首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the brain, glucose is transported by GLUT1 across the blood-brain barrier and into astrocytes, and by GLUT3 into neurons. In the present study, the expression of GLUT1 and GLUT3 mRNA and protein was determined in adult neural stem cells cultured from the subventricular zone of rats. Both mRNAs and proteins were coexpressed, GLUT1 protein being 5-fold higher than GLUT3. Stress induced by hypoxia and/or hyperglycemia increased the expression of GLUT1 and GLUT3 mRNA and of GLUT3 protein. It is concluded that adult neural stem cells can transport glucose by GLUT1 and GLUT3 and can regulate their glucose transporter densities.  相似文献   

3.
Glucocorticoids (GCs) are counterregulatory hormones with broad effects on the digestion and absorption of dietary carbohydrates, lipids and proteins, but the underlying molecular mechanisms of these effects remain unclear. The present experiment was conducted to investigate the main expression sites of nutrient transporters and the effects of GCs on the gene expression of these transporters in the rabbit small intestine. The results showed that peptide transporter 1 (PepT1), facultative amino acid transporter (rBAT), neutral amino acid transporter (B0AT), excitatory amino acid transporter 3 (EAAT3), sodium-glucose transporter 1 (SGLT1) and glucose transporter 5 (GLUT5) were mainly expressed in the distal segment, glucose transporter 2 (GLUT2) and fatty-acid-binding protein 4 (FATP4) were mainly expressed in the proximal segment and cationic amino acid transporter 1 (CAT1) was mainly expressed in the middle segment of the rabbit small intestine. In addition, we analysed the effects of 3 h (short-term) or 7 days (long-term) dexamethasone (DEX) treatment on the gene expression of most nutrient transporters. The results showed that short-term DEX treatment significantly decreased PepT1, B0AT, EAAT3, rBAT and SGLT1 expressions in all small intestinal segments, while it significantly decreased GLUT2 in the duodenum and FATP4 in the duodenum and ileum (P < 0.05). Long-term DEX treatment also significantly decreased PepT1, CAT1, B0AT, EAAT3, rBAT and SGLT1 in all small intestinal segments and significantly decreased GLUT2 in the jejunum and FATP4 in the ileum (P < 0.05). In conclusion, DEX could decrease the gene expression of most nutrient transporters (except GLUT5) and affect the transport of intestinal amino acids, monosaccharides and fatty acids.  相似文献   

4.
Yu S  Fan M  Zhao T  Ding AS  Wang FZ 《生理学报》2002,54(6):508-512
本文用培养新生大鼠海马神经元观察了氯化钴对葡萄糖转运活性的影响及其在神经元抗缺氧中的作用。结果表明,用CoCl2处理的培养海马神经元,24h后其2-脱氧-D-[1-^3H]葡萄糖摄取率和葡萄糖转运体GLUT1和GLUT3mRNA表达明显高于对照组,并且其在缺氧6或8h后的损伤也明显减轻,氯化钴对神经元缺氧损伤的保护作用被葡萄糖转运体抑制剂细胞松弛素B大部分消除,结果提示,氯化钴能够增强神经元GLUT1和GLUT3mRNA的表达和葡萄糖转运活性,CoCl2的这一作用可能是其增强神经元抗缺氧的重要机制。  相似文献   

5.
A common feature of many tumors is an increase in glucose catabolism during tumor growth. We studied the mechanism of this phenomenon by using Ehrlich ascites tumor bearing mice as the animal model. We found that Ehrlich ascites tumor cells possess only glucose transporter 1 (GLUT1) and GLUT3 but no GLUT2, GLUT4, or GLUT5. The mRNA levels of GLUT1 and GLUT3 increased progressively in the tumour during development; however, there were no changes observable in mRNA levels of glucose transporters of all types in brain, liver, and heart of the host mice. These findings suggest that Ehrlich ascites tumor augments its glucose transport mechanism relative to other tissues in response to its unique growth needs. J. Cell. Biochem. 67:131–135, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
The intracarotid injection method has been utilized to examine blood-brain barrier (BBB) glucose transport in hyperglycemic (4–6 days) mice. In anesthetized mice, Brain Uptake Indices were measured over a range of glucose concentrations from 0.010–50 mmol/l; glucose uptake was found to be saturable and kinetically characterized. The maximal velocity (Vmax) for glucose transport was 989±214 nmol·min–1·g–1· and the half-saturation constant estimated to be 5.80±1.38 mmol/l. The unsaturated Permeability Surface are product (PS) is=171+8 l·min.–1·g–1. A rabbit polyclonal antiserum to a synthetic peptide encoding the 13 C-terminal amino acids of the human erythrocyte glucose transporter immunocytochemically confirmed the presence of the GLUT1 isoform in non-obese diabetic (NOD) mouse brain capillary endothelia. These studies indicate that a down-regulation of BBB glucose transport occurs in these spontaneously hyperglycemic mice; both BBB glucose permeability (as indicated by PS product) and transporter maximal velocity are reduced (in comparison to normoglycemic CD-1 mice), but the half-saturation constant remains unchanged.  相似文献   

