首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, the two most developed techniques for recovering phosphorus from wastewater consist of the formation of calcium phosphates and struvite (MgNH(4)PO(4).6H(2)O). In this work the influence of the operational conditions on the struvite precipitation process (pH in the reactor, hydraulic retention time, and magnesium:phosphorus, nitrogen:phosphorus, and calcium:magnesium molar ratios) have been studied. Twenty-three experiments with artificial wastewater were performed in a stirred reactor. In order to obtain the pH value maintenance during the crystallization process, a fuzzy logic control has been developed. High phosphorus removal efficiencies were reliably achieved precipitating the struvite as easily dried crystals or as pellets made up of agglomerated crystals.  相似文献   

2.
The objective of this study was to investigate on the effect of mixing intensity (G) and mixing duration (t(d)) on struvite precipitation in the chemical mechanical polishing (CMP) wastewater generated from the semiconductor manufacturing process. Batch-scale experiments revealed that struvite crystallization was affected by both G and t(d). The mixing effect was to enhance the mass transfer of solute to the crystals in the process, resulting in the improvement of struvite crystallization and growth. By forming struvite, removal efficiencies of N and P increased logarithmic with the multiple values of G and t(d), i.e., Gt(d). Insufficient mixing energy with the Gt(d) value less than 10(5) caused an increase in the formation potential of unexpected precipitate unlike to pure struvite, causing a decrease in removal efficiencies of N and P in the process. At the Gt(d) value over 10(6), struvite precipitation was not restricted by fluoride, of which high level inherently contained in the CMP wastewater. The study results can be taken into consideration in the design and operation of the struvite precipitation process for both nutrient (N and P) removal and recovery.  相似文献   

3.
A second order kinetic model was developed to predict the rate and extent of NH(4)(+) removal as struvite from anaerobic digester effluents. Alternative to this, NH(4)(+) can be recovered from struvite and the remaining Mg(2+) and PO(4)(3-) can be recycled back to the wastewater to fix more NH(4)(+). The NH(4)(+) solution was retained and the remaining Mg(2+) and PO(4)(3-) were returned back to be mixed with wastewater. In a five-step process, NH(4)(+) recovery was initially 92% and progressively decreased to 77% in the fifth stage, due to loss of Mg(2+) and PO(4)(3-) at each step in the supernatant. Finally, economic analysis of recycling nutrients was performed and compared to the one step process. The cost of NH(4)(+) recovery was calculated as $0.36/kgNH(4)-N which is lower than $7.7/kgNH(4)-N the cost of one step process without considering the market value of struvite obtained in one step process.  相似文献   

4.
《Process Biochemistry》2010,45(4):563-572
In this study, the effect of the pretreatment of NH4-N by struvite precipitation on biological nitrogen removal was investigated in treating swine wastewater. Evaluation was mainly focused on nitrification which occurred in the activated sludge system after struvite precipitation. Laboratory experiments were performed at four different hydraulic retention times (HRT), i.e., 48, 32, 24 and 16 h. Results of the long-term operation of systems showed that the struvite precipitation used as the pretreatment of raw swine wastewater enhanced the nitrification performance in activated sludge system by reducing the applied loading rates of NH4-N and TCOD in all operating conditions. The reduction of the applied NH4-N loading rate kept the levels of free ammonia (FA) concentration in biological reactors low and it prevented nitrite accumulation. In addition, the struvite precipitation elicited the biological denitrification reaction and PO4-P removal by increasing the ratios of carbon-to-nitrogen and carbon-to-phosphorus of wastewater after struvite precipitation. The struvite precipitation also enhanced the biological TCOD removal performance by reducing the toxic effect of FA. Triplicate INT-dehydrogenase tests clearly showed that FA inhibited the degradation of organic matter in activated sludge system. Finally, the struvite precipitation contributed to high TCOD, T-N and PO4-P removals of 83, 90, and 97% by facilitating biological reaction at a short HRT of 16 h.  相似文献   

