首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fifty-eight synthetic hexaploid wheats, developed by crossing Triticum dicoccum Schrank. and Aegilops tauschii (Coss.) Schmal., were evaluated at the seedling stage, together with their parents, for resistance to greenbug (Schizaphis graminum Rondani) under greenhouse conditions. Seedlings of different synthetic hexaploids showed large phenotypic differences for resistance. All the T. dicoccum parents were susceptible, while high levels of resistance were observed in some of the Ae. tauschii parents. Of the synthetic hexaploids derived from resistant Ae. tauschii parents, a high proportion (76%) showed levels of resistance to the greenbug biotype used that were comparable to those of the resistant parent. While there were clear indications of the presence of suppressor genes for greenbug resistance in the A and/or B genomes of T. dicoccum in some synthetics, positive epistatic interaction was also found in synthetic hexaploids with higher levels of resistance than that of either parent. Resistance from different Ae. tauschii accessions was expressed differently when crossed with the same T. dicoccum, indicating diversity among the resistance genes present in the test synthetic hexaploid wheats. Based on resistance reactions, the genes conferring greenbug resistance in these synthetic hexaploids are probably different from resistance genes previously transferred to wheat from Ae. tauschii.  相似文献   

2.
小麦穗发芽是小麦生产中的主要灾害和重要问题,在普通小麦中缺乏抗穗发芽的品种资源。本试验通过对35份黄河中游地区节节麦、14份国外节节麦及部分小麦品种的发芽率的测定及抗性多样性分析,综合评价了黄河中游地区节节麦的穗发芽抗性状况。结果表明,节节麦穗发芽抗性普遍高于小麦品种,黄河中游地区节节麦的抗穗发芽能力优于国外材料,其中以T005、T007、T008、T016、T030、T062、T065、T068、T069、T072和T085等11个材料的抗穗发芽能力最强,是小麦穗发芽改良优异的抗源材料。  相似文献   

3.
The majority of plant viruses are dependent on arthropod vectors for spread between plants. Wheat streak mosaic virus (family Potyviridae, genus Tritimovirus, WSMV) is transmitted by the wheat curl mite, Aceria tosichella Keifer, and this virus and vector cause extensive yield losses in most major wheat (Triticum aestivum L.)-growing regions of the world. Many cultivars in use are susceptible to this vector-virus complex, and yield losses of 10-99% have been documented. wheat curl mite resistance genes have been identified in goat grass, Aegilops tauschii (Coss) Schmal., and transferred to hexaploid wheat, but very few varieties contain effectively wheat curl mite resistance, due to virulent wheat curl mite populations. However, wheat curl mite resistance remains an effective strategy to reduce losses due to WSMV. The goal of our project was to identify the most effective, reproducible, and rapid method for assessing wheat curl mite resistance. We also wanted to determine whether mite resistance is affected by WSMV infection, because the pathogen and pest commonly occur together. Single and group wheat curl mite infestations produced similar amounts of leaf rolling and folding on wheat curl mite-susceptible wheat varieties that were independent of initial wheat curl mite infestation. This finding will allow accurate, efficient, large-scale screening of wheat germplasm for wheat curl mite resistance by infesting plants with sections of wheat leaf tissue containing mixed stages of wheat curl mite. The wheat curl mite-resistant breeding line 'OK05312' displayed antibiosis (reduced wheat curl mite population development). The effect of WSMV infection on wheat curl mite reproduction was genotype-dependent. Mite populations increased on infected wheat curl mite- and WSMV-susceptible plants compared with uninfected plants, but WSMV infection had no significant effect on wheat curl mite populations on resistant plants. OK05312 is a strong source of wheat curl mite resistance for wheat breeding programs.  相似文献   