7.
The facilitative glucose transporter GLUT4 plays a key role in regulating whole body glucose homeostasis. GLUT4 dramatically changes its distribution upon insulin stimulation, and insulin-resistant diabetes is often linked with compromised translocation of GLUT4 under insulin stimulation. To elucidate the functional significance of the sole N-glycan chain on GLUT4, wild-type GLUT4 and a GLUT4 glycosylation mutant conjugated with enhanced GFP were stably expressed in HeLa cells. The N-glycan contributed to the overall stability of newly synthesized GLUT4. Moreover, cell surface expression of wild-type GLUT4 in HeLa cells was elevated upon insulin treatment, whereas the glycosylation mutant lost the ability to respond to insulin. Subcellular distribution of the mutant was distinct from that of wild-type GLUT4, implying that the subcellular localization required for insulin-mediated translocation was impaired in the mutant protein. Interestingly, kifunensine-treated cells also lost sensitivity to insulin, suggesting the functional importance of the N-glycan structure for GLUT4 trafficking. The K(m) or turnover rates of wild-type and mutant GLUT4, however, were similar, suggesting that the N-glycan had little effect on transporter activity. These findings underscore the critical roles of the N-glycan chain in quality control as well as intracellular trafficking of GLUT4.  相似文献   

8.
9.
The expression of the glucose transporter type-1 (GLUT1) gene is up-regulated in hypoxia and glucose deprivation. A 10 nucleotide (nt) cis-acting regulatory element (CAE), which is located within nt 2181-2190 of the GLUT1 3'-untranslated region (CAE2181-2190), increases the expression of a GLUT1-luciferase reporter gene and decreases its mRNA decay. The present study investigated the role of the GLUT1 CAE2181-2190 in glucose deprivation and hypoxia using stable transfectants. Glucose and O2 deprivation produced a marked increase in the expression of the GLUT1 reporter gene carrying the CAE2181-2190, and this effect was additive. Glucose deprivation and/or hypoxia induced no significant changes in the expression of the reporter gene wherein the GLUT1 CAE2181-2190 was site-directed deleted. Data presented here suggest that the GLUT1 CAE2181-2190 participates in the increase of GLUT1 gene expression in glucose deprivation and hypoxia.  相似文献   

10.
Growth factors, mitogens, oncogenes and the regulation of glucose transport   总被引:8,自引:0,他引:8  
The erythrocyte (or HepG2/brain) type glucose transporter (GLUT 1) was the first of the family of facilitative glucose transporter proteins to be cloned [M. Mueckler et al., Science 229, 941–945, 1985]. GLUT 1 is expressed in most tissue types, all cells lines, transformed cells and tumour cells. It is thought to be responsible for ‘housekeeping’ levels of glucose transport, i.e. the uptake of glucose required for oxidative phosphorylation. The rate of glucose transport via GLUT 1 can be regulated under conditions in which the metabolic rate must be adjusted such as cell division (mitosis and meiosis), differentiation, transformation and nutrient starvation. Here we review the recent literature on the control of glucose transport of mitogens, growth factors and oncogenes, and discuss some of the implications for the integration of cellular signalling pathways and cell growth.  相似文献   

