首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Hai FI  Li X  Price WE  Nghiem LD 《Bioresource technology》2011,102(22):10386-10390
This study reveals for the first time that near-anoxic conditions (dissolved oxygen, DO=0.5 mg/L) can be a favorable operating regime for the removal of the persistent micropollutant carbamazepine by MBR treatment. The removal efficiencies of carbamazepine and sulfamethoxazole by an MBR were systematically examined and compared under near-anoxic (DO=0.5 mg/L) and aerobic (DO>2 mg/L) conditions. Preliminary batch tests confirmed that sulfamethoxazole is amenable to both aerobic and anoxic biotransformation. However, carbamazepine-a known persistent compound-showed degradation only under an anoxic environment. In good agreement with the batch tests, during near-anoxic operation, under a high loading of 750 μg/Ld, an exceptionally high removal (68±10%) of carbamazepine was achieved. In contrast, low removal efficiency (12±11%) of carbamazepine was observed during operation under aerobic conditions. On the other hand, an average removal efficiency of 65% of sulfamethoxazole was achieved irrespective of the DO concentrations.  相似文献   

2.
The main objective of this work was to determine the effectiveness of various biofouling reducers (BFRs) to operational condition in hybrid membrane bioreactor (MBR) of palm oil mill effluent (POME). A series of tests involving three bench scale (100 L) hybrid MBR were operated at sludge retention times (SRTs) of 30 days with biofouling reducer (BFR). Three different biofouling reducers (BFRs) were powdered actived carbon (PAC), zeolite (Ze), and Moringa oleifera (Mo) with doses of 4, 8 and 12 g L−1 respectively were used. Short-term filtration trials and critical flux tests were conducted. Results showed that, all BFRs successfully removed soluble microbial products (SMP), for PAC, Ze, and Mo at 58%, 42%, and 48%, respectively. At their optimum dosages, PAC provided above 70% reductions and 85% in fouling rates during the short-term filtration and critical flux tests.  相似文献   

3.
A poly (acrylamide-allylglycidyl ether) [p(AAm-AGE)] cryogel was prepared by radical polymerization of acrylamide (AAm) and allylglycidyl ether (AGE). Cibacron Blue F3GA (CB) was covalently attached to the p(AAm-AGE) cryogel via the reaction between the chloride groups of the reactive dyes and the epoxide groups of the AGE. The CB-attached p(AAm-AGE) cryogel was chelated with Fe3+ ions. This immobilized metal ion affinity chromatography (IMAC) cryogel carrying 25.8 ± 2.0 μmol Fe3+ ions was used in adsorption studies to interrogate the effects of pH, protein initial concentration, flow rate, temperature and ionic strength on enzyme activity. Maximum adsorption capacities were found to be 75.7 ± 1.2 mg/g for p(AAm-AGE)-CB-Fe3+ cryogels and 60.6 ± 1.0 mg/g for p(AAm-AGE)-CB cryogels, respectively. The adsorbed amounts of catalase per unit mass of cryogel reached a plateau value at about 1.5 mg/mL at pH 6.0. The Km values were found to be 0.73 ± 0.02 g/L for the free catalase and 0.18 ± 0.02 g/L for the immobilized catalase. The Vmax value of free catalase (2.0 × 103 U/mg enzyme) was found to be lower than that of the immobilized catalase (2.5 × 103 U/mg enzyme). It was also observed that the enzyme could be repeatedly adsorbed and desorbed onto the p(AAm-AGE)-CB-Fe3+ cryogel.  相似文献   

4.
In the present study, chemically treated Helianthus annuus flowers (SHC) were used to optimize the removal efficiency for Cr(VI) by applying Response Surface Methodological approach. The surface structure of SHC was analyzed by Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Analysis (EDX). Batch mode experiments were also carried out to assess the adsorption equilibrium in aqueous solution. The adsorption capacity (qe) was found to be 7.2 mg/g. The effect of three parameters, that is pH of the solution (2.0-7.0), initial concentration (10-70 mg/L) and adsorbent dose (0.05-0.5 g/100 mL) was studied for the removal of Cr(VI) by SHC. Box-Behnken model was used as an experimental design. The optimum pH, adsorbent dose and initial Cr(VI) concentration were found to be 2.0, 5.0 g/L and 40 mg/L, respectively. Under these conditions, removal efficiency of Cr(VI) was found to be 90.8%.  相似文献   

