首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IP(3)-dependent Ca(2+) signaling controls a myriad of cellular processes in higher eukaryotes and similar signaling pathways are evolutionarily conserved in Plasmodium, the intracellular parasite that causes malaria. We have reported that isolated, permeabilized Plasmodium chabaudi, releases Ca(2+) upon addition of exogenous IP(3). In the present study, we investigated whether the IP(3) signaling pathway operates in intact Plasmodium falciparum, the major disease-causing human malaria parasite. P. falciparum-infected red blood cells (RBCs) in the trophozoite stage were simultaneously loaded with the Ca(2+) indicator Fluo-4/AM and caged-IP(3). Photolytic release of IP(3) elicited a transient Ca(2+) increase in the cytosol of the intact parasite within the RBC. The intracellular Ca(2+) pools of the parasite were selectively discharged, using thapsigargin to deplete endoplasmic reticulum (ER) Ca(2+) and the antimalarial chloroquine to deplete Ca(2+) from acidocalcisomes. These data show that the ER is the major IP(3)-sensitive Ca(2+) store. Previous work has shown that the human host hormone melatonin regulates P. falciparum cell cycle via a Ca(2+)-dependent pathway. In the present study, we demonstrate that melatonin increases inositol-polyphosphate production in intact intraerythrocytic parasite. Moreover, the Ca(2+) responses to melatonin and uncaging of IP(3) were mutually exclusive in infected RBCs. Taken together these data provide evidence that melatonin activates PLC to generate IP(3) and open ER-localized IP(3)-sensitive Ca(2+) channels in P. falciparum. This receptor signaling pathway is likely to be involved in the regulation and synchronization of parasite cell cycle progression.  相似文献   

2.
3.
Malaria remains one of the world's most important infectious diseases and is responsible for enormous mortality and morbidity. Resistance to antimalarial drugs is a challenging problem in malaria control. Clinical malaria is associated with the proliferation and development of Plasmodium parasites in human erythrocytes. Especially, the development into the mature forms (trophozoite and schizont) of Plasmodium falciparum (P. falciparum) causes severe malaria symptoms due to a distinctive property, sequestration which is not shared by any other human malaria. Ca(2+) is well known to be a highly versatile intracellular messenger that regulates many different cellular processes. Cytosolic Ca(2+) increases evoked by extracellular stimuli are often observed in the form of oscillating Ca(2+) spikes (Ca(2+) oscillation) in eukaryotic cells. However, in lower eukaryotic and plant cells the physiological roles and the molecular mechanisms of Ca(2+) oscillation are poorly understood. Here, we showed the observation of the inositol 1,4,5-trisphospate (IP(3))-dependent spontaneous Ca(2+) oscillation in P. falciparum without any exogenous extracellular stimulation by using live cell fluorescence Ca(2+) imaging. Intraerythrocytic P. falciparum exhibited stage-specific Ca(2+) oscillations in ring form and trophozoite stages which were blocked by IP(3) receptor inhibitor, 2-aminoethyl diphenylborinate (2-APB). Analyses of parasitaemia and parasite size and electron micrograph of 2-APB-treated P. falciparum revealed that 2-APB severely obstructed the intraerythrocytic maturation, resulting in cell death of the parasites. Furthermore, we confirmed the similar lethal effect of 2-APB on the chloroquine-resistant strain of P. falciparum. To our best knowledge, we for the first time showed the existence of the spontaneous Ca(2+) oscillation in Plasmodium species and clearly demonstrated that IP(3)-dependent spontaneous Ca(2+) oscillation in P. falciparum is critical for the development of the blood stage of the parasites. Our results provide a novel concept that IP(3)/Ca(2+) signaling pathway in the intraerythrocytic malaria parasites is a promising target for antimalarial drug development.  相似文献   

