首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To assess potential function of each two-component signal transduction system in the expression of Streptococcus mutans virulence properties. METHODS AND RESULTS: For each two-component system (TCS), the histidine kinase-encoding gene was inactivated by a polymerase chain reaction (PCR)-based deletion strategy and the effects of gene disruption on the cell's ability to form biofilms, become competent, and tolerate acid, osmotic, and oxidative stress conditions were tested. Our results demonstrated that none of the mutations were lethal for S. mutans. The TCS-2 (CiaRH) is involved in biofilm formation and tolerance to environmental stresses, the TCS-3 (ScnRK-like) participates in the survival of cells at acidic pH, and the TCS-9 affects the acid tolerance response and the process of streptococcal competence development. CONCLUSIONS: Our results confirmed the physiological role of the TCS in S. mutans cellular function, in particular the SncRK-like TCS and TCS-9 as they may represent new regulatory systems than can be involved in S. mutans pathogenesis. SIGNIFICANCE AND IMPACT OF THE STUDY: Multiple TCS govern important biological parameters of S. mutans enabling its survival and persistence in the biofilm community.  相似文献   

2.
The glucosyltransferases (GTFs) of mutans streptococci are important virulence factors in the sucrose-dependent colonization of tooth surfaces by these organisms. To investigate the structure-function relationship of the GTFs, an approach was initiated to identify amino acid residues of the GTFs which affect the incorporation of glucose residues into the glucan polymer. Conserved amino acid residues were identified in the GTF-S and GTF-I enzymes of the mutans streptococci and were selected for site-directed mutagenesis in the corresponding enzymes from Streptococcus mutans GS5. Conversion of six amino acid residues of the GTF-I enzyme to those present at the corresponding positions in GTF-S, either singly or in multiple combinations, resulted in enzymes synthesizing increased levels of soluble glucans. The enzyme containing six alterations synthesized 73% water-soluble glucan in the absence of acceptor dextran T10, while parental enzyme GTF-I synthesized no such glucan product. Conversely, when residue 589 of the GTF-S enzyme was converted from Thr to either Asp or Glu, the resulting enzyme synthesized primarily water-insoluble glucan in the absence of the acceptor. Therefore, this approach has identified several amino acid positions which influence the nature of the glucan product synthesized by GTFs.  相似文献   

3.
Nidus Vespae (honeycomb) is a kind of traditional Chinese medicine that has been demonstrated to inhibit the growth and acid-production of oral cariogenic bacteria. Subsequent studies showed that the chloroform/methanol (Chl/MeOH) chemical extraction of Nidus Vespae was the most effective inhibitor of growth and acidogenicity of Streptococcus mutans. In this study, we isolated the chemical compounds of the Nidus Vespae Chl/MeOH extraction, tested their antimicrobial activity against six cariogenic bacteria and further evaluated the acid inhibition properties, anti-F-ATPase activity and anti-LDH activity against S. mutans. The isolated flavonoids, quercetin and kaempferol, inhibited the growth of bacteria (S. mutans, Streptococcus sobrinus, Streptococcus sanguis, Actinomyces viscosus, Actinomyces naeslundii and Lactobacillus rhamnosus) with minimum inhibitory concentrations (MICs) ranging from 1 to 4 mg/ml and minimum bactericidal concentrations (MBCs) from 4 to 16 mg/ml. In addition, quercetin and kaempferol at sub-MIC levels significantly inhibited acidogenicity and acidurity of S. mutans cells. Treated with the test agents, the F-ATPase activity was reduced by 47.37% with 1mg/ml quercetin and by 49.66% with 0.5mg/ml kaempferol. The results showed that quercetin and kaempferol contained in Chl/MeOH extraction presented remarkably biological activity, suggesting that Nidus Vespae might be useful as a potential preventive and therapeutic agent in dental caries.  相似文献   

4.
Phenolic and other compounds were extracted from micropropagated axillary shoots (microshoots) of the walnut (Juglans regia L.) cultivars ‘Chandler’, ‘Howard’, ‘Kerman’, ‘Sunland’, and ‘Z63’. Among cultivars, microshoots showed differences in phenolic compounds, phenolic acids, flavonoids, and proanthocyanidins. All cultivars contained the phenolics acids chlorogenic acid, gallic acid, p-coumaric acid; the naphthoquinone juglone; and the flavonoid quercetin. The phenolic acids syringic acid and vanillin were present only in microshoots of ‘Howard’. Microshoot extracts had different antioxidant activity with ‘Kerman’ the highest and ‘Chandler’ the lowest in each of three antioxidant assays: the phosphomolybdenum assay (PPM), reducing power assay, and 2,2-diphenyl-1-picrylhydrazyl-scavenging effect. There was a strong linear relationship between total phenolic compound content of microshoots and increasing antioxidant activity.  相似文献   

