首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Isolated rat hepatocytes were transplanted into the interscapular and both anterior lateral fat pads of hepatectomized syngeneic rats. At various time points following transplantation, the fat pads were removed, fixed and embedded in paraffin. Serial sections were stained for glutamine synthetase (GS) and carbamoylphosphate synthetase (CPS) using specific antisera and the PAP technique. The initially low fraction of GS+-heptatocytes remained low up to the fourth day, then increased strikingly up to almost 100% and declined gradually after the 14th day. In contrast, the number of CPS+-cells declined continuously to about 30% after 28 days. If the animals were exposed to CCl4 prior to the isolation of the hepatocytes in order to reduce the number of GS+-cells in the initial cell suspension similar results were obtained and no difference in the probability of the colony formation was noted between this and the normal hepatocyte suspensions indicating that the appearance of the GS+-phenotype was not due to a selective survival of these cells. Analysis of the staining intensity of the transplanted hepatocytes revealed the appearance of two populations of GS+-hepatocytes, one with a strong and one with a weak staining, during the course of formation of larger nodules, while only a single weakly stained population could be discerned with respect to the staining for CPS. These results demonstrate that all hepatocytes or at least their descendents can be induced to express GS by the environmental conditions of the fat pads, and that GS and CPS can be co-expressed with an apparently reciprocal relationship.  相似文献   

2.
Summary Intoxication of rats with CCl4 (1 ml/kg) resulted in the almost complete loss of glutamine synthetase (GS) specific activity and immunologically detectable enzyme protein known to be expressed exclusively in some hepatocytes of the perivenous zone of the liver acinus. During regeneration the specific activity as well as the original number of GS-positive (GS+) hepatocytes were reestablished. However, while the GS+ hepatocytes in control livers were arranged in up to 3 cell layers surrounding the central veins the same number of GS+ hepatocytes in regenerated livers formed a single cell layer only, most likely because the central veins were enlarged in diameter. Investigation of the nuclear pattern of GS+ and GS hepatocytes of control animals in primary cultures revealed striking differences characterized by significantly more mononuclear diploid, binuclear diploid, and binuclear tetraploid cells among the GS+ hepatocytes and predominantly mononuclear tetraploid cells (70%) among the GS hepatocytes. Immediately after liver damage by CCl4 and during regeneration small but significant changes in the nuclear pattern were noted for GS hepatocytes. However, the first GS+ cells appearing during early regeneration showed a pattern of ploidy classes close to the original one found for GS hepatocytes. These results indicate that new GS+ hepatocytes may be derived from formerly GS cells which are induced to express GS if they have reached the border of the central veins.  相似文献   

3.
The activities of glutamine synthetase (GS), nitrogenase and leghaemoglobin were measured during nodule development in Phaseolus vulgaris infected with wild-type or two non-fixing (Fix-) mutants of Rhizobium phaseoli. The large increase in GS activity which was observed during nodulation with the wild-type rhizobial strain occurred concomitantly with the detection and increase in activity of nitrogenase and the amount of leghaemoglobin. Moreover, this increase in GS was found to be due entirely to the appearance of a novel form of the enzyme (GSn1) in the nodule. The activity of the form (GSn2) similar to the root enzyme (GSr) remained constant throughout the experiment. In nodules produced by infection with the two mutant strains of Rhizobium phaseoli (JL15 and JL19) only trace amounts of GSn1 and leghaemoglobin were detected.Abbreviations DEAE-Sephacel diethylaminoethyl-Sephacel - GS glutamine synthetase  相似文献   

4.
Summary We investigated the inducibility of nitrate reductase (NR; EC 1.6.6.1), nitrite reductase (NiR; EC 1.7.7.1), and glutamine synthetase (GS; EC 6.3.1.2) isoforms in cotyledons of 7-day-old seedlings of sunflower (Helianthus annuus L.) in relation to light, nitrogen source (NO 3 , NO 2 or NH 4 + ), and the involvement of plastids. Nitrate was absolutely (and specifically) required for NR induction, and stimulated more effectively than NO 2 or NH 4 + the synthesis of NiR and chloroplastic GS (GS2) over the constitutive levels present in N-free-grown seedlings. In vivo inhibition of NR activity by tungsten application to seedlings and measurements of tissue NO 3 concentration indicate that NO 3 -dependent enzyme induction is elicited by NO 3 per se and not by a product of its assimilatory reduction, e.g., NO 2 or NH 4 + . In the presence of NO 3 , light remarkably enhanced the appearance of NR, NiR, and GS2, while the activity of the cytosolic GS isoform (GS1) was adversely affected. Cycloheximide suppressed much more efficiently than chloramphenicol the light- and NO 3 -dependent increase of GS2 activity, indicating that sunflower chloroplastic GS is synthesized on cytoplasmic 80S ribosomes. When the plastids were damaged by photooxidation in cotyledons made carotenoid-free by application of norflurazon, the positive action of light and NO 3 on the appearance of NR, NiR, and GS2 isoform was greatly abolished. Therefore, it is suggested that intact chloroplasts are required for the inductive effect of light and NO 3 and/or for the accumulation of newly formed enzymes in the organelle.Abbreviations CAP chloramphenicol - CHX cycloheximide - GS glutamine synthetase - GS1 cytosolic GS - GS2 plastidic (chloroplastic) GS - NF norflurazon - NiR nitrite reductase - NR nitrate reductase  相似文献   