5.
A partial nitrification system was investigated for 471 days under DO varying concentrations for assessing its stability and population dynamics. Within 130 days of operation at feed DO concentration of 1.0 ± 0.1 mg/L, more than 85% of nitrite was accumulated. Efficiency deteriorated when the feed DO concentration was increased to 4.2 ± 0.3 mg/L. Nitrite accumulation could not be re-established on decreasing feed DO to 1.0 ± 0.1 mg/L. Even at DO concentration of <0.05 mg/L, nitrate production was observed; a condition termed as anoxic nitrification. NOB was detected in the biomass even under this condition by Fluorescence in-situ hybridization (FISH) analysis. Through 16S rRNA gene sequencing a major fraction of unknown bacterial sequences closely resembling haloalkalophilic bacteria of marine origin were detected. The study indicated that these bacterial species might play a role in anoxic nitrification and that NOB could survive extreme low DO condition.  相似文献   

6.
Wang W  Han H  Yuan M  Li H  Fang F  Wang K 《Bioresource technology》2011,102(9):5454-5460
A two-continuous mesophilic (37 ± 2 °C) UASB system with step-feed was investigated as an attractive optimization strategy for enhancing COD and total phenols removal of the system and improving aerobic biodegradability of real coal gasification wastewater. Through the step-feed period, the maximum removal efficiencies of COD and total phenols reached 55-60% and 58-63% respectively in the system, at an influent flow distribution ratio of 0.2 and influent COD concentration of 2500 mg/L; the corresponding efficiencies were at low levels of 45-50% and 43-50% respectively at total HRT of 48 h during the single-feed period. The maximum specific methanogenic activity and substrate utilization rate were 592 ± 16 mg COD-CH4/(gVSS d) and 89 ± 12 mg phenol/(gVSS d) during the step-feed operation. After the anaerobic digestion with step-feed, the aerobic effluent COD concentration decreased from 270 ± 9 to 215 ± 10 mg/L. The results suggested that step-feed enhanced the degradation of refractory organics in the second reactor.  相似文献   

7.
The ability of Ca-alginate immobilized Trichoderma harzianum has been explored for removal and recovery of uranium from aqueous streams. Ca-alginate as polymeric support was selected after screening different matrices. Immobilization of Trichoderma harzianum to Ca-alginate improved the stability as well as uranium biosorption capacity of biosorbent at 28 ± 2 °C and 200 rpm. The suitability of packed bed column operations was illustrated by obtaining break through curves at different bed heights, flow rates and inlet uranium concentrations. The adsorption column containing 1.5 g dry weight of immobilized material has purified 8.5 L of bacterial leach liquor (58 mg/L U) before break through occurred and the biosorbent became saturated after 25 L of influent. Sorbed uranium was recovered in 200 ml of 0.1 N HCl resulting in 98.1–99.3% elution by 0.1 N HCl, which regenerated the biosorbent facilitating the sorption–desorption cycles for better economic feasibility without any significant alteration in sorption capacity/elution efficiency.  相似文献   

8.
Phytoremediation technologies such as constructed wetlands have shown higher efficiencies in removal of pharmaceuticals from wastewaters than conventional wastewater treatment processes, and plants seem to have an important role in the removal of some of those compounds. In this context, a study was conducted to assess tolerance, uptake, and metabolism of the epilepsy drug, carbamazepine, by the macrophyte Typha spp. This evaluation was conducted in hydroponic solutions with 0.5-2.0 mg/L of this pharmaceutical for a maximum period of 21 days. The removal of carbamazepine from nutrient solutions by the plants reached values of 82% of the initial contents. Furthermore, a metabolite (10,11-dihydro-10,11-epoxycarbamazepine) was detected in leaf tissues indicating carbamazepine translocation and metabolism inside plants. Activities of antioxidant enzymes catalase, superoxide dismutase, and guaiacol peroxidase generally increase (after some mild initial inhibition in the case of the latter enzyme) as result of the abiotic stress caused by the exposure to carbamazepine, but ultimately Typha seemed able to cope with its toxicity. The results obtained in this study suggest the ability of Typha spp., to actively participate in the removal of carbamazepine from water when used in phytotreatment systems.  相似文献   