4.
The current study provides biochemical and functional evidence that the targeting of protein kinase A (PKA) to sites of localized Ca(2+) release confers rapid, specific phosphoregulation of Ca(2+) signaling in pancreatic acinar cells. Regulatory control of Ca(2+) release by PKA-dependent phosphorylation of inositol 1,4, 5-trisphosphate (InsP(3)) receptors was investigated by monitoring Ca(2+) dynamics in pancreatic acinar cells evoked by the flash photolysis of caged InsP(3) prior to and following PKA activation. Ca(2+) dynamics were imaged with high temporal resolution by digital imaging and electrophysiological methods. The whole cell patch clamp technique was used to introduce caged compounds and to record the activity of a Ca(2+)-activated Cl(-) current. Photolysis of low concentrations of caged InsP(3) evoked Cl(-) currents that were inhibited by treatment with dibutryl-cAMP or forskolin. In contrast, PKA activators had no significant inhibitory effect on the activation of Cl(-) current evoked by uncaging Ca(2+) or by the photolytic release of higher concentrations of InsP(3). Treatment with Rp-adenosine-3',5'-cyclic monophoshorothioate, a selective inhibitor of PKA, or with Ht31, a peptide known to disrupt the targeting of PKA, largely abolished forskolin-induced inhibition of Ca(2+) release. Further evidence for the targeting of PKA to the sites of Ca(2+) mobilization was revealed using immunocytochemical methods demonstrating that the R(IIbeta) subunit of PKA was localized to the apical regions of acinar cells and co-immunoprecipitated with the type III but not the type I or type II InsP(3) receptors. Finally, we demonstrate that the pattern of signaling evoked by acetylcholine can be converted to one that is more "CCK-like" by raising cAMP levels. Our data provide a simple mechanism by which distinct oscillatory Ca(2+) patterns can be shaped.  相似文献   

5.
One of the most important intracellular Ca2+ regulatory mechanisms in nonexcitable cells, "capacitative Ca2+ entry" (CCE), has not been adequately studied in astrocytes. We therefore investigated whether CCE exists in cultured rat cerebellar astrocytes and studied the roles of cyclic AMP (cAMP) and protein kinase C (PKC) in CCE. We found that (1) at least two different intracellular Ca2+ stores, the endoplasmic reticulum and mitochondria, are present in cerebellar astrocytes; (2) CCE does exist in these cells and can be inhibited by Ni2+, miconazole, and SKF 96365; (3) CCE can be directly enhanced by an increase in intracellular cAMP, as 8-bromoadenosine 3',5'-cyclic monophosphate (8-brcAMP), forskolin, and isobutylmethylxanthine have stimulatory effects on CCE; and (4) neither of the two potent protein kinase A (PKA) inhibitors, H8 and H89, nor a specific PKA agonist, Sp-adenosine 3',5'-cyclic monophosphothioate, had a significant effect on cAMP-enhanced Ca2+ entry. The [Ca2+]i increase was not due to a release from calcium stores, hyperpolarization of the membrane potential, inhibition of calcium extrusion, or a change in pHi, suggesting that cAMP itself probably acts as a novel messenger to modulate CCE. We also conclude that activation of PKC results in an increase in CCE. cAMP and PKC seem to modulate CCE by different pathways.  相似文献   

6.
cAMP controls many cellular processes mainly through the activation of protein kinase A (PKA). However, more recently PKA-independent pathways have been established through the exchange protein directly activated by cAMP (Epac), a guanine nucleotide exchange factor for the small GTPases Rap1 and Rap2. In this report, we show that cAMP can induce integrin-mediated cell adhesion through Epac and Rap1. Indeed, when Ovcar3 cells were treated with cAMP, cells adhered more rapidly to fibronectin. This cAMP effect was insensitive to the PKA inhibitor H-89. A similar increase was observed when the cells were transfected with Epac. Both the cAMP effect and the Epac effect on cell adhesion were abolished by the expression of Rap1-GTPase-activating protein, indicating the involvement of Rap1 in the signaling pathway. Importantly, a recently characterized cAMP analogue, 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate, which specifically activates Epac but not PKA, induced Rap-dependent cell adhesion. Finally, we demonstrate that external stimuli of cAMP signaling, i.e., isoproterenol, which activates the G alpha s-coupled beta 2-adrenergic receptor can induce integrin-mediated cell adhesion through the Epac-Rap1 pathway. From these results we conclude that cAMP mediates receptor-induced integrin-mediated cell adhesion to fibronectin through the Epac-Rap1 signaling pathway.  相似文献   