5.
6.
Summary A cDNA clone (pcPvNGS-01) to glutamine synthetase (GS) mRNA from root nodules of Phaseolus vulgaris showed cross-hybridization to GS and mRNA from soybean root nodules, thus allowing its use as a probe to study the expression of GS genes during root nodule development in soybeans. Hybrid-select translation of root and nodule RNA of soybean with DNA from pcPvNGS-01, followed by 2D gel electrophoresis, showed six peptides in the root and an additional four peptides in the nodule which represent nodule-specific glutamine synthetase (GSn) gene products. The GSn gene products appeared for the first time between day 11 and 12 after infection, either concomitant with the onset of nitrogenase activity or immediately following it. The levels of expression of the GSn and leghemoglobin genes were not affected in young Fix- nodules formed by Bradyrhizobium japonicum strains that are defective in nitrogenase activity, suggesting that the induction of these two sets of host genes take place independent of nitrogenase activity. However, in Fix- nodules that are incapable of maintaining the peribacteroid membrane, GSn gene products were not detected while 1ba, 1bc2 and 1bc3 appeared. In both the timing of appearance during root nodule development and the effect of different bacterial mutations on the expression, GSn genes differ from most other nodulin genes examined (30), suggesting different regulatory mechanisms.  相似文献   

7.
Glutamine synthetase (GS; EC.6.3.1.2.) occurs as cytosolic (GS1) and plastidic (GS2) polypeptides. This paper describes the expression of GS isoenzymes in coleoptile during the anaerobic germination of rice (Oryza sativa L.) and the influence of exogenous nitrate on this. By immunoprecipitation with anti-GS serum, two polypeptides of 41- and 44-kDa were detected of which the former was predominant. After fractionation by ion-exchange chromatography, the 41 and 44 kDa bands were identified as GS1 and GS2, respectively. Northern blot analysis with specific probes showed the presence of mRNA for cytosolic GS but not for the plastidic form. The presence of exogenous nitrate did not alter the activity and expression of GS in the coleoptile. The role of GS during the anaerobic germination of rice seems to induce the re-assimilation of ammonia rather than the assimilation of nitrate.Abbreviations GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 platidic glutamine synthetase We are grateful to Dr. Julie V. Cullimore for providing GS anti-serum and clones. The research was supported by the National Research Council of Italy, special project RAISA, sub-project N. 2 paper N. 1586.  相似文献   

8.
The objective of this study was to investigate the expression of carbamoylphosphate synthetase I (CPS) and glutamine synthetase (GS) in small hepatocyte colonies and whether the heterogeneous expression of the enzymes could be induced during the maturation of small hepatocytes. Small hepatocytes isolated from an adult rat liver were cultured and proliferated to form colonies. The expression of CPS and GS was examined using immunocytochemistry and immunoblotting. In this culture more than 99% of morphologically hepatic cells were positive for CPS and all small hepatocytes were negative for GS at day 5. CPS-positive cells dramatically decreased with time in culture, whereas GS-positive ones appeared and their number increased in the colonies. Two to 3 weeks after plating, colonies with rising and piled-up cells appeared and the number of such colonies reached about 25% of all colonies at day 30. In most rising and piled-up cells in colonies both proteins were strongly expressed, whereas many small hepatocytes in monolayer colonies did not express either protein. When small hepatocytes in monolayer colonies were overlayed with Matrigel, the cells gradually piled up and both CPS and GS proteins were dramatically induced. The expression of CPS and GS in small hepatocytes may interact with the extracellular matrix because the rising and piled-up cells appear to be induced by the extracellular matrix produced by hepatic nonparenchymal cells.  相似文献   