5.
Background: Lonicera caerulea L. (blueberry honeysuckle, Caprifoliaceae) is a traditional crop in northern Russia, China, and Japan. Its fruits are little known as edible berries in North America and Europe. This review deals with the botany and chemical composition of L. caerulea and the biological activity of its main constituents, focusing on the potential health benefits of the berries. Methods and Results: PubMed, Science Direct and ISI Web of Knowledge(SM) databases were used for this paper. Literature sources include the period 1935-2007. L. caerulea berries a are rich source of phenolic compounds such as phenolic acids as well as anthocyanins, proanthocyanidins and other flavonoids, which display potential health promoting effects. Chemopreventive, antimicrobial, anti-adherence and antioxidant benefits, among others are described for these compounds. Conclusions: The potential of L. caerulea berries to prevent chronic diseases such as diabetes mellitus, cardiovascular diseases and cancer seems to be related above all to their phenolic content.  相似文献   

6.
Clinical, epidemiological and mechanistic studies support the role of cranberry (Vaccinium macrocarpon Ait.) in maintaining urinary tract health. Cranberry proanthocyanidins contain A-type linkages and have been associated with preventing adhesion of P-fimbriated uropathogenic Escherichia coli to uroepithelial cells. It is not known if the presence of the A-type linkage is a prerequisite for anti-adhesion activity. Other commercial sources of proanthocyanidins with all B-type linkages have not previously been screened for this activity. The goals of this study were to compare the in vitro anti-adhesion activity of A-linked proanthocyanidins from cranberry juice cocktail with the anti-adhesion activities of B-linked proanthocyanidins from commercial grape and apple juices, green tea and dark chocolate, and determine if anti-adhesion activity is detectable in human urine following consumption of single servings of each commercial food product. Structural heterogeneity and presence of the A-type linkage in cranberry proanthocyanidins was confirmed utilizing MALDI-TOF/MS and DI/ESI MS, as was the presence of all B-type linkages in the proanthocyanidins from the other commercial products. The isolated A-type proanthocyanidins from cranberry juice cocktail elicited in vitro anti-adhesion activity at 60 microg/ml, the B-type proanthocyanidins from grape exhibited minor activity at 1200 microg/ml, while other B-type proanthocyanidins were not active. Anti-adhesion activity in human urine was detected following cranberry juice cocktail consumption, but not after consumption of the non-cranberry food products. Results suggest that presence of the A-type linkage in cranberry proanthocyanidins may enhance both in vitro and urinary bacterial anti-adhesion activities and aid in maintaining urinary tract health.  相似文献   

7.
The production of anthocyanins in fruit tissues is highly controlled at the developmental level. We have studied the expression of flavonoid biosynthesis genes during the development of bilberry (Vaccinium myrtillus) fruit in relation to the accumulation of anthocyanins, proanthocyanidins, and flavonols in wild berries and in color mutants of bilberry. The cDNA fragments of five genes from the flavonoid pathway, phenylalanine ammonia-lyase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase, were isolated from bilberry using the polymerase chain reaction technique, sequenced, and labeled with a digoxigenin-dUTP label. These homologous probes were used for determining the expression of the flavonoid pathway genes in bilberries. The contents of anthocyanins, proanthocyanidins, and flavonols in ripening bilberries were analyzed with high-performance liquid chromatography-diode array detector and were identified using a mass spectrometry interface. Our results demonstrate a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of berries. At the early stages of berry development, procyanidins and quercetin were the major flavonoids, but the levels decreased dramatically during the progress of ripening. During the later stages of ripening, the content of anthocyanins increased strongly and they were the major flavonoids in the ripe berry. The expression of flavonoid pathway genes in the color mutants of bilberry was reduced. A connection between flavonol and anthocyanin synthesis in bilberry was detected in this study and also in previous data collected from flavonol and anthocyanin analyses from other fruits. In accordance with this, models for the connection between flavonol and anthocyanin syntheses in fruit tissues are presented.  相似文献   