7.
We study in HMC-1 the activation process, measured as histamine release. We know that ammonium chloride (NH(4)Cl) and ionomycin release histamine, and the modulatory role of drugs targeting protein kinase C (PKC), adenosine 3',5'-cyclic monophosphate (cAMP), tyrosine kinase (TyrK) and phosphatidylinositol 3-kinase (PI3K) on this effect. We used G?6976 (100 nM) and low concentration of GF 109203X (GF) (50 nM) to inhibit Ca(2+)-dependent PKC isozymes. For Ca(2+)-independent isozymes, we used 500 nM GF and 10 microM rottlerin (specifically inhibits PKCdelta). Phorbol 12-myristate 13-acetate (PMA) (100 ng/ml) was used to stimulate PKC, and genistein (10 microM) and lavendustin A (1 microM) as unspecific TyrK inhibitors. STI571 10 microM was used to specifically inhibit the activity of Kit, the receptor for stem cell factor, and 10 nM wortmannin as a PI3K inhibitor. Activation of PKC with PMA enhances histamine release in response to NH(4)Cl and ionomycin. PMA increases NH(4)Cl-induced alkalinization and ionomycin-induced Ca(2+) entry. Inhibition of PKCdelta strongly inhibits Ca(2+) entry elicited by ionomycin, but failed to modify histamine release. The effect of cAMP-active drugs was explored with the adenylate cyclase activator forskolin (30 microM), the inhibitor SQ22,536 (1 microM), the cAMP analog dibutyryl cAMP (200 microM), and the PKA blocker H89 (1 microM). Forskolin and dibutyryl cAMP do increase NH(4)Cl-induced alkalinization, and potentiate histamine release elicited by this compound. Our data indicates that alkaline-induced exocytosis is modulated by PKC and cAMP, suggesting that pH could be a modulatory signal itself.  相似文献   

8.
Malaria is still a major health problem in developing countries. It is caused by the protist parasite Plasmodium, in which proteases are activated during the cell cycle. Ca(2+) is a ubiquitous signalling ion that appears to regulate protease activity through changes in its intracellular concentration. Proteases are crucial to Plasmodium development, but the role of Ca(2+) in their activity is not fully understood. Here we investigated the role of Ca(2+) in protease modulation among rodent Plasmodium spp. Using fluorescence resonance energy transfer (FRET) peptides, we verified protease activity elicited by Ca(2+) from the endoplasmatic reticulum (ER) after stimulation with thapsigargin (a sarco/endoplasmatic reticulum Ca(2+)-ATPase (SERCA) inhibitor) and from acidic compartments by stimulation with nigericin (a K(+)/H(+) exchanger) or monensin (a Na(+)/H(+) exchanger). Intracellular (BAPTA/AM) and extracellular (EGTA) Ca(2+) chelators were used to investigate the role played by Ca(2+) in protease activation. In Plasmodium berghei both EGTA and BAPTA blocked protease activation, whilst in Plasmodium yoelii these compounds caused protease activation. The effects of protease inhibitors on thapsigargin-induced proteolysis also differed between the species. Pepstatin A and phenylmethylsulphonyl fluoride (PMSF) increased thapsigargin-induced proteolysis in P. berghei but decreased it in P. yoelii. Conversely, E64 reduced proteolysis in P. berghei but stimulated it in P. yoelii. The data point out key differences in proteolytic responses to Ca(2+) between species of Plasmodium.  相似文献   

9.
To examine signaling mechanisms relevant to cAMP/protein kinase A (PKA)-dependent endothelial cell barrier regulation, we investigated the impact of the cAMP/PKA inhibitors Rp diastereomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS) and PKA inhibitor (PKI) on bovine pulmonary artery and bovine lung microvascular endothelial cell cytoskeleton reorganization. Rp-cAMPS as well as PKI significantly increased the formation of actin stress fibers and intercellular gaps but did not alter myosin light chain (MLC) phosphorylation, suggesting that the Rp-cAMPS-induced contractile phenotype evolves in an MLC-independent fashion. We next examined the role of extracellular signal-regulated kinases (ERKs) in Rp-cAMPS- and PKI-induced actin rearrangement. The activities of both ERK1/2 and its upstream activator Raf-1 were transiently enhanced by Rp-cAMPS and linked to the phosphorylation of the well-known ERK cytoskeletal target caldesmon. Inhibition of the Raf-1 target ERK kinase (MEK) either attenuated or abolished Rp-cAMPS- and PKI-induced ERK activation, caldesmon phosphorylation, and stress fiber formation. In summary, our data elucidate the involvement of the p42/44 ERK pathway in cytoskeletal rearrangement evoked by reductions in PKA activity and suggest the involvement of significant cross talk between cAMP- and ERK-dependent signaling pathways in endothelial cell cytoskeletal organization and barrier regulation.  相似文献   