9.
Changes in the levels of cytosolic and chloroplastic isoforms of glutamine synthetase were examined in senescing radish (Raphanus sativus L. cv Comet) cotyledons by immunoblotting analysis using antibodies raised separately against maize glutamine synthetase isoforms. Translatable mRNAs for these isoforms were also examined by analyzing translation products from poly(A)+ RNA in a wheat germ system with the antibodies. The relative content of cytosolic isoform (GS1) increased twofold in the cotyledons that were placed in the dark for 72 hours to accelerate senescence, while that of chloroplastic isoform (GS2) declined to half of its initial level. The dark-treatment also increased the relative level of translatable mRNA for GS1 sevenfold after 72 hours, and decreased rapidly that for GS2 and for other nuclear-coded chloroplast proteins as well. Cotyledons also accumulated GS1 mRNA when they became senescent after a lengthy growth period under continuous light. These observations suggested that GS1 genes were activated, while those for GS2 were repressed, and eventually the population of the enzyme was altered in senescent cotyledonary cells. The role of increased cytosolic enzyme is discussed in relation to the nitrogen metabolism in senescent leaves.  相似文献   

10.
The studies were performed on young triticale seedlings grown on a mineral medium containing 5 mM NO 3 as the nitrogen source, with the addition of 0.5 mM CdCl2. It was determined that cadmium ions accumulated mainly in the plant roots. Decreases in nitrate concentrations both in the roots and shoots of seedlings, as well as decreases in soluble protein contents with simultaneous increases in endopeptidase activity were also observed. Both in roots and shoots significant decreases in glutamic acid were noted. Toxic cadmium ion accumulation in seedlings significantly modified activity of primary nitrogen assimilating enzymes, i.e. glutamine synthetase (GS, EC 6.3.1.2) and glutamate dehydrogenase (GDH, EC 1.4.1.2). There was a significant decrease in GS activity both in roots and in shoots of the stressed plants, in comparison to plants grown without cadmium. In shoots of the control plants and plants subjected to stress two GS isoforms were discovered: cytoplasmatic (GS1) and chloroplastic (GS2). Substantial decreases in total glutamine synthetase activity in green parts of seedlings, occurring under stress conditions, result from dramatic decrease in GS2 activity (by 60 % in relation to the control plants); despite simultaneous increases in the cytoplasmatic isoform (GS1) activity by approx. 96 %. Cadmium ions accumulating in roots and shoots of seedlings not only increased GDH activity, but also modified its coenzymatic specificity.  相似文献   

11.
Escherichia coli glutamine synthetase (GS) preparations composed of 12 adenylylated subunits (GS12?) are almost completely precipitated by sheep Anti-AMP immunoglobulin G (IgG), whereas glutamine synthetase preparations containing 6 adenylylated subunits (GS6?) are only partially precipitated by the antibodies (R.J. Hohman, S.G. Rhee, and E.R. Stadtman, 1980, Proc. Nat. Acad. Sci. USA77, 7410–7414). By means of 125I-labeled anti-AMP antibodies and double immunoprecipitation techniques, in which rabbit antiserum to sheep IgG or anti-GS antibodies were used to precipitate soluble immune complexes, it was demonstrated that under optimal conditions, both the soluble and insoluble immune complexes obtained with either GS6? or GS12? contain 0.5 mol antibody/mol adenylylated subunit. In agreement with the lattice theory of immuno-precipitation, soluble immune complexes are formed in antibody excess. Scatchard plots of binding data indicate that under conditions of antibody excess, one antibody molecule is bound to each AMP moiety of GS12?, whereas GS6? binds a maximum of only 0.68 antibody molecule/adenylylated subunit. We propose that with some species of GS6?, the distribution of adenylylated subunits favors monogamous interactions of the bivalent antibody with two subunits within the same GS molecule and thereby leads to the formation of small, soluble, immune complexes. Other explanations are considered. Only 30% of the antibody population that recognizes unconjugated 5′-AMP binds to the AMP moiety of adenylylated GS. Anti-AMP antiserum can be fractionated on a GS12?-Sepharose matrix into two subpopulations of antibody with strikingly different immunoprecipitation characteristics. Conversely, species of GS with various states of adenylylation ranging from 0 to 8 were separated from a GS6? preparation by means of affinity chromatography on an anti-AMP antibody-Sepharose matrix. Under optimal conditions, antibodies purified by affinity chromatography precipitated a smaller fraction of a GS6? preparation than did unfractionated antiserum. Competence of the purified antibody was nearly restored to that of the unfractionated serum by the addition of an enhancement factor present in the IgG fraction of nonimmune serum. The enhancement factor was not required for complete precipitation of GS?12 by purified antibodies. Contrary to most antibody-antigen reactions, immunoprecipitation of GS6? with anti-AMP antibodies is greater at 30 °C than at 4 °C.  相似文献   

