首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Guo S  Sato T  Shirane K  Furukawa K 《Glycobiology》2001,11(10):813-820
Several studies showed that Sf-9 cells can synthesize the galactosylated N-linked oligosaccharides if beta-1,4-galactosyltransferase (beta-1,4-GalT) is supplied. The full-length human beta-1,4-GalT I, II, III, IV, V, and VI cDNAs were independently transfected into Sf-9 cells, and the galactosylation of endogenous membrane glycoproteins was examined by lectin blot analysis using Ricinus communis agglutinin-I (RCA-I), which preferentially interacts with oligosaccharides terminated with Galbeta1-->4GlcNAc group. Several RCA-I-reactive bands appeared in all of the gene-transfected cells, and disappeared on treatment of blots with beta-1,4-galactosidase or N-glycanase prior to incubation with lectin. Introduction of the antisense beta-1,4-GalT II and V cDNAs separately into human colorectal adenocarcinoma SW480 cells, in which beta-1,4-GalT I, II, and V genes were expressed, resulted in the reduction of RCA-I binding toward N-linked oligosaccharides of the membrane glycoproteins. Differences were found in their K(m) values toward UDP-Gal and GlcNAcbeta-S-pNP and in their acceptor specificities toward oligosaccharides with the GlcNAcbeta1-->4(GlcNAcbeta1-->2)Man branch and with the GlcNAcbeta1-->6(GlcNAcbeta1-->2)Man branch. These results indicate that beta-1,4-GalTs II, III, IV, V, and VI are involved in the N-linked oligosaccharide biosynthesis cooperatively but not in a redundant manner with beta-1,4-GalT I within cells.  相似文献   

2.
Since our previous study showed that the gene expression level of beta-1,4-galactosyltransferase (beta-1,4-GalT) V is only increased in mouse NIH3T3 transformant and that beta-1,4-GalT V preferentially galactosylates the GlcNAcbeta1 --> 6Man branch of oligosaccharides [Shirane et al. (1999) Biochem. Biophys. Res. Commun. 265, 434-438], whether its gene expression is correlated with malignant transformation was investigated. Northern blot analysis of beta-1, 4-GalTs I, II, III, IV, V, and VI and N-acetylglucosaminyltransferase (GlcNAcT)V in human cancer cell lines showed that the gene expression levels of beta-1,4-GalT V but not other beta-1,4-GalTs are strongly correlated with those of GlcNAcT V whose activity was shown to increase by malignant transformation. These results indicate that beta-1,4-GalT V is involved in the galactosylation of highly branched oligosaccharides characteristic of malignantly transformed cells.  相似文献   

3.
I-branched poly-N-acetyllactosamine is a unique carbohydrate composed of N-acetyllactosamine branches attached to linear poly-N-acetyllactosamine, which is synthesized by I-branching beta1, 6-N-acetylglucosaminyltransferase. I-branched poly-N-acetyllactosamine can carry bivalent functional oligosaccharides such as sialyl Lewisx, which provide much better carbohydrate ligands than monovalent functional oligosaccharides. In the present study, we first demonstrate that I-branching beta1, 6-N-acetylglucosaminyltransferase cloned from human PA-1 embryonic carcinoma cells transfers beta1,6-linked GlcNAc preferentially to galactosyl residues of N-acetyllactosamine close to nonreducing terminals. We then demonstrate that among various beta1, 4-galactosyltransferases (beta4Gal-Ts), beta4Gal-TI is most efficient in adding a galactose to linear and branched poly-N-acetyllactosamines. When a beta1,6-GlcNAc branched poly-N-acetyllactosamine was incubated with a mixture of beta4Gal-TI and i-extension beta1,3-N-acetylglucosaminyltransferase, the major product was the oligosaccharide with one N-acetyllactosamine extension on the linear Galbeta1-->4GlcNAcbeta1-->3 side chain. Only a minor product contained galactosylated I-branch without N-acetyllactosamine extension. This finding was explained by the fact that beta4Gal-TI adds a galactose poorly to beta1,6-GlcNAc attached to linear poly-N-acetyllactosamines, while beta1, 3-N-acetylglucosaminyltransferase and beta4Gal-TI efficiently add N-acetyllactosamine to linear poly-N-acetyllactosamines. Together, these results strongly suggest that galactosylation of I-branch is a rate-limiting step in I-branched poly-N-acetyllactosamine synthesis, allowing poly-N-acetyllactosamine extension mostly along the linear poly-N-acetyllactosamine side chain. These findings are entirely consistent with previous findings that poly-N-acetyllactosamines in human erythrocytes, PA-1 embryonic carcinoma cells, and rabbit erythrocytes contain multiple, short I-branches.  相似文献   