10.
Sex is an obligate step in the life cycle of the malaria parasite and occurs in the midgut of the mosquito vector. With both Plasmodium falciparum and Plasmodium berghei, the tryptophan metabolite xanthurenic acid induces the release of motile male gametes from red blood cells (exflagellation), a prerequisite for fertilization. The addition of cGMP or phosphodiesterase inhibitors to cultures of mature gametocytes has also been shown to stimulate exflagellation. Here, we demonstrate that there is a guanylyl cyclase activity associated with mature P. falciparum gametocyte membrane preparations, which is dependent on the presence of Mg(2+)/Mn(2+) but is inhibited by Ca(2+). Significantly, this activity is increased on addition of xanthurenic acid. In contrast, a xanthurenic acid precursor (3-hydroxykynurenine), which is not an inducer of exflagellation, does not induce this guanylyl cyclase activity. These results therefore suggest that xanthurenic acid-induced exflagellation may be mediated by activation of the parasite cGMP signalling pathway.  相似文献   

11.
12.
One of the prototype mammalian kinases is PKA and various roles have been defined for PKA in malaria pathogenesis. The recently described phospho-proteomes of Plasmodium falciparum introduced a great volume of phospho-peptide data for both basic research and identification of new anti-malaria therapeutic targets. We discuss the importance of phosphorylations detected in vivo at different sites in the parasite R and C subunits of PKA and highlight the inhibitor sites in the parasite R subunit. The N-terminus of the parasite R subunit is predicted to be very flexible and we propose that phosphorylation at multiple sites in this region likely represent docking sites for interactions with other proteins, such as 14-3-3. The most significant observation when the P. falciparum C subunit is compared to mammalian C isoforms is lack of phosphorylation at a key site tail implying that parasite kinase activity is not regulated so tightly as mammalian PKA. Phosphorylation at sites in the activation loop could be mediating a number of processes from regulating parasite kinase activity, to mediating docking of other proteins. The important differences between Plasmodium and mammalian PKA isoforms that indicate the parasite kinase is a valid anti-malaria therapeutic target.  相似文献   

13.
Cytosolic Ca(2+) (Ca(i)(2+)) flux within the pancreatic acinar cell is important both physiologically and pathologically. We examined the role of cAMP in shaping the apical-to-basal Ca(2+) wave generated by the Ca(2+)-activating agonist carbachol. We hypothesized that cAMP modulates intra-acinar Ca(2+) channel opening by affecting either cAMP-dependent protein kinase (PKA) or exchange protein directly activated by cAMP (Epac). Isolated pancreatic acinar cells from rats were stimulated with carbachol (1 muM) with or without vasoactive intestinal polypeptide (VIP) or 8-bromo-cAMP (8-Br-cAMP), and then Ca(i)(2+) was monitored by confocal laser-scanning microscopy. The apical-to-basal carbachol (1 muM)-stimulated Ca(2+) wave was 8.63 +/- 0.68 microm/s; it increased to 19.66 +/- 2.22 microm/s (*P < 0.0005) with VIP (100 nM), and similar increases were observed with 8-Br-cAMP (100 microM). The Ca(2+) rise time after carbachol stimulation was reduced in both regions but to a greater degree in the basal. Lag time and maximal Ca(2+) elevation were not significantly affected by cAMP. The effect of cAMP on Ca(2+) waves also did not appear to depend on extracellular Ca(2+). However, the ryanodine receptor (RyR) inhibitor dantrolene (100 microM) reduced the cAMP-enhancement of wave speed. It was also reduced by the PKA inhibitor PKI (1 microM). 8-(4-chloro-phenylthio)-2'-O-Me-cAMP, a specific agonist of Epac, caused a similar increase as 8-Br-cAMP or VIP. These data suggest that cAMP accelerates the speed of the Ca(2+) wave in pancreatic acinar cells. A likely target of this modulation is the RyR, and these effects are mediated independently by PKA and Epac pathways.  相似文献   