12.
It has been shown that the leaves of pumpkin (Cucurbita pepo) contain two molecular forms of glutamine synthetase (GS), one occurring in the cytosol (GS1)and the other in the chloroplasts (GS2). The activities of both forms were greater when ammonium ion was infiltrated into the leaves and this was shown to be due to de novo synthesis. The two synthetases were purified by ammonium sulphate fractionation, ion exchange chromatography on DEAE-cellulose, selective adsorption on calcium phosphate gel, and preparative polyacrylamide gel electrophoresis. The MWs of GS1 and GS2, estimated by gel filtration on Sephacryl S-200, were 480 000 and 370 000 respectively. During polyacrylamide gel electrophoresis in the presence of SDS both GS1 and GS2 were dissociated into polypeptide chains with MWs of 58 000 and 50 000 respectively, suggesting that GS, 1 and GS2 are octamers consisting of identical monomers. The synthetases showed noticeable differences in their amino acid composition. In GS1 and GS2 the proportions of α- helical segments were 34 and 17 % respectively. In the presence of Mg2+, the pH optima for GS1 and GS2 were 7.25 and 7.75 respectively, and Km values toward l-glutamate were 13 and 46 mM respectively. From the experimental data it is inferred that GS1 and GS2 are isoenzymes.  相似文献   

13.
14.
Summary The activity of glutamate synthetase (GS) was determined in the different organs ofLathraea clandeslina L., a holoparasitic Scrophulariaceae. It was very low throughout the plant but levels were slightly higher in the scale leaves. Immunoprecipitation reactions carried out with immune serums raised against the isoforms GS1 or GS2 of the enzyme showed that, in the scale leaves, isoenzyme GS1 was present, but the existence of small amounts of GS2 remained in question on account of possible cross reactions. On the other hand, the study of intracellular localization of GS in the scale leaves by indirect immunofluorescence, using the same antibodies anti-GS1 and anti-GS2, clearly demonstrated the occurrence of two GS forms: a GS1 isoenzyme located in the cytoplasm of glandular and parenchymatous cells and a GS2-type isoenzyme only detected in the stroma of the large amyloplasts present in the outer parenchyma. This amyloplastidial isoenzyme seems to be a peculiar GS form, distinct from both GS1 and GS2.Abbreviations GS glutamate synthetase - GS1, GS2, GSR glutamate synthetase isoforms - PBS phosphate buffered saline - PEG poly ethylene glycol - GP peltate glands - GB shield glands - P amyloplasts  相似文献   

15.
Work is described which suggests that glutamine synthetase (GS) could play an important and direct regulatory role in the control of NO3 assimilation by the alga. In both steady-state cells and ones disturbed physiologically by changes in light or nitrogen supply the assimilation of NO3 appears to be limited by the activity of GS. Moreover although in normal cells NH3 can completely inhibit NO3 uptake, promote the deactivation of nitrate reductase (NR) and repress the synthesis of NR and nitrite reductase (NIR), these controls are relaxed in cells in which GS is deactivated by treatment with L-methionine-DL-sulfoximine (MSO). It is proposed that the reversible deactivation of GS may play an important part in the regulation of NO3 assimilation although it is still not clear whether the enzyme itself or products of its metabolism are responsible.Abbreviations GS glutamine synthetase - GSs glutamine synthetase, synthetase activity - GSt glutamine synthetase, transferase activity - NR nitrate reductase - NIR nitrite reductase - GDH glutamate dehydrogenase - CHX cycloheximide - MSO L-methionine-DL-sulfoximine - FAD flavine adenine dinucleotide  相似文献   

16.
Changes in the activities of leaf glutamine synthetase (GS) isoforms were followed in four temperate deciduous trees from full leaf expansion to senescence (May to November). In the early part of the season, total GS activity was high in all species, with values ranging from 90 to 200 μmol h−1 g−1 fw. During this early period this activity comprised only the activity of the chloroplastic (GS2) isoform in all species. These high GS2 activities are consistent with the role of GS2 in the re-assimilation of photorespired ammonia. The early high values also coincided with high nitrate reductase activity in one of the species, the highly nitrophilous species Sambucus nigra, with values of up to 16μmol h−1 g−1 fw. This indicates that GS2 is also important in the assimilation of ammonia produced from nitrate reduction. From mid- to late-season, the cytosolic isoform (GS1) was detected in all four species and became increasingly more active in comparison to GS2. By the time of senescence it was the dominant enzyme of the two forms in both S. nigra and Carpinus betulus. The results provide strong support for recent findings that GS1 is an important enzyme for the mobilization of nitrogen for translocation or storage.  相似文献   