11.
As a common malignancy in females with a higher incidence rate, epithelial ovarian cancer (EOC) is a heterogeneous disease with complexity and diversity in histology and therapeutic response. Although great progress has been made in diagnosis and therapeutic strategies, novel therapeutic strategies are required to improve survival. Although the promoting effect of mucin 16 (MUC16) on tumour progression has been reported, the potential mechanisms remain unclear. In our study, we reported that overexpression of MUC16 was significantly related to cell proliferation and disease progression in EOC. Results from clinical specimen analysis and cell experiment support this conclusion. Patients with a high MUC16 expression usually had a worse prognosis that those with a low expression. Cell proliferation ability was significantly decreased in EOC cell lines when the knockdown of MUC16. Further study shows that the function of MUC16 in cell proliferation is based on the regulation of glucose transporter 1 (GLUT1) expression. MUC16 can control glucose uptake by regulating GLUT1 in EOC cells, thereby promoting glycogen synthesis, so that tumour cells produce more energy for proliferation. This conclusion is based on two findings. First, the significant correlation between MUC16 and GLUT1 was verified by clinical specimen and TCGA data analysis. Then, alteration of MUC16 expression levels can affect the expression of GLUT1 and glucose uptake was also verified. Finally, this conclusion is further verified in vivo by tumour-bearing mice model. To summarize, our results suggest that MUC16 promotes EOC proliferation and disease progression by regulating GLUT1 expression.  相似文献   

12.
Abstract: Several reports have suggested a characteristic decrease in glucose use in the striatum of patients with Huntington's disease (HD) may contribute to the cellular atrophy of the caudate and putamen. We examined the expression of the two major glucose transporter isoforms of brain, GLUT1 and GLUT3. GLUT1 is found largely in capillary endothelial cells and to a lesser extent in the brain parenchyma, whereas GLUT3 is localized primarily in neurons. Membranes prepared from postmortem samples of HD caudate and cortex and non-HD caudate and cortex were separated on 10% sodium dodecyl sulfate-polyacrylamide gels and probed with antisera to GLUT1 and GLUT3 by western blotting. Compared with controls, GLUT1 and GLUT3 transporter expression in caudate was decreased by three- and fourfold, respectively, in grade 3 of the disease. At earlier stages (grade 1), there was no significant difference in the expression of the two transporter isoforms compared with nondiseased controls. It is surprising that despite a substantial increase in glial fibrillary acidic protein immunoreactivity (an indicator of the extent of gliosis), glucose transporter expression was diminished significantly in HD caudate. The results suggest in the absence of a significant number of neurons, as in grade 3, glial cell GLUT1 and GLUT3 expression is down-regulated, perhaps reflecting the decreased metabolic demand of this brain region in HD.  相似文献   

13.
葡萄糖转运蛋白4(GLUT4)与胰岛素抵抗有着紧密联系,抑制自噬能减缓胰岛素抵抗.为了探讨自噬对胰岛素抵抗方面的作用,现以GLUT4囊泡为动力学模型,通过全内反射荧光显微镜实时观测3T3-L1成熟脂肪细胞中GLUT4囊泡的运动,并采用高斯拟合及相应的搜索算法,从TIRFM时间序列中提取运动轨迹、速度等信息进行统计分析.结果显示:自噬对GLUT4的运动具有一定的影响.抑制自噬后,GLUT4囊泡运动的胰岛素响应程度增强,长距离运动囊泡增多,平均运动速度加快.  相似文献   

14.
It has long been believed that an intake of cinnamon (Cinnamomum zeylanicum) alleviates diabetic pathological conditions. However, it is still controversial whether the beneficial effect is insulin-dependent or insulin-mimetic. This study was aimed at determining the insulin-independent effect of cinnamon. Streptozotocin-induced diabetic rats were divided into four groups and orally administered with an aqueous cinnamon extract (CE) for 22 d. The diabetic rats that had taken CE at a dose of more than 30 mg/kg/d were rescued from their hyperglycemia and nephropathy, and these rats were found to have upregulation of uncoupling protein-1 (UCP-1) and glucose transporter 4 (GLUT4) in their brown adipose tissues as well as in their muscles. This was verified by using 3T3-L1 adipocytes in which CE upregulates GLUT4 translocation and increases the glucose uptake. CE exhibited its anti-diabetic effect independently from insulin by at least two mechanisms: i) upregulation of mitochondrial UCP-1, and ii) enhanced translocation of GLUT4 in the muscle and adipose tissues.  相似文献   