4.
Wheat, Triticum aestivum L., with Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) resistance based on the Dn4 gene has been important in managing Russian wheat aphid since 1994. Recently, five biotypes (RWA1-RWA5) of this aphid have been described based on their ability to differentially damage RWA resistance genes in wheat. RWA2, RWA4, and RWA5 are of great concern because they can kill wheat with Dn4 resistance. In 2005, 365 Russian wheat aphid clone colonies were made from collections taken from 98 fields of wheat or barley, Hordeum vulgare L., in Oklahoma, Texas, New Mexico, Colorado, Kansas, Nebraska, and Wyoming to determine their biotypic status. The biotype of each clone was determined through its ability to differentially damage two resistant and two susceptible wheat entries in two phases of screening. The first phase determined the damage responses of Russian wheat aphid wheat entries with resistance genes Dn4, Dn7, and susceptible 'Custer' to infestations by each clone to identify RWA1 to RWA4. The second phase used the responses of Custer and 'Yuma' wheat to identify RWA1 and RWA5. Only two biotypes, RWA1 and RWA2, were identified in this study. The biotype composition across all collection sites was 27.2% RWA1 and 72.8% RWA2. RWA biotype frequency by state indicated that RWA2 was the predominant biotype and composed 73-95% of the biotype complex in Texas, Oklahoma, Colorado, and Wyoming. Our study indicated that RWA2 is widely distributed and that it has rapidly dominated the biotype complex in wheat and barley within its primary range from Texas to Wyoming. Wheat with the Dn4 resistance gene will have little value in managing RWA in the United States, based on the predominance of RWA2.  相似文献   

5.
利用3个推广品种(莱州953、山农辐63、陕7859)分别与原产地不同的抗白粉病的6份粗山羊草[Aegilops tauschii(Coss.)Schmal.]杂交,得到63个无胚乳的种子,将56枚幼胚接种到N6 0.5mg/L IBA 0.2 mg/L NAA的培养基上进行褓姆培养,得到37个植株。其中莱州953与粗山羊草的杂交结实率和成苗率较高,分别平均为8.58%和4.82%。粗山羊草对白粉病的抗性基因在不同的杂交组合中受到不同程度的改变或抑制。以莱州953为父本,分别与不同组合的杂种F_1回交,大多数组合均得到回交种子,回交结实率平均为1.70%;以莱州953作母本,与莱州953/Y225 F _1回交得到2粒种子,说明普通小麦与粗山羊草的杂种F_1也能产生少量有授精能力的花粉。以山农辐63为父本与山农辐63/Y219 F_1回交亦得到回交种子。通过对普通小麦与粗山羊草6个杂交组合的杂种F_1PMCMI染色体构型的分析,一般多出现14个左右单价体和一定频率的多价体,并观察到可能为A、B组染色体形成的异形二价体;粗山羊草的D组染色体和普通小麦的D组染色体联会正常,可发生自由重组,从而为将粗山羊草的有益基因导入普通小麦提供了细胞学依据。  相似文献   

6.
7.
The Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae), has been a major economic pest of small grains in the western United States since its introduction in 1986. Recently, a new Russian wheat aphid biotype was discovered in southeastern Colorado that damaged previously resistant wheat, Triticum aestivum L. Biotype development jeopardizes the durability of plant resistance, which has been a cornerstone for Russian wheat aphid management. Our objective was to assess the relative amount of biotypic diversity among Russian wheat aphid populations collected from cultivated wheat and barley, Hordeum vulgare L. We conducted field surveys from May through June 2002 and August 2003 from seven counties within Texas, Kansas, Nebraska, and Wyoming. Based upon a foliar chlorosis damage rating, three new Russian wheat aphid biotypes were identified, one of which was virulent to all characterized sources of Russian wheat aphid resistance. The future success of Russian wheat aphid resistance breeding programs will depend upon the continual monitoring of extant biotypic diversity and determination of the ecological and genetic factors underlying the development of Russian wheat aphid biotypes.  相似文献   

