首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
In Caenorhabditis elegans, P granules are germline-specific, RNA-containing granules that segregate into the germline precursor cell during early embryogenesis. In this short report, PAN-1, which previously has been found by others in screens for genes causing larval molting defects, is identified here as a novel P-granule component and a binding partner of GLH-1 (Germline RNA Helicase-1), a constitutive, germline-specific, P-granule protein. The PAN-1 predicted protein contains multiple leucine-rich repeats (LRRs) and regions with similarities to F-box proteins. Antibodies raised against PAN-1 reveal it is present both in the soma and the germline. In the germline, PAN-1 uniquely localizes to P granules from the first larval stage onward and is unusual for a P-granule component in lacking recognizable RNA binding motifs. Homozygous pan-1(gk142) deletion worms arrest as larvae that are unable to molt and this phenotype is also seen with pan-1(RNAi) into wild type worms. pan-1(RNAi) into the somatic RNAi-defective strain rrf-1(pk1417) bypasses the larval arrest and allows an assessment of PAN-1 function in the germline. We find pan-1(RNAi) is variably effective in knocking down PAN-1 protein and results in adult progeny that display multiple germline defects. These phenocopies range from under-proliferation of the germline, as also seen with loss of GLH-1, to the induction of endomitotic replication in oocytes, both defects that result in sterility, to fertile animals with significantly reduced progeny numbers. Thus, while loss of PAN-1 in the soma inhibits molting, this report demonstrates that PAN-1 is also a P-granule component that is essential for fertility.  相似文献   

7.
8.
9.
10.
Erik Selsing  Ursula Storb 《Cell》1981,25(1):47-58
A single germline immunoglobulin kappa-variable-region gene, Vκ167, is rearranged and expressed in two myelomas, MOPC167 and MOPC511. Only this single germline gene displays close homology to the expressed genes. Neither of the rearranged, functional genes, however, has a nucleotide sequence that is identical to the germline Vκ167 gene. Both active genes display several single-base-pair mutations with respect to the germline sequence. The nucleotide sequence data predict the alteration of a restriction-enzyme-recognition site within the Vκ167 gene between germline cells and cells producing the MOPC167 light-chain protein. Based on this restriction-site alteration, Southern blot analysis proves unambiguously that no gene present in the germline BALB/c mouse genome contains the exact Vκ167 nucleotide sequence found in cells committed to MOPC167 antibody production. Instead, the alterations found in the expressed MOPC167 and MOPC511 V-region genes have apparently arisen by a process of somatic mutation during cellular differentiation. Since nucleotide alterations are found in framework and hypervariable portions of the variable region, the mechanism of somatic mutation is not limited to hypervariable sequences. In addition, Southern blot hybridization indicates that the observed mutations did not arise by recombinational events, but are single-base-pair substitutions. Based on the distribution of mutations that have been found in expressed immunoglobulin variable-region genes, a model that links the introduction of somatic mutations to DNA replication during the V-J joining event is proposed.  相似文献   

11.
12.
The zinc finger associated domain (ZAD), present in almost 100 distinct proteins, characterizes the largest subgroup of C2H2 zinc finger proteins in Drosophila melanogaster and was initially found to be encoded by arthropod genomes only. Here, we report that the ZAD was also present in the last common ancestor of arthropods and vertebrates, and that vertebrate genomes contain a single conserved gene that codes for a ZAD-like peptide. Comparison of the ZAD proteomes of several arthropod species revealed an extensive and species-specific expansion of ZAD-coding genes in higher holometabolous insects, and shows that only few ZAD-coding genes with essential functions in Drosophila melanogaster are conserved. Furthermore, at least 50% of the ZAD-coding genes of Drosophila melanogaster are expressed in the female germline, suggesting a function in oocyte development and/or a requirement during early embryogenesis. Since the majority of the essential ZAD coding genes of Drosophila melanogaster were not conserved during arthropod or at least during insect evolution, we propose that the LSE of ZAD-coding genes shown here may provide the raw material for the evolution of new functions that allow organisms to pursue novel evolutionary paths.  相似文献   

13.
The germline of multicellular animals is segregated from somatic tissues, which is an essential developmental process for the next generation. Although certain ecdysozoans and chordates segregate their germline during embryogenesis, animals from other taxa segregate their germline after embryogenesis from multipotent progenitor cells. An overlapping set of genes, including vasa, nanos and piwi, operate in both multipotent precursors and in the germline. As we propose here, this conservation implies the existence of an underlying germline multipotency program in these cell types that has a previously underappreciated and conserved function in maintaining multipotency.  相似文献   