9.
For the first time, a fed-batch fermentation process of Tuber melanosporum was developed for the efficient production of bioactive mycelia and Tuber polysaccharides. Each 1.67 g/L of peptone and 8.33 g/L of yeast extract were added on day 3, 6, and 9, respectively, and sucrose was fed to maintain its concentration around 35–5 g/L when its residual level decreased to 10–5 g/L. Then, the maximal biomass, the production of extracellular polysaccharides (EPS) and intracellular polysaccharides (IPS) reached 53.72 ± 2.57 g DW/L, 7.09 ± 0.62 and 4.43 ± 0.21 g/L, respectively. Compared with the batch culture conducted in the enriched medium, the biomass, the production of EPS and IPS were enhanced by 55.8%, 222.3% and 103.2%, respectively. Not only the cell density but also the production of EPS and IPS were the highest ever reported in truffle fermentation, and the biomass was also the highest as ever reported in mushroom fermentation.  相似文献   

10.
Fibrous poly(styrene-d-glycidylmethacrylate) (P(S-GMA)) brushes were grafted on poly(styrene-divinylbenzene) (P(S-DVB)) beads using surface initiated-atom transfer radical polymerization (SI-ATRP). Tetraethyldiethylenetriamine (TEDETA) ligand was incorporated on P(GMA) block. The multi-modal ligand attached beads were used for reversible immobilization of catalase. The influences of pH, ionic strength and initial catalase concentration on the immobilization capacities of the P(S-DVB)-g-P(S-GMA)-TEDETA beads have been investigated. Catalase adsorption capacity of P(S-DVB-g-P(S-GMA)-TEDETA beads was found to be 40.8 ± 1.7 mg/g beads at pH 6.5 (with an initial catalase concentration 1.0 mg/mL). The Km value for immobilized catalase on the P(S-DVB-g-P(S-GMA)-TEDETA beads (0.43 ± 0.02 mM) was found about 1.7-fold higher than that of free enzyme (0.25 ± 0.03 mM). Optimum operational temperature and pH was increased upon immobilization. The same support was repeatedly used five times for immobilization of catalase after regeneration without significant loss in adsorption capacity or enzyme activity.  相似文献   

11.
Wu B  Yi S  Fane AG 《Bioresource technology》2011,102(13):6808-6814
Microbial community developments and biomass characteristics (concentration, particle size, extracellular polymeric substances (EPS), and membrane fouling propensity) were compared when three MBRs were fed with the synthetic wastewater at different organic loadings. Results showed that the bacterial communities dynamically shifted in different ways and the EPS displayed dissimilar profiles under various organic loadings, which were associated with the ratios of food to microorganism and dissolved oxygen levels in the MBRs. The membrane fouling tendency of biomass in the low-loading MBR (0.57 g COD/L day) was insignificantly different from that in the medium-loading MBR (1.14 g COD/L day), which was apparently lower than that in the high-loading MBR (2.28 g COD/L day). The membrane fouling propensity of biomass was strongly correlated with their bound EPS contents, indicating cake layer fouling (i.e., deposition of microbial flocs) was predominant in membrane fouling at a high flux of 30 L/m2 h.  相似文献   

12.
Li WB  Yao J  Tao PP  Hu H  Fang CR  Shen DS 《Bioresource technology》2011,102(5):4117-4123
The aim of this study was to find a feasible method for the treatment of solid waste generated in the remote rural, where the transportation costs are prohibitive and the resources to construct and maintain conventional treatment plants are not available. This process, consisted of two types of simulated bioreactor landfill (one was recirculated bioreactor landfill, and the other was comprised of fresh and aged refuse reactor) and a soil infiltration system, was operated in ambient temperature for 180 days all together. After treated by the system of fresh and aged refuse reactor, the refuse and leachate reached a strongly degraded and stable state. The remaining leachate can be treated by the soil infiltration system, and 87.5 ± 2.1%, 98.6 ± 1.0% and 95.7 ± 1.7% were achieved by 60 cm soil depths for organic matter, ammonium nitrogen and total nitrogen removal, respectively.  相似文献   