8.
Categories of resistance to greenbug, Schizaphisgraminum (Rondani), biotype I, were determined in goatgrass, Aegilops tauschii (Coss.) Schmal., accession 1675 (resistant donor parent), 'Wichita' wheat, Triticum aestivum L., (susceptible parent), and an Ae. tauschii-derived resistant line, '97-85-3'. Antibiosis was assessed using the intrinsic rate of increase (rm) of greenbugs confined to each of the three genotypes. Neither parent nor the resistant progeny expressed antibiosis. Mean rm values for greenbug I on Wichita (0.0956), and Ae. tauschii (0.10543) were not significantly different. Mean rm values for Wichita and 97-85-3 were also not significantly different. Antixenosis was determined by allowing aphids a choice to feed on plants of each of the three genotypes. Ae. tauschii 1675 exhibited antixenosis, but this resistance was not inherited and expressed in '97-85-3'. In experiments comparing Wichita and Ae. tauschii 1675, greenbug I population distributions were not significantly different on Wichita at 24 h, but were shifted toward Wichita at 48 h. In the second antixenosis experiment, there were no significant differences in greenbug I population distributions on 97-85-3 or Wichita at 24 or 48 h. When all three lines were compared, there were no significant differences in greenbug biotype I populations at 24 or 48 h after infestation. Comparisons of proportional dry plant weight loss (DWT) and SPAD meter readings were used to determine tolerance to greenbug I feeding. Ae. tauschii 1675 and 97-85-3 were highly tolerant compared with Wichita. Infested and uninfested Ae. tauschii 1675 DWT was nonsignificant, and infested Wichita plants weighed significantly less than uninfested plants. When Wichita and 97-85-3 were contrasted, DWT of infested and uninfested Wichita plants were significantly different, but those of 97-85-3 were not. Mean percent leaf chlorophyll losses for the three genotypes, as measured by the SPAD chlorophyll meter, were as follows: Wichita = 65%; Ae. tauschii 1675 = 25%; and 97-85-3 = 39%. Percent leaf chlorophyll losses caused by greenbug feeding was significantly different in comparisons between Wichita and Ae. tauschii 1675, and comparisons between Wichita and 97-85-3, although feeding damage was not significantly different in comparisons between Ae. tauschii 1675 and 97-85-3. These data provided further evidence of the expression of tolerance to greenbug feeding in Ae. tauschii 1675 and 97-85-3.  相似文献   

9.
The survival of the wheat curl mite (WCM), Aceria tosichilla Keifer, on five sources of resistant wheat (Triticum aestivum L.) was determined for collections of mites from Kansas (including a strain adapted to TAM 107), South Dakota and Texas, USA and Alberta, Canada. Sources of resistance to Aegilops squarrosa L. and Agropyron elongatum (Host) were resistant to WCMs from South Dakota and Alberta, but susceptible to WCMs from Kansas and Texas. Two wheats with resistance to rye (Secale cereale L.), PI 475772 and TAM 107, were resistant to all WCM collections except the strain from Kansas that was selected for adaptation to TAM 107. A common wheat (PI 222655) was resistant to all WCM collections except the one from Alberta, Canada. Because WCMs have overcome the resistance of TAM 107 in Kansas, the only resistance now available in commercial cultivars may be lost. Results indicate that PI222655 is the best source of resistance to replace TAM 107 in the USA but it may not be effective in Canada. Resistance to Ae. squarrosa and A. elongatum could be deployed against WCMs in Alberta and South Dakota but these sources may not be effective in Kansas and Texas. However, one WCM collection from each location may not represent the general mite population of an area. Therefore, any new sources of resistance should be evaluated fully against WCMs from areas where they are likely to be used in commercial cultivars.  相似文献   

10.
Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) was recorded for the first time in South Africa in 1978. In 2005, a second biotype, RWASA2, emerged, and here we report on the emergence of yet another biotype, found for the first time in 2009. The discovery of new Russian wheat aphid biotypes is a significant challenge to the wheat, Triticum aestivum L., industry in South Africa. Russian wheat aphid resistance in wheat, that offered wheat producers a long-term solution to Russian wheat aphid control, may no longer be effective in areas where the new biotypes occur. It is therefore critical to determine the diversity and extent of distribution of biotypes in South Africa to successfully deploy Russian wheat aphid resistance in wheat. Screening of 96 Russian wheat aphid clones resulted in identification of three Russian wheat aphid biotypes. Infestations of RWASA1 caused susceptible damage symptoms only in wheat entries containing the Dn3 gene. Infestations of RWASA2 caused susceptible damage symptoms in wheat entries containing Dn1, Dn2, Dn3, and Dn9 resistant genes. Based on the damage-rating scores for the seven resistance sources, a new biotype, which caused damage rating scores different from those for RWASA1 and RWASA2, was evident among the Russian wheat aphid populations tested. This new biotype is virulent to the same resistance sources as RWASA2 (Dn1, Dn2, Dn3, and Dn9), but it also has added virulence to Dn4, whereas RWASA2 is avirulent to this resistance source.  相似文献   