15.
The facilitative glucose transporter 1 (GLUT1) mediates the passive diffusion of d-glucose across the cell membrane, providing the energy resource in glycolysis in the erythrocytes. Anion exchanger 1 (band 3) is another important membrane protein that mediates rapid exchange of CO(2) through Cl(-)/HCO(3)(-) exchange across the erythrocyte membrane. For verifying the presumption over a decade that GLUT1 and band 3 in the erythrocyte would be interacting with each other, we cloned and expressed both the cytoplasmic domains of GLUT1 and band 3 in Escherichia coli, and tested their binding ability. By coimmunoprecipitation we found that among the tested N-terminal, C-terminal, and loop fraction of GLUT1, only the C-terminal of GLUT1 can interact with cytoplasmic domain of band 3. The interaction was further verified by coimmunoprecipitation and pull-down assay using both proteins as bait and target. These results showed that GLUT1 and band 3 form a protein complex that can regulate the activities of the proteins within it.  相似文献   

16.
Wnt1-inducible signaling protein 1 (WISP1) is a matricellular protein and downstream target of Wnt/β-catenin signaling. This study sought to determine the role of WISP1 in glucose metabolism and chemoresistance in laryngeal squamous cell carcinoma. WISP1 expression was silenced or upregulated in Hep-2 cells by the transfection of WISP1 siRNA or AdWISP1 vector. Ectopic WISP1 expression regulated glucose uptake and lactate production in Hep-2 cells. Subsequently, the expression of glucose transporter 1 (GLUT1) was significantly modulated by WISP1. Furthermore, WISP1 increased cell survival rates, diminished cell death rates, and suppressed ataxia-telangiectasia-mutated (ATM)-mediated DNA damage response pathway in cancer cells treated with cisplatin through GLUT1. WISP1 also promoted cancer cell tumorigenicity and growth in mice implanted with Hep-2 cells. Additionally, WISP1 activated the YAP1/TEAD1 pathway that consequently contributed to the regulation of GLUT1 expression. In summary, WISP1 regulated glucose metabolism and cisplatin resistance in laryngeal cancer by regulating GLUT1 expression. WISP1 may be used as a potential therapeutic target for laryngeal cancer.  相似文献   

17.
GLUT1 glucose transporter cDNA was modified to introduce a single amino acid substitution of leucine for tryptophan 412, a putative cytochalasin B photo-affinity labeling site. Although the mutated transporter was expressed into plasma membranes of Chinese hamster ovary cells, glucose transport activity of the mutated transporter was observed to be only 15-30% of that of the wild-type GLUT1 when glucose transport activity was assessed by 2-deoxyglucose uptake at 0.1-10 mM concentrations. Analysis of glucose uptake kinetics depict that a mutation induced a 3-fold decrease in turnover number and a 2.5-fold increase in Km compared with the wild-type GLUT1. Importantly, cytochalasin B labeling was not abolished but decreased by 40%, and cytochalasin B binding was also decreased. In addition, the results obtained with side-specific glucose analogs suggested that the outer glucose binding site of the mutant appeared intact but the inner binding site was modulated. These results indicate 1) tryptophan 412 is not a cytochalasin B labeling site(s), although this residue is located in or close to the inner glucose binding site of the GLUT1 glucose transporter, 2) substitution of leucine for tryptophan 412 decreases the intrinsic activity of GLUT1 glucose transporter, which is definable as the turnover number/Km, to approximately 15% of that of the wild-type.  相似文献   

