首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-acetylglucosamine (GlcNAc) transferase that catalyzes the formation of dolichyl-pyrophosphoryl-GlcNAc-GlcNAc from UDP-GlcNAc and dolichyl-pyrophosphoryl-GlcNAc was solubilized from the microsomal enzyme fraction of mung beans with 1.5% Triton X-100, and was purified 140-fold on columns of DE-52 and hydroxylapatite. The partially purified enzyme preparation was quite stable when stored in 20% glycerol and 0.5 millimolar dithiothreitol, and was free of GlcNAc-1-P transferase and mannosyl transferases. The GlcNAc transferase had a sharp pH optimum of 7.4 to 7.6 and the Km for dolichyl-pyrophosphoryl-GlcNAc was 2.2 micromolar and that for UDP-GlcNAc, 0.25 micromolar. The enzyme showed a strong requirement for the detergent Triton X-100 and was stimulated somewhat by the divalent cation Mg2+. Uridine nucleotides, especially UDP and UDP-glucose inhibited the enzyme as did the antibiotic, diumycin. However, a variety of other antibiotics including tunicamycin were without effect. The product of the reaction was characterized as dolichyl-pyrophosphoryl-GlcNAc-GlcNAc.  相似文献   

2.
The peripheral root cap cells of corn (cv. SX-17A) secrete a fucose-rich, high molecular weight, polysaccharide slime via the dictyosome pathway. To study the synthesis of this polysaccharide, a technique for isolating and assaying GDP-fucose:polysaccharide fucosyl transferase activity was developed. Corn roots were excised from germinated seeds, incubated 12 hours at 10 C in water, and ground in 100 millimolar Tris or Pipes buffer (pH 7.0) with or without 0.5 molar sucrose. The membrane-bound enzyme was solubilized by sonication in the presence of 2 molar urea and 1.5% (v/v) Triton X-100 and assayed by monitoring the incorporation of GDP-[14C]fucose into endogenous acceptors. Optimum enzyme activity is expressed at pH 7.0 and 30 C in the presence of 0.8% (v/v) Triton X-100. The enzyme does not require divalent cations for activation and is inhibited by concentrations of MnCl2 or MgCl2 greater than 1 millimolar. Corn root cap slime will serve as an exogenous acceptor for the enzyme if it is first hydrolyzed in 5 millimolar trifluoroacetic acid for 60 minutes at 18 pounds per square inch, 121 C. This procedure prepares the acceptor by removing terminal fucose residues from the slime molecule. Kinetics of fucose release during hydrolysis of native slime and in vitro synthesized product suggests that the two polymers possess similar linkages to fucose.  相似文献   

3.
CDP-diglyceride:inositol transferase in endoplasmic reticulum fractions from castor bean (Ricinus communis) endosperm was partially characterized. The enzyme had a pH optimum of 8.5 and required Mn2+ for activity. Maximal activity was at 1.5 millimolar MnCl2. A Km of 0.30 mM was calculated for myo-inositol and 1.35 millimolar was estimated for CDP-dipalmitoylglyceride. Concentrations of CDP-dipalmitoylglyceride above 1.2 millimolar inhibited the enzyme. A deoxycholate concentration of 0.1% (w/v) stimulated the reaction slightly while Triton X-100 inhibited at all concentrations tested. Some incorporation of myo-inositol into phosphatidylinositol occurred in the absence of CDP-diglyceride.  相似文献   

4.
The conditions for the incorporation of sialic acid (N-acetylneuraminic acid) from CMP-sialic acid into endogenous acceptors of rat liver microsomes has been studied. It is shown that the incorporating activity can be solubilized by extraction of the microsomes with a mild detergent, Triton X-100. The specific activity of the soluble system is about sixfold compared to the original microsomes. Removal of lipids from the system greatly reduces its ability to incorporate sialic acid. Recombination with phospholipids prepared from liver microsomes restores the activity. Other lipids are ineffective, and single phospholipid fractions are less effective than the phospholipid mixture. It is concluded that the system studied, comprising both sialyl transferase and sialyl acceptor-protein is a typical intrinsic membrane protein system, depedent on a hydrophobic environment for full activity.  相似文献   