8.
Dietary phenolic compounds, ubiquitous in vegetables and fruits and their juices possess antioxidant activity that may have beneficial effects on human health. The phenolic composition of six commercial apple juices, and of the peel (RP), flesh (RF) and whole fresh Red Delicious apples (RW), was determined by high performance liquid chromatography (HPLC), and total phenols were determined by the Folin-Ciocalteau method. HPLC analysis identified and quantified several classes of phenolic compounds: cinnamates, anthocyanins, flavan-3-ols and flavonols. Phloridzin and hydroxy methyl furfural were also identified. The profile of phenolic compounds varied among the juices. The range of concentrations as a percentage of total phenolic concentration was: hydroxy methyl furfural, 4-30%; phloridzin, 22-36%; cinnamates, 25-36%; anthocyanins, n.d.; flavan-3-ols, 8-27%; flavonols, 2-10%. The phenolic profile of the Red Delicious apple extracts differed from those of the juices. The range of concentrations of phenolic classes in fresh apple extracts was: hydroxy methyl furfural, n.d.; phloridzin, 11-17%; cinnamates, 3-27%; anthocyanins, n.d.-42%; flavan-3-ols, 31-54%; flavonols, 1-10%. The ability of compounds in apple juices and extracts from fresh apple to protect LDL was assessed using an in vitro copper catalyzed human LDL oxidation system. The extent of LDL oxidation was determined as hexanal production using static headspace gas chromatography. The apple juices and extracts, tested at 5 microM gallic acid equivalents (GAE), all inhibited LDL oxidation. The inhibition by the juices ranged from 9 to 34%, and inhibition by RF, RW and RP was 21, 34 and 38%, respectively. Regression analyses revealed no significant correlation between antioxidant activity and either total phenolic concentration or any specific class of phenolics. Although the specific components in the apple juices and extracts that contributed to antioxidant activity have yet to be identified, this study found that both fresh apple and commercial apple juices inhibited copper-catalyzed LDL oxidation. The in vitro antioxidant activity of apples support the inclusion of this fruit and its juice in a healthy human diet.  相似文献   

9.
The extracellular glucosyltransferases (GTFs) of Streptococcus mutans are not secreted into the periplasmic space of Escherichia coli when the corresponding gtf genes are isolated in the latter organism. The utilization of both deletion analysis and gtfB: phoA fusions indicate that the signal sequences of the GTFs are functional in E. coli. However, these results further suggest that amino acid sequences present in the carboxyl terminus of the GTFs inhibit secretion through the cytoplasmic membrane in E. coli.  相似文献   

10.
The exopolysaccharides (EPS) produced by Streptococcus mutans-derived glucosyltransferases (Gtfs) are essential virulence factors associated with the initiation of cariogenic biofilms. EPS forms the core of the biofilm matrix-scaffold, providing mechanical stability while facilitating the creation of localized acidic microenvironments. Cranberry flavonoids, such as A-type proanthocyanidins (PACs) and myricetin, have been shown to inhibit the activity of Gtfs and EPS-mediated bacterial adhesion without killing the organisms. Here, we investigated whether a combination of cranberry flavonoids disrupts EPS accumulation and S. mutans survival using a mixed-species biofilm model under cariogenic conditions. We also assessed the impact of cranberry flavonoids on mechanical stability and the in situ pH at the biofilm-apatite interface. Topical application of an optimized combination of PACs oligomers (100–300 μM) with myricetin (2 mM) twice daily was used to simulate treatment regimen experienced clinically. Treatments with cranberry flavonoids effectively reduced the insoluble EPS content (>80% reduction vs. vehicle-control; p<0.001), while hindering S. mutans outgrowth within mixed-species biofilms. As a result, the 3D architecture of cranberry-treated biofilms was severely compromised, showing a defective EPS-matrix and failure to develop microcolonies on the saliva-coated hydroxyapatite (sHA) surface. Furthermore, topical applications of cranberry flavonoids significantly weaken the mechanical stability of the biofilms; nearly 90% of the biofilm was removed from sHA surface after exposure to a shear stress of 0.449 N/m2 (vs. 36% removal in vehicle-treated biofilms). Importantly, in situ pH measurements in cranberry-treated biofilms showed significantly higher pH values (5.2 ± 0.1) at the biofilm-apatite interface vs. vehicle-treated biofilms (4.6 ± 0.1). Altogether, the data provide important insights on how cranberry flavonoids treatments modulate virulence properties by disrupting the biochemical and ecological changes associated with cariogenic biofilm development, which could lead to new alternative or adjunctive antibiofilm/anticaries chemotherapeutic formulations.  相似文献   