18.
While α1-adrenergic receptors (ARs) have been previously shown to limit ischemic cardiac damage, the mechanisms remain unclear. Most previous studies utilized low oxygen conditions in addition to ischemic buffers with glucose deficiencies, but we discovered profound differences if the two conditions are separated. We assessed both mouse neonatal and adult myocytes and HL-1 cells in a series of assays assessing ischemic damage under hypoxic or low glucose conditions. We found that α1-AR stimulation protected against increased lactate dehydrogenase release or Annexin V+ apoptosis under conditions that were due to low glucose concentration not to hypoxia. The α1-AR antagonist prazosin or nonselective protein kinase C (PKC) inhibitors blocked the protective effect. α1-AR stimulation increased 3H-deoxyglucose uptake that was blocked with either an inhibitor to glucose transporter 1 or 4 (GLUT1 or GLUT4) or small interfering RNA (siRNA) against PKCδ. GLUT1/4 inhibition also blocked α1-AR-mediated protection from apoptosis. The PKC inhibitor rottlerin or siRNA against PKCδ blocked α1-AR stimulated GLUT1 or GLUT4 plasma membrane translocation. α1-AR stimulation increased plasma membrane concentration of either GLUT1 or GLUT4 in a time-dependent fashion. Transgenic mice overexpressing the α1A-AR but not α1B-AR mice displayed increased glucose uptake and increased GLUT1 and GLUT4 plasma membrane translocation in the adult heart while α1A-AR but not α1B-AR knockout mice displayed lowered glucose uptake and GLUT translocation. Our results suggest that α1-AR activation is anti-apoptotic and protective during cardiac ischemia due to glucose deprivation and not hypoxia by enhancing glucose uptake into the heart via PKCδ-mediated GLUT translocation that may be specific to the α1A-AR subtype.  相似文献   

19.
Q Liu  J C Vera  H Peng  D W Golde 《Biochemistry》2001,40(26):7874-7881
The glucose transporter GLUT1 has three short amino acid sequences (domains I-III) with homology to typical ATP-binding domains. GLUT1 is a facilitative transporter, however, and transports its substrates down a concentration gradient without a specific requirement for energy or hydrolysis of ATP. Therefore, we assessed the functional role of the predicted ATP-binding domains in GLUT1 by site-directed mutagenesis and expression in Xenopus oocytes. For each mutant, we determined the level of protein expression and the kinetics of transport under zero-trans influx, zero-trans efflux, and equilibrium exchange conditions. Although all five mutants were expressed at levels similar to that of the wild-type GLUT1, each single amino acid change in domains I or III profoundly affected GLUT1 function. The mutants Gly116-->Ala in domain I and Gly332-->Ala in domain III exhibited only 10-20% of the transport activity of the wild-type GLUT1. The mutants Gly111-->Ala in domain I and Leu336-->Ala in domain III showed altered kinetic properties; neither the apparent Km nor the Vmax for 3-methylglucose transport were increased under equilibrium exchange conditions, and they did not show the expected level of countertransport acceleration. The mutant Lys117-->Arg in domain I showed a marked increase in the apparent Km for 3-methylglucose transport under zero-trans efflux and equilibrium exchange conditions while maintaining countertransport acceleration. These results indicate that the predicted ATP-binding domains I and III in GLUT1 are important components of the region in GLUT1 involved in transport of the substrate and that their integrity is critical for maintaining the activity and kinetic properties of the transporter.  相似文献   

20.
In mouse blastocysts six facilitative glucose transporter isoforms (GLUT)1-4, 8 and 9 are expressed. We have used the mouse embryonic stem (ES) cell line D3 and spontaneously differentiating embryoid bodies (EB) to investigate GLUT expression and the influence of glucose during differentiation of early embryonic cells. Both ES cells and EBs (2d-20d) expressed GLUT1, 3, and 8, whereas the isoforms 2 and 4 were detectable exclusively in EBs. Differentiation-associated expression of GLUT was analyzed by double staining with stage-specific embryonic antigen (SSEA-1), cytokeratins (CK18, 19), nestin, and desmin. Similar to trophoblast cells in mouse blastocysts the outer cell layer of endoderm-like cells showed a high GLUT3 expression in early EBs. In 20-day-old EBs no GLUT3 protein and only minor GLUT3 mRNA amounts could be detected. A minimal glucose concentration of 5 mM applied during 2 and 8 days of EB culture resulted in up-regulated GLUT4, Oct-4 and SSEA-1 levels and a delay in EB differentiation. We conclude that GLUT expression depends on cellular differentiation and that the expression is modulated by glucose concentration. The developmental and glucose-dependent regulation of GLUT strongly suggests a functional role of glucose and glucose transporters in ES cell differentiation and embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号