4.
The adenylyl cyclases (AC) act as second messengers in regulatory processes in the central nervous system. They might be involved in the pathophysiology of diseases, but their biological function is unknown, except for AC type I, which has been implicated in learning and memory. We previously mapped the gene encoding AC I to human Chromosome (Chr) 7p12. In this study we report the mapping of the adenylyl cyclase genes type I–VI to mouse chromosomes by fluorescence in situ hybridization (FISH): Adcy1 to Chr 11A2, Adcy2 to 13C1, Adcy3 to 12A-B, Adcy4 to 14D3, Adcy5 to 16B5, and Adcy6 to 15F. We also confirmed previously reported mapping results of the corresponding human loci ADCY2, ADCY3, ADCY5, and ADCY6 to human chromosomes and, in addition, determined the chromosomal location of ADCY4 to human Chr 14q11.2. The mapping data confirm known areas of conservation between mouse and human chromosomes.  相似文献   

5.
6.
7.
The aim of the present study was to characterize the composition of the organic matrix in alveolar jaw bone and dentine using antibodies against pro-collagens Types I and III and collagens Types IV, V, and VI. After demineralization of oral hard tissues in 0.2 N HCl, antigenicity was well preserved and the distribution of the pro-collagens and collagens could be demonstrated. Staining for pro-collagen Type I was prominent around osteoblasts and in pre-dentine, indicating active de novo synthesis of Type I pro-collagen. Pro-collagen Type I was ubiquitous but was less abundant in bone and dentine, whereas pro-collagen Type III was seen only in areas of bone remodeling, in peritubular spaces, and in pre-dentine. Type IV collagen was limited to the basement membranes of vessels in osteons and bone marrow. Type V collagen was detected neither in pre-dentine nor in bone. In contrast, Type VI collagen was found in dentine and bone, showing a faint but homogeneous staining which, similarly to pro-collagen Type III, was pronounced around osteoblasts and in pre-dentine, areas of active bone and dentine formation. This study showed that the organic matrix of dentine and bone contains Type VI as well as Type I collagen. Pro-collagen Type III (and to a lesser extent collagen Type VI) is transiently produced during new formation and remodeling of oral hard tissues, and disappears once the matrix calcifies. Type I pro-collagen qualifies as a general marker protein for increased osteoblastic activity. We conclude that immunostaining for the different collagen/pro-collagen types can be used to assess normal or abnormal stages of bone/dentine formation.  相似文献   

8.
9.
10.
beta-1,4-galactosyltransferase 1 (beta1,4-GT 1) is localized both in the Golgi complex where it catalyzes the transfer of galactose from UDP-galactose to terminal N-acetylglucosamine forming Galbeta1 --> 4GlcNAc structure, and on the cell surface where it serves as an adhesion molecule. It has previously been reported that the expression of beta1,4-GT 1 was cell-cycle-specific, regulated by cell growth. Transforming growth factor-beta1 (TGF-beta1) could regulate cell G1/S phase transition and modulate cell growth in many types of cells. In this study, we introduced the antisense-TGF-beta1 into SMMC-7721 cell, a human hepatocarcinoma cell line, for blocking its intrinsic TGF-beta1 expression, and changing its cell-cycle, and then analyzed the gene expression of beta1,4-GT 1 together with the beta1,4-GT activity. The result showed that the antisense-TGF-beta1 transfected SMMC-7721 cells (AST/7721) were growth enhanced, with more cells in S phase and less cells in G2/M phase compared with the mock transfected cells (pcDNA3/7721). At the same time, it was found that the gene expression of beta1,4-GT 1 in AST/7721 was decreased to one fifth that of pcDNA3/7721, and the cell surface beta1,4-GT activity was reduced to one fifth of the control, while the total activity of beta1,4-GT was decreased to one half that of the control. The results indicate that suppression of TGF-beta1 expression resulted in change of cell-cycle together with the decreased gene expression of beta1,4-GT 1 and beta1,4-GT activity in human hepatocarcinoma cells.  相似文献   

11.
beta-Secretase (betaSEC) was expressed in Drososphila melanogaster Schneider 2 (S2) cells transformed with cDNAs encoding beta1,4-galactosyltransferase (GalT) and Galbeta1,4-GlcNAc alpha2,6-sialyltransferase (ST). The apparent molecular weight of recombinant beta-secretase was increased from 56kDa to 61kDa. A lectin blot analysis indicated that recombinant beta-secretase from S2betaSEC/GalT-ST cells (S2 cells co-transformed with cDNAs encoding beta-secretase, glycosyltransferases, GalT, and ST) contained the glycan residues of beta1,4-linked galactose and alpha2,6-linked sialic acid. Two dimensional electrophoresis revealed that recombinant beta-secretase from S2betaSEC/GalT-ST cells had a lower isoelectric point compared to beta-secretase from control S2betaSEC cells (S2 cells transformed only with beta-secretase cDNA). Recombinant beta-secretase from transformed S2 cells was also present as heterogeneous forms. The enzyme activity of recombinant beta-secretase from S2betaSEC/GalT-ST cells was enhanced up to 260% compared to control S2betaSEC cells. We have shown that an exogeneous human glycosyltransferases cDNA can be introduced into S2 cells to extend the N-glycan processing capabilities of the insect cell line, and that the extended glycosylation improves the activity of recombinant beta-secretase.  相似文献   