5.
A demonstration crystallization reactor and struvite accumulation device for the removal and recovery of phosphorous was constructed and their performance was evaluated using actual swine wastewater for 3.5 years. The wastewater pH was increased by aeration, and the concentrations of total P and soluble PO(4)-P were reduced by a struvite crystallization reaction induced under a high pH condition. A 30% MgCl(2) addition was effective in enhancing the struvite crystallization reaction. The concentrations of suspended solids, total Zn and total Cu, were also decreased by the settling function of the reactor. On removing the efficiencies of these components, no noticeable seasonal fluctuation in performance was observed during the 3.5-year operation. In terms of maximum yield, 171g struvite was obtained from 1m(3) swine wastewater by the demonstration accumulation device for struvite recovery. The recovered struvite needed only air-drying before use since it was approximately 95% pure even without washing.  相似文献   

6.
The feasibility of using a microalga Chlorella vulgaris YSW-04 was investigated for removal of nutrients from piggery wastewater effluent. The consequent lipid production by the microalga was also identified and quantitatively determined. The wastewater effluent was diluted to different concentrations ranging from 20 to 80 % of the original using either synthetic media or distilled water. The dilution effect on both lipid production and nutrient removal was evaluated, and growth rate of C. vulgaris was also monitored. Dilution of the wastewater effluent improved microalgal growth, lipid productivity, and nutrient removal. The growth rate of C. vulgaris was increased with decreased concentration of piggery wastewater in the culture media regardless of the diluent type. Lipid production was relatively higher when using synthetic media than using distilled water for dilution of wastewater. The composition of fatty acids accumulated in microalgal biomass was dependent upon both dilution ratio and diluent type. The microalga grown on a 20 % concentration of wastewater effluent diluted with distilled water was more promising for generating high-efficient biodiesel compared to the other culture conditions. The highest removal of inorganic nutrients was also achieved at the same dilution condition. Our results revealed the optimal pretreatment condition for the biodegradation of piggery wastewater with microalgae for subsequent production of high-efficient biodiesel.  相似文献   

7.
Struvite (magnesium ammonium phosphate-MgNH4PO4·6H2O), which can extensively crystallize in wastewater treatments, is a potential source of N and P as fertilizer, as well as a means of P conservation. However, little is known of microbial interactions with struvite which would result in element release. In this work, the geoactive fungus Aspergillus niger was investigated for struvite transformation on solid and in liquid media. Aspergillus niger was capable of solubilizing natural (fragments and powder) and synthetic struvite when incorporated into solid medium, with accompanying acidification of the media, and extensive precipitation of magnesium oxalate dihydrate (glushinskite, Mg(C2O4).2H2O) occurring under growing colonies. In liquid media, A. niger was able to solubilize natural and synthetic struvite releasing mobile phosphate (PO43−) and magnesium (Mg2+), the latter reacting with excreted oxalate resulting in precipitation of magnesium oxalate dihydrate which also accumulated within the mycelial pellets. Struvite was also found to influence the morphology of A. niger mycelial pellets. These findings contribute further understanding of struvite solubilization, element release and secondary oxalate formation, relevant to the biogeochemical cycling of phosphate minerals, and further directions utilizing these mechanisms in environmental biotechnologies such as element biorecovery and biofertilizer applications.  相似文献   

8.
Aerobic granule was successfully cultivated in SBR (sequencing batch reactor) by struvite carrier (magnesium ammonium phosphate, MgNH4PO4), which can increase polysaccharides to 42.2 mg/gMLVSS (mixed liquor volatile suspended solid) versus only 28.4 mg/gMLVSS of the sludge without it. Meanwhile, it was found that struvite play a positive role in initial granulation and bacterial group distribution in treating pharmaceutical wastewater, involving effect of solid surface and special contents of struvite. The results of fluorescence in situ hybridization technique indicate that ammonia-oxidizing bacteria can dominate over nitrite-oxidizing bacteria in mature granules. COD removal efficiency of 90 % and NO2 ?–N:(NO2 ?–N?+?NO3 ?–N) accumulation efficiency of 89 % were achieved in stable state. Emphasis is placed on that struvite addition can be applied as a new-type carrier to promote formation of partial nitrification granular sludge.  相似文献   