14.
15.
16.
Telomeric DNA can fold into four-stranded structures known as G-quadruplexes. Here we investigate the ability of G-quadruplex DNA to serve as a substrate for recombinant Tetrahymena and native Euplotes telomerase. Inter- and intramolecular G-quadruplexes were gel-purified and their stability examined using native gel electrophoresis, circular dichroism (CD) and thermal denaturation. While intermolecular G-quadruplexes were highly stable, they were excellent substrates for both ciliate telomerases in primer extension assays. In contrast, intramolecular G-quadruplexes formed in K+ exhibited biphasic unfolding and were not extended by ciliate telomerases. Na+-stabilised intramolecular G-quadruplexes were extended by telomerase owing to their rapid rate of dissociation. The Tetrahymena telomerase protein component bound to inter- but not intramolecular K+-stabilised G-quadruplexes. This study provides evidence that parallel intermolecular G-quadruplexes can serve as substrates for telomerase in vitro, their extension being mediated through direct interactions between this higher-order structure and telomerase.  相似文献   

17.
The hinge region of the immunoglobulin molecule is responsible for antigen-binding and cross-linking reactions, varying the distance between the two antigen-binding sites. As the amino acid sequence of the hinge region is identical among immunoglobulin molecules of the same (sub)class, it has been regarded as a constant region. By comparison of the nucleotide sequences among primate C alpha genes, it is clear that there is a wide variety of length among the hinge regions of hominoid C alpha genes, which basically consist of tandem repeats of a 15 base-pair sequence. This reiterated structure probably facilitates rapid evolutionary changes in the length of the hinge region. The hinge region of the Old World monkey C alpha gene has a non-reiterated structure whose nucleotide sequence is quite different from those of the hominoid C alpha genes, although its surrounding region is conserved during evolution. This unusual hypervariability reveals that the hinge region has evolved as a semi-variable region in contrast to its constant character from an ontogenic viewpoint.  相似文献   

18.
Human immunodeficiency virus (HIV) exhibits immunological hypervariability, which has been an obstacle to successful production of effective anti-HIV vaccines. In this study, we estimated patterns of nucleotide and amino acid substitutions in the env gene of HIVs, with the aim of finding characteristics of the mechanism which generates the immunological diversity of the env protein of HIVs. We found that nucleotide changes between A and G are predominant compared to those between other nucleotides. Since this feature is consistent with the pattern of nucleotide substitutions of other retroviral genes but is quite different from those of most eukaryotic genes, a high rate of nucleotide substitution between A and G appears to be specific for retroviruses including HIVs. We discuss the biological relationship between this biased substitution and the mechanism generating hypervariability of epitopes on the env protein of HIVs.  相似文献   

19.
Multiple targets for immune recognition and cellular tropism are localized to the V1 and V2 hypervariable regions in the amino portion of human immunodeficiency virus type 1 (HIV-1) gp120env. We have assessed genetic diversity in env V1 and V2 hypervariable domains in vivo within epidemiologically related strains of HIV-1. Our strategy was to analyze longitudinal samples from two seropositive mothers and multiple children infected by perinatal transmission. Although the V1 and V2 domains are closely linked in the HIV-1 genome, nucleotide sequences in V1 and in V2 evolved independently in maternal-infant viruses in vivo. A high proportion of the nucleotide substitutions would introduce amino acid diversity in V1 and in V2. A significant excess of nonsynonymous over synonymous substitutions was identified in HIV-1 env V1 and V2 peptides in the mothers and in two older children but was not generally apparent in HIV-1 sequences in infants. An excess of nonsynonymous over synonymous substitutions indicated that there is positive selection for independent genetic variation in the V1 and V2 domains in vivo. It is likely that there are host responses to complex determinants in the V1 or V2 hypervariable domain of HIV-1 gp120.  相似文献   

20.
The primary determinant for telomere replication is the enzyme telomerase, responsible for elongating the G-rich strand of the telomere. The only component of this enzyme that has been identified in Saccharomyces cerevisiae is the TLC1 gene, encoding the telomerase RNA subunit. However, a yeast strain defective for the EST1 gene exhibits the same phenotypes (progressively shorter telomeres and a senescence phenotype) as a strain deleted for TLC1, suggesting that EST1 encodes either a component of telomerase or some other factor essential for telomerase function. We designed a multitiered screen that led to the isolation of 22 mutants that display the same phenotypes as est1 and tlc1 mutant strains. These mutations mapped to four complementation groups: the previously identified EST1 gene and three additional genes, called EST2, EST3 and EST4. Cloning of the EST2 gene demonstrated that it encodes a large, extremely basic novel protein with no motifs that provide clues as to function. Epistasis analysis indicated that the four EST genes function in the same pathway for telomere replication as defined by the TLC1 gene, suggesting that the EST genes encode either components of telomerase or factors that positively regulate telomerase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号