12.
At least 6 N-acetylglucosaminyltransferases (GlcNAc-T I, II, III, IV, V and VI) are involved in initiating the synthesis of the various branches found in complex asparagine-linked oligosaccharides (N-glycans), as indicated below: GlcNAc beta 1-6 GlcNAc-T V GlcNAc beta 1-4 GlcNAc-T VI GlcNAc beta 1-2Man alpha 1-6 GlcNAc-T II GlcNAc beta 1-4Man beta 1-4-R GlcNAc T III GlcNAc beta 1-4Man alpha 1-3 GlcNAc-T IV GlcNAc beta 1-2 GlcNAc-T I where R is GlcNAc beta 1-4(+/- Fuc alpha 1-6)GlcNAcAsn-X. HPLC was used to study the substrate specificities of these GlcNAc-T and the sequential pathways involved in the biosynthesis of highly branched N-glycans in hen oviduct (I. Brockhausen, J.P. Carver and H. Schachter (1988) Biochem. Cell Biol. 66, 1134-1151). The following sequential rules have been established: GlcNAc-T I must act before GlcNAc-T II, III and IV; GlcNAc-T II, IV and V cannot act after GlcNAc-T III, i.e., on bisected substrates; GlcNAc-T VI can act on both bisected and non-bisected substrates; both Glc-NAc-T I and II must act before GlcNAc-T V and VI; GlcNAc-T V cannot act after GlcNAc-T VI. GlcNAc-T V is the only enzyme among the 6 transferases cited above which can be essayed in the absence of Mn2+. In studies on the possible functional role of N-glycan branching, we have measured GlcNAc-T III in pre-neoplastic rat liver nodules (S. Narasimhan, H. Schachter and S. Rajalakshmi (1988) J. Biol. Chem. 263, 1273-1281). The nodules were initiated by administration of a single dose of carcinogen 1,2-dimethyl-hydrazine.2 HCl 18 h after partial hepatectomy and promoted by feeding a diet supplemented with 1% orotic acid for 32-40 weeks. The nodules had significant GlcNAc-T III activity (1.2-2.2 nmol/h/mg), whereas the surrounding liver, regenerating liver 24 h after partial hepatectomy and control liver from normal rats had negligible activity (0.02-0.03 nmol/h/mg). These results suggest that GlcNAc-T III is induced at the pre-neoplastic stage in liver carcinogenesis and are consistent with the reported presence of bisecting GlcNAc residues in N-glycans from rat and human hepatoma gamma-glutamyl transpeptidase and their absence in enzyme from normal liver of rats and humans (A. Kobata and K. Yamashita (1984) Pure Appl. Chem. 56, 821-832).  相似文献   

13.
Rho Kinase I (ROCK I) is a serine/threonine kinase that is involved in diverse cellular signaling. To further understand the physiological role of ROCK I and to identify and develop potent and selective inhibitors of ROCK I, we have overexpressed and purified a constitutively active dimeric human ROCK I (3-543) kinase domain using the Sf9-baculovirus expression system. In addition, using a limited proteolysis technique, we have identified a minimal functional subdomain of ROCK I that can be used in crystallization studies. The availability of multimilligram amounts of purified and well characterized functional human ROCK I kinase domains will be useful in screening and structural studies.  相似文献   

14.
Confocal microscopy and immuno‐histochemistry were used to examine collagens in the extracellular matrix of cod Gadus morhua swimming muscle. In addition to the well known presence of type I fibrous collagen, types III and VI were also found in the myocommata and the endomysium. The beaded collagen, type VI, was found in the endomysium and the network forming collagen, type IV, was found in the basement membrane. This is the first report of type V collagen in cod muscle and of types II, IV and VI in the muscle of a teleost.  相似文献   