5.
The effects of ascorbic acid (AA) deficiency on microsomal and soluble (postmicrosomal supernatant) enzymes which catalyze drug metabolism were studied in the guinea pig liver, lung, and kidney, (i) Twenty-one days of AA depletion produced a 50–60% decrease in hepatic cytochrome P-450 levels, 20–30% decreases in renal levels, but no significant changes in pulmonary cytochrome P-450 content. Upon repletion of ascorbic acid, recovery to control levels occurred within 7 days. (ii) The decreases in hepatic cytochrome P-450 in scurvy were not accompanied by a corresponding increase in cytochrome P-420. (iii) Aminopyrine N-demethylation decreased by 40% in livers of deficient animals, and recovered within 3 days, but there were no corresponding changes in lungs and kidneys. (iv) There were no significant alterations of NADPH-cytochrome c reductase activity in scorbutic animals in any of the three organs. (v) Activity of “native” UDP-glucuronyl transferase was increased in liver microsomes after 21 days of deficiency, but this apparent increase was not observed when the enzyme was fully activated in vitro with UDP N-acetylglucosamine. “Native” UDP-glucuronyl transferase was increased in kidneys of deficient animals and unchanged in lungs. (vi) In the postmicrosomal supernatant, glutathione S-aryl transferase activity in deficient livers decreased tc 50% of control and did not fully recover after 14 days of ascorbic acid repletion. These changes were not seen in kidney and lung. (vii) Also in the postmicrosomal supernatant, p-aminobenzoic acid (PABA) N-acetyl transferase activity increased in the kidneys of deficient animals, but was unchanged in liver and lungs. (viii) Addition of ascorbic acid in vitro to hepatic microsomes prepared from scorbutic animals had no effect on activities of aminopyrine N-demethylase, NADPH-cytochrome c reductase, PABA N-acetyl transferase, and glutathione S-aryl transferase.  相似文献   

6.
In the endosperm of Ricinus communis (castor bean) a number of glycosyl transferases were found to be present during germination. They catalyze the incorporation of mannose from guanosine diphosphate mannose and of N-acetylglucosamine from uridine diphosphate N-acetylglucosamine into a glycolipid fraction, which had all of the properties of dolichylphosphate and pyrophosphate sugars, respectively. The sugar moiety of dolichylphosphate mannose is transferred to a lipid-oligosaccharide, containing more than 6 hexose units. When the membranes are preincubated with nonradioactive guanosine diphosphate mannose and uridine diphosphate N-acetylglucosamine, radioactivity from dolichylphosphate [14C]mannose is also transferred to a glycopolymer. In addition, the formation of radioactive glycoproteins from guanosine diphosphate [14C]mannose has been demonstrated using a combination of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autofluorography.  相似文献   

7.
This report presents evidence that the “hemoglobinase” from adult Schistosoma mansoni, first described by Timms and Bueding and later by Senft and his collaborators, belongs to the class of thiol proteinases. Proteolytic activity is stimulated by SH-containing compounds and inhibited by N-ethylmaleimide as well as other inhibitors of thiol proteinases. The enzyme can be partially purified by affinity chromatography using a Sepharose-linked organomercurial ligand. In addition to its activity on globin and hemoglobin, the enzyme can also be assayed with Azocoll, a general protease substrate, and by the activation of inactive trypsinogen to active trypsin. Extraction of the enzyme is enhanced by the addition of the nonionic detergent Triton X-100.  相似文献   

8.
Plasma membrane fractions from rat liver exhibited glycosyltransferase activity with endogenous membrane-associated acceptors and either UDP-galactose, UDPglucose, UDP-N-acetylglucosamine, or GDPmannose donors. Of these, incorporation into non-lipid acceptors was most active with UDP-galactose and only with UDPgalactose and UDPmannose was there incorporation into endogenous lipid acceptors. CMP-N-acetylneuraminic acid was inactive as a donor with the isolated plasma membranes. In order to demonstrate transferase activity, low concentrations of substrate sugar nucleotides and short incubation times were used as well as sulfhydryl protectants and a phosphatase inhibitor (NaF) in the reaction mixtures. The findings support the concept of surface localization of at least a galactosyl transferase in cells of rat liver.  相似文献   