11.
12.
BackgroundFlavonoids are a group of phenolic secondary plant metabolites that are ubiquitous in plant-based diets. Data from anthropological, observational and intervention studies have shown that many flavonoids are bioactive. For this reason, there is an increasing interest in investigating the potential health effects of these compounds. The translation of these findings into the context of the health of the general public requires detailed information on habitual dietary intake. However, only limited data are currently available for European populations.ObjectiveThe objective of this study is to determine the habitual intake and main sources of anthocyanidins, flavanols, flavanones, flavones, flavonols, proanthocyanidins, theaflavins and thearubigins in the European Union.DesignWe use food consumption data from the European Food Safety Authority (EFSA) and the FLAVIOLA Food Composition Database to estimate intake of flavonoids.ResultsMean (±SEM) intake of total flavonoids in Europe was 428±49 mg/d, of which 136±14 mg/d were monomeric compounds. Gallated flavan-3-ols (53±12 mg/d) were the main contributor. The lowest flavonoid intake was observed in Mediterranean countries (monomeric compounds: 95±11 mg/d). The distribution of intake was skewed in many countries, especially in Germany (monomeric flavonoids; mean intake: 181 mg/d; median intake: 3 mg/d).ConclusionsThe habitual intake of flavonoids in Europe is below the amounts found to have a significant health effect.  相似文献   

13.
Caries is the most common oral infectious disease in the world. Its development is influenced also by diet components that interfere with pathogen mutans group Streptococci (MGS) activity. A very active research to identify functional foods and their components that are generally recognised as safe has been ongoing, with the aim of developing alternative approaches, to the use of synthetic chlorhexidine, and at the reduction or prevention of caries. Until now convincing evidence exists only for green tea as a functional food for oral health, partly owing to its high content of catechins, especially epigallocatechin-gallate. A number of other foods showed potential anticaries activity. Some other foods able to act against MGS growth and/or their virulence factors in in vitro tests are: apple, red grape seeds, red wine (proanthocyanidins), nutmeg (macelignan), ajowan caraway (nafthalen-derivative), coffee (trigonelline, nicotinic and chlorogenic acids, melanoidins), barley coffee (melanoidins), chicory and mushroom (quinic acid). In vivo anticaries activity has been shown by cranberry (procyanidins), glycyrrhiza root (glycyrrhizol-A), myrtus ethanolic extract, garlic aqueous extract, cocoa extracts (procyanidins), and propolis (apigenin, tt-farnesol).  相似文献   

14.
In the present communication molecular genetic approaches have been utilized to confirm the nature of the catalytic site of Streptococcus mutans glucosyltransferases (GTF)s. Site-directed mutagenesis was used to convert the putative sucrose binding Asp-451 of the GTF-I enzyme from S. mutans GS5 to Glu, Asn, and Thr. All three of the resulting mutated enzymes displayed no detectable sucrase or GTF activities. By contrast, mutation of nearby Asp residues did not markedly reduce enzymatic activity. The inactive enzymes also appear to bind acceptor dextrans as well as the parental enzyme. These results confirm the essential role of Asp-451 of the GTF-I from strain GS5 and analogous Asp residues in other related GTFs in enzymatic activity.  相似文献   

15.
Flavonoids, plant polyphenols, ubiquitous components of human diet, are excellent antioxidants. Hypochlorous acid (HOCl), produced by activated neutrophils, is highly reactive chlorinating and oxidizing species. It has been reported earlier that flavonoids are chlorinated by HOCl. Here we show that flavonoids from flavonol subclass are also oxidized by HOCl, but only if the latter is in a large molar excess (≥?10). The kinetics of this reaction was studied by stopped-flow spectrophotometry, at different pH. We found that flavonols were oxidized by HOCl with the rate constants of the order of 104–105 M?1 s?1 at pH 7.5. Antioxidant activity of HOCl-modified flavonoids was measured by 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) method. Slightly higher antioxidant activity, compared to parent compounds, was observed for flavonols after their reaction with equimolar or moderate excess of HOCl whereas flavonols treated with high molar excess of HOCl exhibited decrease in antioxidant activity. The mechanism of flavonoid reaction with HOCl at physiological pH is proposed, and biological consequences of this reaction are discussed.  相似文献   