11.
节节麦是普通小麦D基因组供体,遗传多样性丰富,而我国节节麦资源是有别于中东节节麦资源的重要基因源。为了合理高效地管理、评价、保护和利用我国节节麦资源,本研究将野生采集的762份中国节节麦资源作为试验材料,基于SSR标记分组状况,利用小穗长、护颖长、护颖宽、外稃长、外稃宽、内稃长、内稃宽、穗宽、粒长和粒宽等10个穗形性状指标,在欧氏距离、马氏距离和4种取样比例下构建节节麦核心种质候选集。进而采用均值差异百分率、极差符合率、方差差异百分率及变异系数变化率4个指标对不同方法构建的核心种质候选集的可行性和有效性进行评价,并利用原种质和核心种质的主成分分析法进行验证,最终确定基于欧氏距离、10%取样比例下、采用最小距离逐步取样法构建的包含76个样品的节节麦核心种质能够以最小的资源份数、最大限度地代表我国节节麦的遗传多样性。  相似文献   

12.
R L Innes  E R Kerber 《Génome》1994,37(5):813-822
Twelve accessions of Triticum tauschii (Coss.) Schmal. were genetically analyzed for resistance to leaf rust (Puccinia recondita Rob. ex Desm.) and stem rust (Puccinia graminis Pers. f.sp. tritici Eriks. and E. Henn.) of common wheat (Triticum aestivum L.). Four genes conferring seedling resistance to leaf rust, one gene conferring seedling resistance to stem rust, and one gene conferring adult-plant resistance to stem rust were identified. These genes were genetically distinct from genes previously transferred to common wheat from T. tauschii and conferred resistance to a broad spectrum of pathogen races. Two of the four seedling leaf rust resistance genes were not expressed in synthetic hexaploids, produced by combining tetraploid wheat with the resistant T. tauschii accessions, probably owing to the action of one or more intergenomic suppressor loci on the A or B genome. The other two seedling leaf rust resistance genes were expressed at the hexaploid level as effectively as in the source diploids. One gene was mapped to the short arm of chromosome 2D more than 50 cM from the centromere and the other was mapped to chromosome 5D. Suppression of seedling resistance to leaf rust in synthetic hexaploids derived from three accessions of T. tauschii allowed the detection of three different genes conferring adult-plant resistance to a broad spectrum of leaf rust races. The gene for seedling resistance to stem rust was mapped to chromosome ID. The degree of expression of this gene at the hexaploid level was dependent on the genetic background in which it occurred and on environmental conditions. The expression of the adult-plant gene for resistance to stem rust was slightly diminished in hexaploids. The production of synthetic hexaploids was determined to be the most efficient and flexible method for transferring genes from T. tauschii to T. aestivum, but crossing success was determined by the genotypes of both parents. Although more laborious, the direct introgression method of crossing hexaploid wheat with T. tauschii has the advantages of enabling selection for maximum expression of resistance in the background hexaploid genotype and gene transfer into an agronomically superior cultivar.  相似文献   

13.
Sequence tagged site (STS) markers have been developed recently to identify resistance genes in wheat. A number of wild relatives have been used to transfer resistance genes into wheat cultivars. Accessions of wild species of Triticeae: Aegilops longissima (4), Ae. speltoides (6), Ae. tauschii (8), Ae. umbellulata (3), Ae. ventricosa (3), Triticum spelta (2), T. timopheevi (3), T. boeoticum (4) and T. monococcum (1), 34 in total, were examined using PCR-STS markers for resistance genes against Puccinia recondita f.sp. tritici (Lr) and Erysiphe graminis (Pm). Additionally, a set of cv. Thatcher near-isogenic lines conferring resistance genes Lr 1, Lr 9, Lr 10, Lr 24, Lr 28, Lr 35 and Lr 37 were examined with the same procedure. Twenty-two accessions were tested using the inoculation test for resistance to Erysiphe graminis, Puccinia recondita, P. striiformis and P. graminis. The most resistant entries were those of Aegilops speltoides and Triticum timopheevi and among T. boeoticum accession #5353. Markers of all mentioned Lr resistance genes were identified in all corresponding cv. Thatcher near-isogenic lines (except Lr 35 gene marker). The following resistance gene markers were identified in wild Triticeae accessions: Lr 1 in two accessions of Ae. tauschii and one accession of Ae. umbellulata, Lr 9 in one accession of Ae. umbellulata, Lr 10 in one accession of T. spelta, Lr 28 in 11 accessions: Ae. speltoides (4), Ae. umbellulata (2), T. spelta (2) and T. timopheevi (3), Lr 37 in 3 accessions of Ae. ventricosa, Pm 1 in all 34 accessions, Pm 2 in 28 accessions, Pm 3 in all 4 accessions of T. boeoticum, 1 accession of T. spelta and 1 of T. timopheevi, and Pm 13 in 5 out of 6 accessions of Ae. speltoides. Reliability and usefulness of STS markers is discussed.  相似文献   