9.
A soluble fraction of rat liver converts glucosamine and N-acetylglucosamine in the presence of ATP and UTP to N-acetylneuraminic acid. This system, when supplemented with CTP, forms CMP-N-acetylneuraminic acid in high yield. Nicotinamide was found to enhance the synthesis of UDP-N-acetylglucosamine and N-acetylneuraminic acid. Kinetic analysis reveals N-acetylglucosamine 6-phosphate, UDP-N-acetylglucosamine, N-acetylmannosamine, N-acetylmannosamine 6-phosphate and N-acetylneuraminic acid 9-phosphate as intermediates. Under certain experimental conditions, however, an epimerisation of N-acetylglucosamine to N-acetylmannosamine was seen.  相似文献   

10.
The carbohydrate portion of chicken egg yolk riboflavin-binding protein was examined to determine its role in the biological activity of the protein. Yolk RBP was found to contain 5–6 mannose, five galactose, 12 N-acetylglucosamine and four sialic acid residues. Specific modifications of the oligosaccharide moiety were performed which included removal of sialic acid by mild acid hydrolysis, oxidation of galactose oxidase, and removal of N-acetylglucosamine and galactose residues by a mixture of glycosidases from Aspergillus niger. All of the modified proteins retained the ability to bind riboflavin although their capacities were lower than that of native yolk RBP. Circular dichroism of the modified yolk RBP samples showed changes in the near ultraviolet, but molar ellipticities in the far ultraviolet displayed only minor variations indicating no gross structural changes. All samples cross-reacted with RBP-specific antiserum. The plasma half-life of 125I-labeled yolk RBP was 62 min. Each of the modified samples was cleared more rapidly from the blood than native yolk RBP. Removal of sialic acid decreased the half-life of yolk RBP by 31%, while the other modifications decreased the half-life by as much as 60%. During a 10-day period following injection of 125I-labeled yolk RBP, 5.9% of the labeled protein was recovered from egg yolk. Relative to native yolk RBP, the transport of asialo-yolk RBP was decreased by 82%. The other modifications resulted in even less transport to the egg, the lowest being glycosidase-treated asialo-yolk RBP which was decreased by over 99%. By comparison of samples with similar clearance times, a positive correlation was made between sialic acid and ovarian transport.  相似文献   

11.
Lovatt et al. (1979 Plant Physiol 64: 562-569) have previously demonstrated that end-product inhibition functions as a mechanism regulating the activity of the orotic acid pathway in intact cells of roots excised from 2-day-old squash plants (Cucurbita pepo L. cv Early Prolific Straightneck). Uridine (0.5 millimolar final concentration) or one of its metabolites inhibited the incorporation of NaH14CO3, but not [14C]carbamylaspartate or [14C]orotic acid, into uridine nucleotides (ΣUMP). Thus, regulation of de novo pyrimidine biosynthesis was demonstrated to occur at one or both of the first two reactions of the orotic acid pathway, those catalyzed by carbamylphosphate synthetase (CPSase) and aspartate carbamyltransferase (ACTase). The results of the present study provide evidence that ACTase alone is the site of feedback control by added uridine or one of its metabolites. Evidence demonstrating regulation of the orotic acid pathway by end-product inhibition at ACTase, but not at CPSase, includes the following observations: (a) addition of uridine (0.5 millimolar final concentration) inhibited the incorporation of NaH14CO3 into ΣUMP by 80% but did not inhibit the incorporation of NaH14CO3 into arginine; (b) inhibition of the orotate pathway by added uridine was not reversed by supplying exogenous ornithine (5 millimolar final concentration), while the incorporation of NaH14CO3 into arginine was stimulated more than 15-fold when both uridine and ornithine were added; (c) incorporation of NaH14CO3 into arginine increased, with or without added ornithine when the de novo pyrimidine pathway was inhibited by added uridine; and (d) in assays employing cell-free extracts prepared from 2-day-old squash roots, the activity of ACTase, but not CPSase, was inhibited by added pyrimidine nucleotides.  相似文献   