13.
In this work the performance of a Membrane bioreactor (MBR) was assessed for the removal of 3-15 mg/l of copper, lead, nickel and zinc from wastewater. The average removal efficiencies accomplished by the MBR system were 80% for Cu(II), 98% for Pb(II), 50% for Ni(II) and 77% for Zn(II). The addition of 5 g/l vermiculite into the biological reactor enhanced metal removal to 88% for copper, 85% for zinc and 60% for nickel due to adsorption of metal ions on the mineral, while it reduced biomass inhibition and increased biomass growth. The metal ions remaining in soluble form penetrated into the permeate, while those attached to sludge flocs were effectively retained by the ultrafiltration membranes. The average heterotrophic biomass inhibition was 50%, while it reduced to 29% when lower metal concentrations were fed into the reactor in the presence of vermiculite. The respective autotrophic biomass inhibition was 70% and 36%. The presence of heavy metals and vermiculite in the mixed liquor adversely impacted on membrane fouling.  相似文献   

14.
10-23 DNAzyme (DrzBC) could block the expression of HBV e-gene with application limit of dependence on exogenous delivery. Stearic acid grafted chitosan oligosaccharide (CSSA) could self-aggregate to form micelles in aqueous medium and bind with DrzBC by electrostatic interaction. Compared with Lipofectamine™ 2000, the CSSA micelles showed much lower cytotoxicity (412.5 μg/mL) and advantaged target in subcellular organelles-cytoplasm. Both including DrzBC of 1 μmol/L, Lipofectamine™ 2000/DrzBC complex showed maximum inhibition rate (IR) on HBeAg expression of 46.53 ± 2.00% at 48 h, and then decreased rapidly, while CSSA/DrzBC complex showed maximum IR of 82.51 ± 1.28% at 72 h, and hold on IR above 70% until 96 h. Moreover, within a concentration range of 0.1-2.0 μmol/L, and equally incubating for 48 h, the IR of Lipofectamine™ 2000/DrzBC complex was from 23.20 ± 1.61% to 66.27 ± 1.96%, while the IR of CSSA/DrzBC complex increased from 40.23 ± 3.28% to 80.95 ± 1.69%. CSSA/DrzBC complex is a promising effective system for inhibiting HBeAg expression.  相似文献   

15.
Biochars produced by pyrolysis of hardwood at 450 °C (HW450) and corn straw at 600 °C (CS600) were characterized and investigated as adsorbents for the removal of Cu(II) and Zn(II) from aqueous solution. The adsorption data were well described by a Langmuir isotherm, with maximum Cu(II) and Zn(II) adsorption capacities of 12.52 and 11.0 mg/g for CS600, 6.79 and 4.54 mg/g for HW450, respectively. Thermodynamic analysis suggested that the adsorption was an endothermic process and did not occur spontaneously. Although Cu(II) adsorption was only marginally affected by Zn(II), Cu(II) competed with Zn(II) for binding sites at Cu(II) and Zn(II) concentrations ?1.0 mM. Results from this study indicated that plant-residue or agricultural waste derived biochar can act as effective surface sorbent, but their ability to treat mixed waste streams needs to be carefully evaluated on an individual basis.  相似文献   

16.
Anaerobic digestion of whole stillage from a dry-grind corn-based ethanol plant was evaluated by batch and continuous-flow digesters under thermophilic and mesophilic conditions. At whole corn stillage concentrations of 6348 to 50,786 mg total chemical oxygen demand (TCOD)/L, at standard temperature (0 °C) and pressure (1 atm), preliminary biochemical methane potential assays produced 88 ± 8 L (49 ± 5 L CH4) and 96 ± 19 L (65 ± 14 L CH4) biogas per L stillage from mesophilic and thermophilic digesters, respectively. Continuous-flow studies for the full-strength stillage (TCOD = 254 g/L) at organic loadings of 4.25, 6.30 and 9.05 g TCOD/L days indicated unstable performance for the thermophilic digester. Among the sludge retention times (SRTs) of 60, 45 and 30 days tested, the mesophilic digestion was successful only at 60 days-SRT which does not represent a practical operation time for a large scale bioethanol plant. Future laboratory studies will focus on different reactor configurations to reduce the SRT needed in the digesters.  相似文献   

