular inclusions, membranous vesicles of 50–80 nm, and myelin-like bodies which were all bounded by a single common membrane, No X bodies occurred in cells containing STMV particles, and the mitochondria possessed abnormal tubular structures containing flocculent material.  相似文献   

13.
Attachment of virus particles to antiserum-coated electron microscope grids (immunosorbent electron microscopy) provided a test that was at least a thousand times more sensitive than conventional electron microscopy for detecting potato leafroll (PLRV) and potato mop-top (PMTV) viruses. The identity of the attached virus particles was confirmed by exposing them to additional virus antibody, which coated the particles.
PLRV particles (up to 50/μm2 of grid area) were detected in extracts of infected potato leaves and tubers, infected Physalis floridana leaves, and single virus-carrying aphids. On average, Myzus persicae yielded 10–30 times more PLRV particles than did Macrosiphum euphorbiae .
PMTV particles (up to 10/μm2 of grid area) were detected in extracts of inoculated tobacco leaves, and of infected Arran Pilot potato tubers with symptoms of primary infection. Particles from tobacco leaves were of two predominant lengths, about 125 nm or about 290 nm, and fewer particles of other lengths were found than in previous work, in which partially purified or purified preparations of virus particles were examined, using grids not coated with antiserum.  相似文献   

14.
1. A strain of S. muscae which requires a substance present in certain acid-hydrolyzed proteins (AHPF) for virus liberation when singly infected in Fildes' synthetic medium no longer needs this substance when multiply infected. 2. In the absence of the AHPF under conditions of multiple infection the amount of phage released is approximately equal to the number of infecting particles between two to ten. Over ten particles per cell has no further effect on the yield of virus. 3. The experimental evidence indicates that it is the phage particle and not some other component in the lysate which can replace the AHPF. 4. The minimum latent period and rise period of cells singly infected in the presence of the AHPF and multiply infected in the absence of the AHPF are the same. 5. The desoxynucleic acid synthesis of cells, infected with a very few virus particles in the presence of excess AHPF and multiply infected with ten particles in the absence of the AHPF, occurs at approximately the same rate, with both infected samples synthesizing about the same amount of desoxynucleic acid and liberating the same yields of virus. 6. A strain of S. muscae which requires aspartic acid for virus synthesis when singly infected does not need this substance when multiply infected, the burst size under the latter conditions depending upon the multiplicity of infection between 3 to 12 particles per cell. 7. The data indicate that the virus released from multiply infected cells in the absence of added AHPF or aspartic acid is newly synthesized virus and not the original infecting particles. 8. The phage particle contains the AHPF and aspartic acid. 9. As a tentative working hypothesis, it is assumed that the AHPF and aspartic acid for phage formation under conditions of multiple infection, in the absence of added AHPF, or of aspartic acid, are contributed by the original infecting particles. 10. Ultraviolet-inactivated phage is adsorbed to the host cell and kills the cell although little virus is released under the experimental conditions. 11. Ultraviolet-inactivated phage particles, if added before the active particle is adsorbed, will greatly inhibit the liberation of new virus particles; but does not do so if added a few minutes after the active particle has been adsorbed. 12. Under the experimental conditions, reactivation of phage when present in multiply infected cells does not occur; and such ultraviolet-inactivated phage cannot serve as a source of the AHPF or aspartic acid, although the AHPF can be liberated from such inactivated particles by acid hydrolysis. 13. The results are discussed in relation to Luria's experiments with ultraviolet-treated phage and to his "gene pool" hypothesis of phage formation.  相似文献   

15.
Euphorbia mosaic virus was purified from infected plants of Nicotiana benthamiana. Highest concentrations of virus particles were found in infected plant tissue between 10–12 days after inoculation. The enzyme driselase assisted in purification of the virus particles from the infected tissue yielding about 600 μg/kg of plant material. Purified preparations showed a maximum absorption at 260–263 nm and the ratio of absorption at 260 and 280 nm was 1.4. The viral nucleic acid was digestedby DNase I and S1 Nuclease but not RNase A. A single coat protein with a MW of 32,000 d and two DNA bands with a MW 0.96 × 106 d (2870 nucleotides) and 0.90 × 106 d (2700 nucleotides) were associated with the purified virus particles. Virus specific DNA was isolated from infected tissue between 7 and 15 days after inoculations.  相似文献   

16.
Thin sections of mature anthers and pollen grains from three lettuce (Lactuca sativa) plants infected with lettuce mosaic potyvirus (LMV) were studied by immunogold labelling. Labelled LMV particles were present externally on the exine of pollen grains from all plants, but were observed internally in the pollen grains from only one plant. Within mature pollen grains the virus particles were associated with the cytoplasmic bundle inclusions typical of infection by potyviruses. The tapetal plasmodium and the epidermal and endothecial layers of mature anthers from all infected plants also contained labelled virus particles, together with pinwheel and bundle inclusions.  相似文献   

17.