12.
4-N-hydroxy-cytidine was found to substitute for uridine as a pyrimidine supplement for the growth of Escherichia coli Bu. Measurement of the incorporation of 4-N-hydroxy-cytidine-2-14C into ribonucleic acid and deoxyribonucleic acid revealed that this compound was converted to cytidine or uridine before utilization. Two pathways for metabolism were considered: (i) the reduction of 4-N-hydroxy-cytidine to cytidine followed by deamination, (ii) the direct hydrolysis of hydroxylamine from 4-N-hydroxy-cytidine to yield uridine. A threefold increase in cytidine (deoxycytidine) deaminase (EC 3.5.4.5) activity, when the cells were grown on 4-N-hydroxy-cytidine, suggested the involvement of this enzyme. More direct proof was obtained by purifying the deaminase 185-fold and finding that it released hydroxylamine from 4-N-hydroxy-cytidine at one-fiftieth the rate at which ammonia was removed from cytidine. This result is consistent with the slower rate of growth of the Bu cells on 4-N-hydroxy-cytidine than cytidine and suggests that the second pathway is the major route for utilization of this compound.  相似文献   

13.
Cells of Micrococcus sp. 2102 incorporate inorganic [32P]phosphate from the medium into the sugar-phosphate polymer of the wall. Controlled acid hydrolysis of sodium dodecyl sulphate-extracted cells gives N-acetylglucosamine 6-[32P]phosphate which can be purified by ion-exchange chromatography and incubated with UTP in the presence of crude preparations of phosphoacetylglucosamine mutase from Neurospora crassa and UTP: N-acetylglucosamine 1-phosphate phosphotransferase from Bacillus licheniformis which act in concert to synthesise β-[32P]UDP-N-acetylglucosamine.  相似文献   

14.
《Plant Science Letters》1980,17(2):193-199
Triton X-100 at low concentrations stimulates the activity of uridine diphosphate glucose-sterol-β-D-glucosyltransferase, a plasma membrane-bound enzyme of etiolated maize coleoptiles. Enzyme inactivation experiments using trypsin in the presence or absence of Triton X-100 suggested that the stimulatory effect of the detergent could be due to the existence of enzymatic sites which are not accessible to the substrate: uridine diphosphate glucose (UDP-glucose) and exposed on the inner surface of plasma membrane vesicles.  相似文献   

15.
Intestinal mucins from germ-free rats contained antigens reactive with sera from patients with ulcerative colitis, in addition to human blood group A- and H-like antigens. A crude antigen extract was obtained by phenol-water extraction at 65 °C. Two intestinal glycoproteins were purified from the extract by fractionated ethanol precipitation, ion-exchange chromatography, and gel filtration. The two glycoproteins (2aI and 4aIIb) were homogeneous in regard to electrical charge and molecular size. Both were glycoproteins of the blood group substance type. Component 2aI was very rich in N-acetylgalactosamine and threonine and low in N-acetylglucosamine and sialic acid(s). It had strong blood group A-like activity, weak blood group H activity, and no colon antigen activity as defined by patients' sera. Component 4aIIb was rich in sialic acid(s). About 40% of the sera from patients with ulcerative colitis reacted with this component. No blood group A- or H-like activity could be demonstrated. Colon antigen activity was sensitive to periodate oxidation, but resistant to boiling at neutral pH. It was very sensitive to acid hydrolysis. In fact, colon antigen activity was significantly reduced when subjected to weak acid hydrolysis under conditions which only appeared to release sialic acids.  相似文献   

16.
Abstract— Four glycoprotein:glycosyl transferases (a fetuin:N-acetylglucosaminyl transferase; a bovine submaxillary mucin: N-acetylgalactosaminyl transferase; a collagen: glucosyl transferase and an orosomucoid: galactosyl transferase) were purified 34-, 45-, 37- and 47-fold, respectively, from synaptosomes prepared from guinea pig cerebral cortex. Purifications were achieved by centrifugation and by column chromatography on Sephadex G-100 and G-150 of 0 , 1% (w/v) Triton X-100 extractsof the purified cerebral cortical synaptosomes. The enzymes were separated from endogenous acceptors and were highly specific for specific macromolecular acceptors; small molecules were ineffective as acceptors. The fetuin: N-acetylglucosaminyl transferase functioned only with fetuin minus N-acetylneuraminic acid, galactose and N-acetylglucosamine; the bovine submaxillary mucin: N- acetylgalactosaminyl transferase with bovine submaxillary much minus N-acetylneuraminic acid and N-acetylgalactosamine; the collagen: glucosyl transferase with collagen minus glucose; and the orosomucoid: galactosyl transferase with either orosomucoid minus N-acetylneuraminic acid and galactose or fetuin minus N-acetylneuraminic acid and galactose. Each transferase required a specific (XDP)-monosaccharide for transfer. The transferases were entirely dependent on either Mn2+ or Mg2+ for activation and Fe2+ and Hg2+ inhibited each of the four enzymes. The optimum pH's for the enzymes were: for fetuin: N-acetylglucosaminyl transferase, 7 , 4–8.0; for bovine submaxillary mucin: N-acetylgalactosaminyl transferase, 7 , 7; for collagen: glucosyl transferase, 7 , 7 and for orosomucoid: galactosyl transferase, 6 , 6. The enzymes were distributed subsynaptosomally primarily in the synaptosomal plasma membrane and in the mitochondria of the synaptosome. The respective values for Km (μM) and Vmex (pmoles/h/mg of protein) for the transferases were: fetuin: N-acetylglucosaminyl transferase, 12 and 143; for bovine submaxillary mucin: N-acetylgalactosaminyl transferase, 25 and 166; for collagen: glucosyl transferase, 4 and 10 and for orosomucoid:galactosyl transferase, 8 and 111.  相似文献   