14.
15.
16.
Plants, symbiosis and parasites: a calcium signalling connection   总被引:2,自引:0,他引:2  
A unique family of protein kinases has evolved with regulatory domains containing sequences that are related to Ca(2+)-binding EF-hands. In this family, the archetypal Ca(2+)-dependent protein kinases (CDPKs) have been found in plants and some protists, including the malarial parasite, Plasmodium falciparum. Recent genetic evidence has revealed isoform-specific functions for a CDPK that is essential for Plasmodium berghei gametogenesis, and for a related chimeric Ca(2+) and calmodulin-dependent protein kinase (CCaMK) that is essential to the formation of symbiotic nitrogen-fixing nodules in plants. In Arabidopsis thaliana, the analysis of 42 isoforms of CDPK and related kinases is expected to delineate Ca(2+) signalling pathways in all aspects of plant biology.  相似文献   

17.
18.
Aldosterone production in zona glomerulosa (ZG) cells of adrenal glands is regulated by various extracellular stimuli (K(+), ANG II, ACTH) that all converge on two major intracellular signaling pathways: an increase in cAMP production and calcium (Ca(2+)) mobilization. However, molecular events downstream of the increase in intracellular cAMP and Ca(2+) content are controversial and far from being completely resolved. Here, we found that Ca(2+)/calmodulin-dependent protein kinases (CaMKs) play a predominant role in the regulation of aldosterone production stimulated by ANG II, ACTH, and cAMP. The specific CaMK inhibitor KN93 strongly reduced ANG II-, ACTH-, and cAMP-stimulated aldosterone production. In in vitro kinase assays and intact cells, we could show that cAMP-induced activation of CaMK, using the adenylate cyclase activator forskolin or the cAMP-analog Sp-5,6-DCI-cBIMPS (cBIMPS), was not mediated by PKA. Activation of the recently identified cAMP target protein Epac (exchange protein directly activated by cAMP) by 8-pCPT-2'-O-Me-cAMP had no effect on CaMK activity and aldosterone production. Furthermore, we provide evidence that cAMP effects in ZG cells do not involve Ca(2+) or MAPK signaling. Our results suggest that ZG cells, in addition to PKA and Epac/Rap proteins, contain other as yet unidentified cAMP mediator(s) involved in regulating CaMK activity and aldosterone secretion.  相似文献   

19.
Signaling from cAMP/PKA to MAPK and synaptic plasticity   总被引:17,自引:0,他引:17  
  相似文献   

20.
Phosphorylation by cAMP-dependent protein kinase (PKA) increases the activity of class C L-type Ca(2+) channels which are clustered at postsynaptic sites and are important regulators of neuronal functions. We investigated a possible mechanism that could ensure rapid and efficient phosphorylation of these channels by PKA upon stimulation of cAMP-mediated signaling pathways. A kinase anchor proteins (AKAPs) bind to the regulatory R subunits of PKA and target the holoenzyme to defined subcellular compartments and substrates. Class C channels isolated from rat brain extracts by immunoprecipitation contain an endogenous kinase that phosphorylates kemptide, a classic PKA substrate peptide, and also the main phosphorylation site for PKA in the pore-forming alpha(1) subunit of the class C channel complex, serine 1928. The kinase activity is inhibited by the PKA inhibitory peptide PKI(5-24) and stimulated by cAMP. Physical association of the catalytic C subunit of PKA with the immunoisolated class C channel complex was confirmed by immunoblotting. A direct protein overlay binding assay performed with (32)P-labeled RIIbeta revealed a prominent AKAP with an M(r) of 280,000 in class C channel complexes. The protein was identified by immunoblotting as the microtubule-associated protein MAP2B, a well established AKAP. Class C channels did not contain tubulin and MAP2B association was not disrupted by dilution or addition of nocodazole, two treatments that cause dissociation of microtubules. In vitro experiments show that MAP2B can directly bind to the alpha(1) subunit of the class C channel. Our findings indicate that PKA is an integral part of neuronal class C L-type Ca(2+) channels and suggest that the AKAP MAP2B may mediate this interaction. Neither PKA nor MAP2B were detected in immunoprecipitates of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-type glutamate receptors or class B N-type Ca(2+) channels. Accordingly, MAP2B docked at class C Ca(2+) channels may be important for recruiting PKA to postsynaptic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号