9.
Because of increased concern about surface water eutrophication from nutrient-enriched agricultural runoff, many swine producers are encouraged to decrease application rates of waste-based P. Precipitation and subsequent removal of magnesium ammonium phosphate (MgNH(4)PO(4) x 6H(2)O), commonly known as struvite, is a promising mechanism for N and P removal from anaerobic swine lagoon effluent. The objectives of this research were to (i) quantify the effects of adjusting pH and Mg:P ratio on struvite precipitation and (ii) determine the rate constant pH effect for struvite precipitation in anaerobic swine lagoon liquid. Concentrations of PO(4)-P in liquid from two anaerobic swine lagoons were determined after 24 h of equilibration for a pH range of 7.5-9.5 and Mg:P ratios between 1:1 and 1.6:1. Struvite formation reduced the PO(4)-P concentration in the effluents to as low as 2 mgl(-1). Minimum concentrations of PO(4)-P occurred between pH 8.9 and 9.25 at all Mg:P ratios. Struvite precipitation decreased PO(4)-P concentrations by 85% within 20 min at pH 9.0 for an initial Mg:P ratio of 1.2:1. The rate of PO(4)-P decrease was described by a first-order kinetic model, with rate constants of 3.7, 7.9, and 12.3 h(-1) at pH 8.4, 8.7 and 9.0 respectively. Our results indicate that induced struvite formation is a technically feasible method to remove N and P from swine lagoon liquid and it may allow swine producers to recover nutrients for off-farm sale.  相似文献   

10.
In order to overcome bottlenecks of the high amount of cellulase consumption in lignocellulosic l-Lactic acid (LA) production, a non-sterilized fed-batch simultaneous saccharification and fermentation (SSF) -membrane separation integration process was established in this current work. During the process, residual cellulase that remaining in the waste aqueous solution and solid residuals of corn stover (CS) were recycled and reused in subsequent fermentations. A total 6 rounds of operation were performed. Averagely, LA yield of 0.389 g g−1 (pretreated CS) was achieved, which was 1.20 times higher than that of the conventional process without waste stream recycling. Moreover, the wastewater discharge and the cost of nutrients for fermentation can also hugely decrease. Results indicated that cellulase, wastewater discharge and nutrients consumption of the process reduced by 47.4 %, 73.7 % and 86.1 %, respectively. This study opens a promising way for the reduction of second-generation LA production cost, which could significantly change the economic feasibility of the LA biorefineries.  相似文献   

11.
A recycling reactor system operated under sequential anoxic and oxic conditions was evaluated, in which the nutrients of piggery slurry were anaerobically and aerobically treated and then a portion of the effluent was recycled to the pigsty. The most dominant aerobic heterotrophs from the reactor were Alcaligenes faecalis (TSA-3), Brevundimonas diminuta (TSA-1) and Abiotrophia defectiva (TSA-2) in decreasing order, whereas lactic acid bacteria, LAB (MRS-1, etc.) were most dominantly observed in the anoxic tank. Here we have tried to model the nutrient removal process for each tank in the system based on population densities of heterotrophic and LAB. Principal component analysis (PCA) was first applied to delineate a relationship between input (microbial densities and treatment parameters such as population densities of heterotrophic and LAB, suspended solids (SS), COD, NH4 +–N, ortho-phosphorus, and total phosphorus) and output. Multi-layer neural networks using an error back-propagation learning algorithm were then employed to model the nutrient removal process for each tank. PCA filtration of microbial densities as input data was able to enhance generalization performance of the neural network, and this has led to a better prediction of the measured data. Neural networks independently trained for each treatment tank and the combined analysis of the subsequent tank data allowed a successful prediction of the treatment system for at least 2 days.  相似文献   

12.
Phosphorus can be recovered from wastewater through crystallisation of struvite, MgNH(4)PO(4).6H(2)O. Approximately 1 kg of struvite can be crystallised from 100 m(3) of wastewater. Crystallisation is profitable compared to chemical and biological removal of phosphorus due to savings from the reduction in (i) chemicals used for precipitation and sludge disposal; and (ii) downtime for cleaning unwanted struvite formed during chemical and biological removal. The struvite produced annually from a wastewater treatment plant that processed 100 m3/d, would be sufficient to apply on 2.6 ha of arable land, as fertilizer. If struvite were to be recovered from wastewater treatment plants worldwide, 0.63 million tons of phosphorus (as P(2)O(5)) could be harvested annually, reducing phosphate rock mining by 1.6%. Therefore, this technology could provide opportunities to recover phosphorus sustainably from waste streams and preserve phosphorus reserves.  相似文献   