17.
Human milk β-N-acetylglucosaminide β1 → 4-galactosytransferase (EC 2.4.1.38) was used to galactosylate ovine submaxillary asialomucin to saturation. The major [14C]galactosylated product chain was obtained as a reduced oligosaccharide by β-elimination under reducing conditions. Analysis by Bio-Gel filtration and gas-liquid chromatography indicated that this compound was a tetrasaccharide composed of galactose, N-acetylglucosamine and reduced N-acetylgalactosamine in a molar ratio of 2:0.9:0.8. Periodate oxidation studies before and after mild acid hydrolysis in addition to thin-layer chromatography revealed that the most probable structure of the tetrasaccharide is Galβ1 → 3([14C]Galβ1 → 4GlcNacβ1 → 6)GalNAcol. Thus it appears that Galβ1 → 3(GlcNAcβ1 → 6)GalNAc units occur as minor chains on the asialomucin. The potential interference of these chains in the assay of α-N-acetylgalactosaminylprotein β1 → 3-galactosyltransferase activity using ovine submaxillary asialomucin as an receptor can be counteracted by the addition of N-acetylglucosamine.  相似文献   

18.
Cholesterol oxidase was extracted in high yield from Nocardia rhodochrous by treatment either with a detergent, Triton X-100, or with trypsin. Much less enzyme could be extracted using a commercial ball-mill. Enzyme extracted with detergent, after removal of the detergent, could be readsorbed by Nocardia. Enzyme extracted using trypsin was water-soluble and could not be readsorbed by cells. Our results indicate that cholesterol oxidase is an intrinsic membrane-bound protein possessing a hydrophobic anchor region which can be removed by trypsin.  相似文献   

19.
Glycoconjugates can be readily formed by the condensation of a free-reducing terminus and a strong α-effect nucleophile, such as a hydrazide or a hydroxylamine. Further characterization of a series of glycoconjugates formed from xylose, glucose and N-acetylglucosamine, and either p-toluenesulfonyl hydrazide or an N-methylhydroxylamine, was carried out to gain insight into the optimal conditions for the formation of these useful conjugates, and their stability. Their apparent association constants (9-74 M−1) at pH 4.5; as well, as rate constants for hydrolysis, at pH 4.0, 5.0 and 6.0 (37 °C), were determined. The half-lives of the conjugates varied between 3 h and 300 days. All the compounds were increasingly stable as the pH approached neutrality. Conjugate hydrolysis rates mirrored those found for O-glycoside hydrolysis where conjugates formed from electron-rich monosaccharides hydrolyzed more rapidly.  相似文献   

20.
A method was developed for the large scale preparation of uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc) from uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) by means of microbial enzymes. With Bacillus subtilis cell-free extract as a source of UDP-GlcNAc 4-epimerase, about 35% of the UDP-GlcNAc added was converted to UDP-GalNAc. After the residual UDP-GlcNAc was degraded to uridine triphosphate and N-acetylglucosamine-1-phosphate with a protamine-treated extract of bakers' yeast as a source of UDP-GlcNAc pyrophosphorylase, UDP-GalNAc was separated by anion-exchange column chromatography. The nucleotide was recovered by adsorption on charcoal and elution with ammoniacal ethanol. The final yield was about 100 μmol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号