14.
Sorghum, Sorghum bicolor (L.) Moench, is the fifth most important cereal crop grown worldwide and the fourth in the United States. Greenbug, Schizaphis graminum (Rondani), is a major insect pest of sorghum with several biotypes reported to date. Greenbug biotype I is currently the most prevalent and most virulent on sorghum plants. Breeding for resistance is an effective way to control greenbug damage. A successful breeding program relies in part upon a clear understanding of breeding materials. However, the genetic diversity and relatedness among the greenbug biotype I resistant accessions collected from different geographic origins have not been well characterized, although a rich germplasm collection is available. In this study, 26 sorghum accessions from 12 countries were evaluated for both resistance to greenbug biotype I and genetic diversity using fluorescence-labeled amplified fragment length polymorphism (AFLP). Twenty-six AFLP primer combinations produced 819 polymorphic fragments indicating a relatively high level of polymorphism among the accessions. Genetic similarity coefficients among the sorghum accessions ranged from 0.69 to 0.90. Cluster analysis indicated that there were two major groups based on polymorphic bands. This study has led to the identification of new genetic sources of sorghum with substantial genetic variation and distinct groupings of resistant accessions that have the potential for use in the development of durable greenbug resistant sorghum.  相似文献   

15.
Sixty Aegilops tauschii accessions and 60 European hexaploid wheat varieties were analyzed with 14 wheat microsatellite (WMS) primer sets to (i) study the phylogeny of Ae. tauschii, (ii) search for a specific genotype of Ae. tauschii most closely related to the D genome of hexaploid wheat, and (iii) narrow down the presumed birthplace of the latter. An average of 6.5 and 4.0 alleles per locus was detected in Ae. tauschii and in wheat, respectively. The highest genetic diversity of Ae. tauschii was found in Transcaucasia and southeast of the Caspian Sea. Distribution of the 87 alleles (without null alleles) found in Aegilops did not allow differentiation of the species into the two subspecies strangulata and tauschii. Excluding null alleles, 41 alleles occurred parallel in wheat and in Aegilops. Data obtained in this study supports the view of the D genome of hexaploid wheat being a composite of several sources but does not support subsp. strangulata as the possible major source of the D genome. The highest number of region-specific alleles (three) in Ae. tauschii occurring also in the D genome of wheat, and therefore most indicative for its evolution was found in present-day Georgia, where subsp. strangulata is not endemic.  相似文献   

16.
Sequence comparisons were made for 738-bp of mtDNA cloned from seven greenbug, Schizaphis graminum, biotypes (B, C, E, F, G, H and I) obtained from laboratory colonies maintained by USDA-ARS, Stillwater, OK. These sequences include parts of the genes for 16S ribosomal subunit (16S rRNA), tRNAleu, tRNAser, cytochrome b (cytb) and NADH dehydrogenase (ND) subunits one and four. Sequence data revealed considerable variation in 86 (12%) nucleotide sites over the 738-bp sequenced among the seven greenbug biotypes. Nucleotide invariance was observed within the seven greenbug biotypes from both the laboratory colonies and field collected biotype E greenbugs from Kansas, Nebraska, Oklahoma, and Texas.  相似文献   