15.
Rho-kinase II (ROCK-II) is a serine/threonine kinase that is involved in regulation of smooth muscle contraction and has been shown to contribute to the early stages of axon formation in neurons and the regulation of the neuronal cytoskeleton. Much of what is known about Rho-kinase function comes from cell-biological studies, whereas a paucity of biochemical characterization exists for the enzyme. In an effort to characterize ROCK-II biochemically we have cloned a truncated form of human ROCK-II comprising amino acids 1-543 and overexpressed it in Sf-21 cells. Utilizing the Sf-21/baculovirus expression system we isolated milligram quantities of ROCK-II (1-543) and purified the enzyme to near homogeneity. Optimal expression conditions revealed that infection of Sf-21 cells at a multiplicity of infection of 10 for 72h yielded maximal protein expression. Expression of ROCK-II (1-543) as an N-terminal Flag fusion protein allowed a single-step purification yielding greater than 90% homogeneous protein as assessed by SDS-PAGE. Enzyme activity was linear over a range of enzyme concentrations and times. Capture of phosphorylated, biotinylated peptides on streptavidin membrane allowed assessment of peptide substrate preference and measurement of steady-state rate constants. The data indicated that an 11-mer peptide containing Ser235/Ser236 of the S6 ribosomal protein and a 12-mer peptide containing Thr508 of LIM kinase were preferred substrates for ROCK-II (1-543). Finally, staurosporine had an IC(50) value 215-fold more potent than that of the ROCK inhibitor Y-27632. Collectively these data lay the foundation for the beginning of a biochemical characterization for this enzyme and provide methodology for more detailed biochemical, biophysical, and kinetic analysis.  相似文献   

16.
The cDNAs encoding soluble forms of human beta-1, 4-galactosyltransferase I (EC 2.4.1.22), alpha-2,6-sialyltransferase (EC 2.4.99.1), and alpha-1,3-fucosyltransferase VI (EC 2.4.1.65), respectively, have been expressed in the methylotrophic yeast Pichia pastoris. The vector pPIC9 was used, which contains the N-terminal signal sequence of Saccharomyces cerevisiae alpha-factor to allow entry into the secretory pathway. The recombinant enzymes had similar kinetic properties as their native counterparts. Their identity was confirmed by Western blotting. Recombinant enzymes may be used for in vitro synthesis of oligosaccharides.  相似文献   

17.
18.
We examined the ultrastructural localization of collagens Type I, V, VI and of procollagen Type III in decalcified and prefixed specimens of the periodontal ligament and cementum, by immunoelectron microscopy using ultra-thin cryostat sections. Immunostaining for collagen Type I was pronounced on the major cross-striated fibrils entering cementum and in cementum proper, whereas staining for procollagen Type III was almost exclusively observed on the major fibrils in the periodontal ligament situated more remote from cementum. Reactivity for collagen Type V was limited to aggregated, unbanded filamentous material of about 12 nm diameter that was found mainly in larger spaces between bundles of cross-striated collagen fibrils and occasionally on single microfibrils that apparently originated from the ends of the major collagen fibrils, which may support the concept of this collagen as a component of core fibrils. Collagen Type VI was present as microfilaments appearing to interconnect single cross-striated fibrils. In the densely packed fibril bundles of the periodontal ligament, no collagen type VI was detected. Neither Type V or Type VI collagen was observed in cementum.  相似文献   

19.
In order to investigate the changes of N-acetylglucosaminyl transferase (GlcNAc-T) III, IV and V in cell cycle, the synchronization of 7721 human hepatocellular carcinoma cells was performed using serum hunger method. The percentages of cells in different phases during cell cycle were measured by flow cytometry (FCM) and the cell cycle was checked by determining the activity of cellular p34cdc2 kinase. It was found that the activities of GlcNAc-T III increased in G0/G1 cell peak phase and had correlation with the cell percentage of G0/G1 phase (r = 0.760, P < 0.05), while GlcNAc-T V showed the highest activity when G2/M cells were most abundant and had an apparent correlation with the cell percentage of G2/M phase (r = 0.868, P < 0.001). The changes of GlcNAc-T IV activity seemed not related to the cell cycle. The changes in opposite directions of relative activities (percentage of total GlcNAc-T III, IV, V) of GlcNAc-T III and GlcNAc-T V were observed during cell cycle (r = -0.951, P < 0.001), suggesting that these two enzymes might be regulated differently and functioned oppositely in the cells: GlcNAc-T V may be related to the proliferation of 7721 cells, while GlcNAc-T III may be related to the non-mitotic silence phase of the cells, or, it may be a factor against proliferation. Immunohistochemical results showed that the protein content of GlcNAc-T V was not significantly changed during cell cycle, and had no correlation with the activity of GlcNAc-T V, suggesting that the changes of GlcNAc-T V activity in cell cycle might not be resulted from the alteration of enzyme protein synthesis. The correlation between the activities of GlcNAc-T V and p34cdc2 kinase (r = 0.752, P < 0.05) was observed in cell cycle, implicating that GlcNAc-T V might possibly be regulated by p34cdc2 kinase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号