13.
Zhang L  Lee YW  Jahng D 《Bioresource technology》2011,102(8):5048-5059
The objective of this study was to evaluate the feasibility of anaerobic co-digestion of food waste and piggery wastewater, and to identify the key factors governing the co-digestion performance. The analytical results indicated that the food waste contained higher energy potential and lower concentrations of trace elements than the piggery wastewater. Anaerobic co-digestion showed a significantly improved biogas productivity and process stability. The results of co-digestion of the food waste with the different fractions of the piggery wastewater suggested that trace element might be the reason for enhancing the co-digestion performance. By supplementing the trace elements, a long-term anaerobic digestion of the food waste only resulted in a high methane yield of 0.396 m3/kg VSadded and 75.6% of VS destruction with no significant volatile fatty acid accumulation. These results suggested that the typical Korean food waste was deficient with some trace elements required for anaerobic digestion.  相似文献   

14.
Wu Y  Hu Z  Yang L  Graham B  Kerr PG 《Bioresource technology》2011,102(3):2419-2426
The aim of this project was to establish an economical and environmentally benign biotechnology for removing nutrients from non-point source wastewater. The proposal involves a hybrid bioreactor comprised of sequential anaerobic, anoxic and aerobic (A2/O) processes and an eco-ditch being constructed and applied in a suburban area, Kunming, south-western China, where wastewater was discharged from an industrial park and suburban communities. The results show that the hybrid bioreactor fosters heterotrophic and autotrophic microorganisms. When the hydraulic load is 200 m3 per day with the running mode in 12 h cycles, the removal efficiencies of the nutrients were 81% for TP, 74% for TDP, 82% for TN, 79% for NO3-N and 86% for NH4-N. The improved bacterial community structure and bacterial habitats further implied enhanced water quality and indicates that the easily-deployed, affordable and environmentally-friendly hybrid bioreactor is a promising bio-measure for removing high loadings of nutrients from non-point source wastewater.  相似文献   

15.
A recycling reactor system operated under sequential anoxic and oxic conditions for the treatment of swine wastewater has been developed, in which piggery slurry is fermentatively and aerobically treated and then part of the effluent is recycled to the pigsty. This system significantly removes offensive smells (at both the pigsty and the treatment plant), BOD and others, and may be cost effective for small-scale farms. The most dominant heterotrophic were, in order,Alcaligenes faecalis, Brevundimonas diminuta andStreptococcus sp., while lactic acid bacteria were dominantly observed in the anoxic tank. We propose a novel monitoring system for a recycling piggery slurry treatment system through the use of neural networks. In this study, we tried to model the treatment process for each tank in the system (influent, fermentation, aeration, first sedimentation and fourth sedimentation tanks) based upon the population densities of the heterotrophic and lactic acid bacteria. Principal component analysis (PCA) was first applied to identify a relationship between input and output. The input would be microbial densities and the treatment parameters, such as population densities of heterotrophic and lactic acid bacteria, suspended solids (SS), COD, NH4 +-N, or-tho-phosphorus (o-P), and total-phosphorus (T-P). Then multi-layer neural networks were employed to model the treatment process for each tank. PCA filtration of the input data as microbial densities was found to facilitate the modeling procedure for the system monitoring even with a relatively lower number of input. Neural networks independently trained for each treatment tank and their subsequent combined data analysis allowed a successful prediction of the treatment system for at least two days.  相似文献   

16.
A laboratory study was conducted on the removal of nitrogen and phosphorus from piggery wastewater during growth of Botryococcus braunii UTEX 572, together with measurements of hydrocarbon formation by the alga. The influence was tested of the initial nitrogen and phosphorus concentration on the optimum concentration range for a culture in secondarily treated piggery wastewater. A high cell density (> 7 g L–1 d. wt) was obtained with 510 mg L–1 NO3-N. Growth increased with nitrogen concentration at the basal phosphorus concentration (14 mg P L–1). The growth rate was nearly independent ( = 0.027 0.030 h–1) of the initial phosphate concentration, except under conditions of phosphate deficiency ( = 0.019 h–1). B. braunii grew well in piggery wastewater pretreated by a membrane bioreactor (MBR) with acidogenic fermentation. A dry cell weight of 8.5 mgL–1 and hydrocarbon level of 0.95 gL–1 were obtained, and nitrate was removed at a rate of 620 mg NL–1. These results indicate that pretreated piggery wastewater provides a good culture medium for the growth and hydrocarbon production by B. braunii.  相似文献   