16.
《Journal of Asia》2021,24(3):711-715
The natural flavonoids in foods of plant origin have been well-characterized due to their beneficial biological properties. However, the information regarding the flavonoid compounds in edible insects remains severely limited. In the present study, we used a metabolomics approach to identify the flavonoid compounds in the Chinese oak silkworm, Antheraea pernyi Guérin-Méneville (Lepidoptera: Saturniidae), an traditional edible insect. Our study identified over 200 flavonoid metabolites in the larval midgut of A. pernyi with LC-ESI-MS/MS system. These flavonoid metabolites come from eight subclasses, including flavones (1 0 3), flavonols (34), flavonoids (28), flavanones (20), polyphenols (19), isoflavones (9), anthocyanins (9), and proanthocyanidins (4). The relative content of the flavones is the most abundant, with a value of 36.74% of the total. The top five flavonoid components in A. pernyi are hyperoside, isoquercitroside, tricin 7-O-hexoside, hesperetin 5-O-glucoside and protocatechuic acid, accounting for 51.17% of the total flavonoids. Hyperoside is the most abundant flavonoid compound (18.07% of the total) in A. pernyi. Our findings indicated targeted metabolomics is a useful approach to identify flavonoids in edible insects which contain abundant flavonoids than we already knew.  相似文献   

17.
Propolis is a resinous hive product collected by honeybees from various plant sources. It is extensively used in food, beverage and in folk medicine for treating various ailments and reported to have broad spectrum of biological activities. The hepatoprotective activity of propolis and constituents from its MeOH extract belonging to various classes were tested on D-galactosamine (D-GalN)/tumor necrosis factor-alpha (TNF-alpha)-induced cell death in primary cultured mouse hepatocytes. The result indicated that hepatoprotective activity of alcoholic extract of tropical Brazilian propolis is mainly due to phenolic compounds including flavonoids. All the four isolated flavonoids possessed stronger inhibitory activity (IC50, < 25 microM) than silibinin (IC50, 39.6 microM) on TNF-alpha-induced cell death. The labdane-type diterpenes isolated from the MeOH extract also exhibited significant hepatoprotective activity in the same experimental model. Moreover, the labdane-type diterpenes and some of the prenylated phenolic compounds possessed antibacterial activity against Helicobacter pylori.  相似文献   

18.
Five phenolic compounds, 4-hydroxybenzoic acid methyl ester (1), vanillic acid methyl ester (2), 4-hydroxy benzaldehyde (3), 4-hydroxybenzoic acid (4) and ferulic acid (5), and four flavonoids, 5,5'-dihydroxy-4',6,7-trimethoxyflavanone (6), luteolin (7), vitexicarpin (8) and artemetin (9), were isolated from fruits and leaves of Vitex rotundifolia L. The biological activities of these nine compounds have been examined using a bioassay with lettuce seedlings.  相似文献   

19.
The aerial parts of Cuphea carthagenensis (Jacq.) J.F. Macbride (Lythraceae) are traditionally employed in Brazil to treat cardiovascular diseases. The aim of this study was to compare preparations of C. carthagenensis aerial parts (aqueous and ethanol extracts, together with derived fractions) with regard to their total phenolic contents and in vitro vasodilating activity. The main flavonoids found in the extracts were isolated and identified as quercetin derivatives. The extracts and fractions showed similar HPLC profiles with the presence of quercetin-5-O-β-glucopyranoside, quercetin-3-O-α-arabinofuranoside and quercetin-3-sulfate in all of them, but marked differences in the contents of flavonoids, proanthocyanidins, tannis and total phenolics. Excepting the aqueous extract, all assayed preparations elicited vasodilatation on pre-contracted rat aortic rings in the range of pIC(50) 4.53±0.03 to 4.98±0.06. Polynomial regression analysis demonstrated the relationship between vasodilating activity and the contents of flavonoids (r(2)=0.5190), proanthocyanidins (r(2)=0.8016), tannins (r(2)=0.8041) and total phenolics (r(2)=0.6226), suggesting the participation of these compounds in the pharmacological effect and their potential use as chemical markers for the species.  相似文献   

20.
Twenty-four aromatic metabolites belonging to cyanogenins, lignans, flavonoids, and phenolic glycosides were obtained from Sambucus nigra. Structures were determined on the basis of their spectroscopic features. Two compounds have been isolated and identified as (2S)-2-O-beta-D-glucopyranosyl-2-hydroxyphenylacetic acid and benzyl 2-O-beta-D-glucopyranosyl-2,6-dihydroxybenzoate. All the compounds have been assayed on dicotyledons Lactuca sativa (lettuce) and Raphanus sativus (radish) and monocotyledon Allium cepa (onion) to test their stimulatory or inhibitory effects on seed germination and radicle elongation. Cyanogenins have a mainly inhibiting effect while lignans stimulate the growth. Some compounds show different effects on dicotyledons and monocotyledons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号