17.
18.
Biotypic diversity of the greenbug, Schizaphis graminum (Rondani) (Hemiptera: Aphididae), was assessed among populations collected from cultivated wheat, Triticum aestivum L., and sorghum, Sorghum bicolor (L.) Moench, and their associated noncultivated grass hosts. Greenbugs were collected during May through August 2002 from 30 counties of Kansas, Nebraska, Oklahoma, and Texas. Discounting the presumptive biotype A, five of the remaining nine letter-designated greenbug biotypes were collected; however, biotypes C, F, J, and K were not detected. Biotypes E and I exhibited the greatest host range and were the only biotypes collected in all four states. Sixteen greenbug clones, collected from eight plant species, exhibited unique biotype profiles. Eleven were collected from noncultivated grasses, three from wheat, and two from sorghum. The most virulent biotypes were collected from noncultivated hosts. The great degree of biotypic diversity among noncultivated grasses supports the contention that the greenbug species complex is composed of host-adapted races that diverged on grass species independently of, and well before, the advent of modern agriculture.  相似文献   

19.
Microsatellite analysis of Aegilops tauschii germplasm   总被引:8,自引:0,他引:8  
The highly polymorphic diploid grass Aegilops tauschii isthe D-genome donor to hexaploid wheat and represents a potential source for bread wheat improvement. In the present study microsatellite markers were used for germplasm analysis and estimation of the genetic relationship between 113 accessions of Ae. tauschii from the gene bank collection at IPK, Gatersleben. Eighteen microsatellite markers, developed from Triticum aestivum and Ae. tauschii sequences, were selected for the analysis. All microsatellite markers showed a high level of polymorphism. The number of alleles per microsatellite marker varied from 11 to 25 and a total of 338 alleles were detected. The number of alleles per locus in cultivated bread wheat germplasm had previously been found to be significantly lower. The highest levels of genetic diversity for microsatellite markers were found in accessions from the Caucasian countries (Georgia, Armenia and the Daghestan region of Russia) and the lowest in accessions from the Central Asian countries (Uzbekistan and Turkmenistan). Genetic dissimilarity values between accessions were used to produce a dendrogram of the relationships among the accessions. The result showed that all of the accessions could be distinguished and clustered into two large groups in accordance with their subspecies taxonomic classification. The pattern of clustering of the Ae. tauschii accessions is according to their geographic distribution. The data suggest that a relatively small number of microsatellites can be used to estimate genetic diversity in the germplasm of Ae. tauschii and confirm the good suitability of microsatellite markers for the analysis of germplasm collections. Received: 8 September 1999 / Accepted: 7 October 1999  相似文献   

20.
Twenty-three Hessian fly, Mayetiola destructor (Say), populations collected in the southeastern (Alabama and Mississippi), midwestern (Indiana), and northwestern (Idaho and Washington) United States from 1995 to 1999 were evaluated for biotype composition based on response to Hessian fly resistance genes H3, H5, H6, and H7H8 in wheat, Triticum aestivum L. Biotypes L and O, combined, made up at least 60% of all Alabama populations. Biotype L was predominant in the northern third of Alabama and biotype O in the southern two-thirds of the state. Based on biotype data, wheat cultivars with H7H8 resistance should be highly effective in central and southern Alabama. Fifty-four percent of the Mississippi population consisted of biotype L, and the remaining virulent biotypes (B, D, E, G, J, and O) ranged in frequency from 1 to 17%. The Mississippi population also contained 4% of the avirulent biotype GP. Only biotypes D and L were found in Indiana populations, but biotype L was predominant. Hessian fly populations from Idaho and Washington contained one or more of the virulent biotypes D-H, J, and L-O; however, only biotypes E, F, and G occurred at frequencies > 12%. The avirulent biotype GP made up 25-57% of Idaho and Washington populations, a much higher percentage than found in populations from the eastern United States. Although the highest level of virulence in Idaho and Washington populations was found to resistance genes H3 and H6, the frequency of biotype GP would indicate that the currently deployed gene H3 would provide a moderate to high level of resistance, depending on location. Nine of the populations, plus populations collected from the mid-Atlantic state area in 1989 and 1996, also were tested against the wheat cultivar 'INW9811' that carries H13 resistance to Hessian fly biotype L and two Purdue wheat lines with unidentified genes for resistance. The H13 resistance in INW9811 was highly effective against all populations tested from the eastern and northwestern U.S. wheat production areas, except Maryland and Virginia. Population studies also indicated that wheat line CI 17960-1-1-2-4-2-10 likely carries the H13 resistance gene, based on the similarity of its response and that of INW9811 to eight fly populations. Continued monitoring of biotype frequency in Hessian fly populations is required for optimal deployment and management of resistance genes in all wheat production areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号