17.
A high concentration of NH4+ in piggery wastewater is major problem in Taiwan. Therefore, in our study, we isolated native heterotrophic nitrifiers for piggery wastewater treatment. Heterotrophic nitrifier AS-1 was isolated and characterized from the activated sludge of a piggery wastewater system. Sets of triplicate crimp-sealed serum bottles were used to demonstrate the heterotrophic nitrifying capability of strain AS-1 in an incubator at 30°C. All serum bottles contained 80 mL medium, and the remainder of the bottle headspace was filled with pure oxygen. The experimental results showed that 2.5 ± 0.2 mmol L−1 NH4+ was removed by 58 hours, and, eventually, 1.5 ± 0.5 mmol L−1 N2 and 0.2 ± 0.0 mmol L−1 N2O were produced. The removal rate of NH4+ by the strain AS-1 was 1.75 mmol NH4+ g cell−1 h−1. This strain was then identified as Pseudomonas alcaligenes (97% identity) by sequencing its 16S rDNA and comparing it with other microorganisms. Thus, strain AS-1 displays high promise for future application for in situ NH4+ removal from piggery wastewater.  相似文献   

18.
AIMS: This study attempted to demonstrate nitrite interference on chemical oxygen demand (COD) determination in piggery wastewater, and the capability of aerobic denitrification of the SU2 strain which is capable of promoting the efficiency of nitrogen and COD removal from piggery wastewater. METHODS AND RESULTS: This study was performed in a 17-litre reactor with a 30% packing ratio, with a ratio of immobilized SU2 cells to sludge of 100:1. The ratio of aeration to nonaeration was 4 : 1.5. Removal efficiency of COD was 86.8%. Removal efficiency of BOD and SS was higher than 90%, and removal efficiency of NH4+-N and TKN was almost 100%. CONCLUSIONS: NO2- -N interference is significant when its concentration in piggery wastewater exceeds 100 mg l-1. COD in piggery wastewater can be indirectly reduced following nitrite reduction by SU2 strain. SIGNIFICANCE AND IMPACT OF THE STUDY: Utilizing immobilized SU2 cells in coordination with an SBR system simultaneously reduces nitrite and COD concentrations.  相似文献   

19.
The effect of pH on the efficiency of an SBR processing piggery wastewater   总被引:1,自引:0,他引:1  
To treat piggery wastewater efficiently, the hydrolysis of urea (mainly derived from swine urine) in piggery wastewater with the change of sewage pH must be considered. Using activated sludge, piggery wastewater was treated in a sequencing batch reactor (SBR), and the effects of influent pH on SBR processing efficiency, sludge settle ability, and sludge activity were investigated. The results showed that a high influent pH value contributed to the improvement of the removal rate of ammonia nitrogen and reduction of the chemical oxygen demand (COD). When the influent pH was between 9.0 and 9.5, the removal rate of ammonia nitrogen was higher than 90%, and the reduction of COD from its original value was 80%. The influent pH had a greater influence on sludge concentration and sludge activity. When the influent pH increased from 7.0 to 9.5, the sludge concentration increased from 2,350 to 3,947 mg/L in the reactor, and the activities of ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) first increased and then decreased. When the influent pH was 9.0 and 8.0, the maximum values (0.48 g O2/(g MLSS/day) and 0.080 g O2/(g MLSS/day)) were reached, and the sludge settling ratio was nearly steady between 20 and 35% in each reactor.  相似文献   

20.
We investigated the extent to which nitrogenous and phosphorus nutrients from liquid anaerobic digestates could be recycled for photosynthetic growth of a microalga, Scenedesmus sp. AMDD. Digestates recovered from the anaerobic digestion of cow manure and swine manure and a co-digestion of swine manure and algal biomass were diluted in distilled water and used for algal growth with and without supplemental CO2 addition. Nutrient assimilation and final biomass yield were retarded in all but the swine manure/algae co-digestate cultures supplemented with high CO2. Swine manure digestate cultures supplemented with the typical complement of micronutrients normally added with a commonly used growth medium or with Fe/EDTA failed to grow any better than unamended controls. When the culture medium was prepared by blending swine manure digestate with 25 or 50 % algal biomass digestate, diluting it with lake water or by supplementing with magnesium, nutrient assimilation and final algal biomass yields were maximized, indicating that magnesium was critically limiting for algal growth in swine manure digestates. Magnesium amendment thus appears to be essential if nutrients from swine manure digestates are recycled for algal growth. No such requirement is necessary for recycling nutrients from digestates generated wholly or in part from algal biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号