17.
We hypothesized that: (i) repeated GnRH treatments would increase the magnitude and duration of the LH surge and would increase progesterone (P4) concentrations after ovulation; and (ii) the release of pituitary LH would be greater in response to larger doses of GnRH. In Experiment 1, ovary-intact cows were given an intravaginal P4 (1.9 g) insert (CIDR) for 10 d and 500 μg cloprostenol (PGF) at CIDR removal to synchronize estrus. On Days 7 or 8 after estrus, cows received two PGF treatments (12 h apart) and 100 μg GnRH at 36 (Control), 36 and 38 (GnRH38), or 36 and 40 h (GnRH40) after the first PGF. Mean plasma LH concentration (ng/mL) was greater (P < 0.05) in GnRH38 (8.8 ± 1.1) than in Control (5.1 ± 1.3), with that in GnRH40 (5.8 ± 1.3) being intermediate. Although the duration (h) of the LH surge was longer in GnRH40 (8.0 ± 0.4) than in either GnRH38 (P < 0.05; 7.0 ± 0.3) or Control (P < 0.09; 7.1 ± 0.4), mean postovulatory P4 (ng/mL) was greater (P < 0.01) in Control (4.2 ± 0.7) than in GnRH38 (2.9 ± 0.6) or GnRH40 (3.0 ± 0.7) cows. In Experiment 2, ovariectomized cows were given a CIDR for 10 d and 2 mg of estradiol cypionate im at CIDR insertion. Thirty-six hours after CIDR removal, cows received, 50, 100, or 250 μg of GnRH. Cows given 250 μg GnRH released more LH (9.4 ± 1.4 ng/mL) than those given 50 or 100 μg (6.1 ± 1.3 and 5.4 ± 1.4 ng/mL, respectively), and had an LH surge of longer duration than those given 50 μg (6.8 ± 0.4 vs. 5.1 ± 0.3 h). In summary, ovary-intact cows in the GnRH38 group had greater mean and peak LH concentrations, but subsequent plasma P4 concentrations were lower than in Control cows. Ovariectomized cows given 250 μg GnRH had a greater pituitary release of LH.  相似文献   

18.
In this study, the effects of organic loading rate (OLR) and the addition of powdered activated carbon (PAC) on the performance and membrane fouling of MBR were conducted to treat real pharmaceutical process wastewater. Over 145 days of operation, the MBR system was operated at OLRs ranging from 1 to 2 kg COD m?3 day?1 without sludge wasting. The addition of PAC provided an improvement in the flux, despite an increase in the OLR:PAC ratio. The results demonstrated that the hybrid PAC-MBR system maintained a reduced amount of membrane fouling and steadily increased the removal performance of etodolac. PAC addition reduced the deposition of extracellular polymeric substance and organic matter on the membrane surface and resulted an increase in COD removal even at higher OLRs with low PAC addition. Membrane fouling mechanisms were investigated using combined adsorption fouling models. Modified fouling index values and normalized mass transfer coefficient values indicated that predominant fouling mechanism was cake adsorption.  相似文献   

19.
Wang W  Ma W  Han H  Li H  Yuan M 《Bioresource technology》2011,102(3):2441-2447
Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 ± 2 °C) reactor as a control, thermophilic anaerobic digestion (55 ± 2 °C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m3 d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.  相似文献   

20.
Whey protein concentrate (WPC) was subjected to enzymatic hydrolysis by proteases from the flowers of Cynara cardunculus, and the resulting angiotensin-converting enzyme (ACE)-inhibitory effect was monitored. The whole WPC hydrolysate exhibited an IC50 value of 52.9 ± 2.9 μg/mL, whereas the associated peptide fraction with molecular weight below 3 kDa scored 23.6 ± 1.1 μg/mL. The latter fraction was submitted to RP-HPLC, and 6 fractions were resolved that exhibited ACE-inhibitory effects. Among the various peptides found, a total of 14 were identified via sequencing with an ion-trap mass spectrometer. Eleven of these peptides were synthesized de novo - to validate their ACE-inhibitory effect, and also to ascertain their stability when exposed to simulated gastrointestinal digestion. Among them, three novel, highly potent peptides were found, corresponding to α-lactalbumin f(16-26) - with the sequence KGYGGVSLPEW, α-lactalbumin f(97-104) with DKVGINYW, and β-lactoglobulin f(33-42) with DAQSAPLRVY; their IC50 values were as low as 0.80 ± 0.1, 25.2 ± 1.0 and 13.0 ± 1.0 μg/mL, respectively. None of them remained stable in the presence of gastrointestinal enzymes: they were partially, or even totally hydrolyzed to smaller peptides - yet the observed ACE-inhibitory effects were not severely affected for two of those peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号