17.
Characterization of glutamine synthetase isoforms from chlorella   总被引:1,自引:0,他引:1       下载免费PDF全文
Ion-exchange chromatography of extracts derived from Chlorella sorokiniana mutant strain (oxygen resistant) yielded two separate activity peaks of glutamine synthetase (GS). GSI and GSII were purified 220- and 187-fold and have molecular weights of approximately 398,000 and 360,000, respectively. Both enzymes are composed of eight identical subunits with a subunit molecular weight of 47,000 for GSI and 43,000 for GSII. The amino acid composition, catalytic, and immunological properties for both enzymes are similar.  相似文献   

18.
During the greening of etiolated rice leaves, total glutamine synthetase activity increases about twofold, and after 48 h the level of activity usually observed in green leaves is obtained. A density-labeling experiment with deuterium demonstrates that the increase in enzyme activity is due to a synthesis of the enzyme. The enhanced activity obtained upon greening is the result of two different phenomena: there is a fivefold increase of chloroplastic glutamine synthetase content accompanied by a concommitant decrease (twofold) of the cytosolic glutamine synthetase. The increase of chloroplastic glutamine synthetase (GS2) is only inhibited by cycloheximide and not by lincomycin. This result indicates a cytosolic synthesis of GS2. The synthesis of GS2 was confirmed by a quantification of the protein by an immunochemical method. It was demonstrated that GS2 protein content in green leaves is fivefold higher than in etiolated leaves.Abbreviations AbH heavy chain of antibodies - AbL light chain of antibodies - AP acid phosphatase - CH cycloheximide - G6PDH glucose-6-phosphate dehydrogenase - GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 chloroplastic glutamine synthetase - LC lincomycin - NAD-MDH NAD malate dehydrogenase - NADP-G3PDH NADP glyceraldehyde-3-phosphate dehydrogenase  相似文献   

19.
Higher plants assimilate nitrogen in the form of ammonia through the concerted activity of glutamine synthetase (GS) and glutamate synthase (GOGAT). The GS enzyme is either located in the cytoplasm (GS1) or in the chloroplast (GS2). To understand how modulation of GS activity affects plant performance, Lotus japonicus L. plants were transformed with an alfalfa GS1 gene driven by the CaMV 35S promoter. The transformants showed increased GS activity and an increase in GS1 polypeptide level in all the organs tested. GS was analyzed by non-denaturing gel electrophoresis and ion-exchange chromatography. The results showed the presence of multiple GS isoenzymes in the different organs and the presence of a novel isoform in the transgenic plants. The distribution of GS in the different organs was analyzed by immunohistochemical localization. GS was localized in the mesophyll cells of the leaves and in the vasculature of the stem and roots of the transformants. Our results consistently showed higher soluble protein concentration, higher chlorophyll content and a higher biomass accumulation in the transgenic plants. The total amino acid content in the leaves and stems of the transgenic plants was 22–24% more than in the tissues of the non-transformed plants. The relative abundance of individual amino acid was similar except for aspartate/asparagine and proline, which were higher in the transformants.Abbreviations GS Glutamine synthetase - UTR Untranslated region  相似文献   

20.
A barley leaf cDNA library has been screened with two oligonucleotide probes designed to hybridize to conserved sequences in glutamine synthetase (GS) genes from higher plants. Two GS cDNA clones were identified as hybridizing strongly to one or both probes. The larger clone (pcHvGS6) contained a 1.6 kb insert which was shown by primer extension analysis to be an almost full-length cDNA. Both clones were more closely related to cDNAs for the chloroplast form of GS (GS2) from pea and Phaseolus vulgaris than to cDNAs for the cytosolic form (GS1). A sequence identicalto an N-terminal sequence determined from a purified preparation of the mature GS2 polypeptide (NH2-XLGPETTGVIQRMQQ) was found in the pcHvGS6-encoded polypeptide at residues 46–61, indicating a pre-sequence of at least 45 amino acids. The pre-sequence has only limited sequence homology to the pre-sequences of pea and P. vulgaris GS2 subunits, but is similarly rich in basic residues and possesses some of the structural features common to the targeting sequences of other chloroplast proteins. The molecular lesions responsible for the GS2-deficient phenotypes of eight photorespiratory mutants of barley were investigated using a gene-specific probe from pcHvGS6 to assay for GS2 mRNA, and an anti-GS antiserum to assay for GS2 protein. Three classes of mutants were identified: class I, in which absence of cross-reacting material was correlated with low or undetectable levels of GS2 mRNA; class II, which had normal or increased levels of GS2 mRNA but very little GS2 protein; and class III, which had significant amounts of GS2 protein but little or no GS2 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号