Background

Murine Leukemia Virus (MLV) assembly has been long thought to occur exclusively at the plasma membrane. Current models of retroviral particle assembly describe the recruitment of the host vacuolar protein sorting machinery to the cell surface to induce the budding of new particles. Previous fluorescence microscopy study reported the vesicular traffic of the MLV components (Gag, Env and RNA). Here, electron microscopy (EM) associated with immunolabeling approaches were used to go deeply into the assembly of the "prototypic" MLV in chronically infected NIH3T3 cells.

Results

Beside the virus budding events seen at the cell surface of infected cells, we observed that intracellular budding events could also occur inside the intracellular vacuoles in which many VLPs accumulated. EM in situ hybridization and immunolabeling analyses confirmed that these latter were MLV particles. Similar intracellular particles were detected in cells expressing MLV Gag alone. Compartments containing the MLV particles were identified as late endosomes using Lamp1 endosomal/lysosomal marker and BSA-gold pulse-chase experiments. In addition, infectious activity was detected in lysates of infected cells.

Conclusion

Altogether, our results showed that assembly of MLV could occur in part in intracellular compartments of infected murine cells and participate in the production of infectious viruses. These observations suggested that MLV budding could present similarities with the particular intracellular budding of HIV in infected macrophages.  相似文献   

18.
A Scottish isolate of cocksfoot streak virus (CSV-S) was found to have flexuous filamentous particles which, in sap of infected cocksfoot plants, had a modal length of 712 nm. It was transmitted from infected to healthy cocksfoot plants in a non-persistent manner by Myzus persicae and by mechanical inoculation of infective sap extracts containing an anti-oxidant. Apart from cocksfoot, mechanical inoculation of infective sap succeeded in infecting only four of 22 plant species tested. The infectivity of sap extracts containing 0.2% thioglycerol was lost after heating for 10 min at 55oC but not 50oC, storage at room temperature for 48 but not 24 hours, and after diluting 10-2 to 10-3. Highly purified preparations of CSV-S particles sedimented as a single component with a sedimentation coefficient of 139S and had a buoyant density in rubidium bromide of 1.31 g/cm3. Virus particles were composed of one protein and one ssRNA species with estimated Mr of 31 000 and 3.2 times 106 respectively. In ELISA, an antiserum prepared to CSV-S detected the virus in all aerial parts of infected cocksfoot plants and, when present in the ratio of 1 infected leaf: 1000 healthy leaves. Both CSV-S-infected and -uninfected cocksfoot also contained a previously undescribed virus with isometric particles c. 30 nm in diameter. This virus, named cocksfoot cryptic virus (CCV), was seed-borne in two cvs of cocksfoot tested and its particles contained two dsRNA species of estimated Mt of 1.14 times 106 and 1.27 times 106. Despite the fact that particles of CSV-S were largely free from CCV particles following exclusion chromatography on agarose beads prior to immunisation, immunoelectron microscopy (IEM) showed that the antiserum prepared to CSV-S also contained some antibodies to CCV. Evidence from IEM suggested a possible distant serological relationship of CCV to ryegrass and beet (BCV 1 or BCV 2, or both) cryptoviruses, all members of sub-group A of cryptoviruses.  相似文献   

19.
Electron microscopy of thin sections of Longidorus elongatus (de Man) fed on plants infected with raspberry ringspot and tomato black ring viruses showed virus-like particles in the lumen of the buccal capsule and in the space between the stylet and the guiding sheath. In sections of L. elongatus fed on plants infected with arabis mosaic virus, which it does not normally transmit, a few virus particles were seen in the buccal capsule but none was associated with the stylet guiding sheath. It is suggested that the association of virus particles with the cuticular guiding sheath is an explanation of the specificity of virus transmission evident in L. elongatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号