首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of Mg(x)Co(2-)(x)O(2) as heterogeneous reusable catalyst in transesterification of palm oil to methyl ester was investigated. The catalyst was prepared via co-precipitation of the metal hydroxides at different Mg-Co ratios. Mg(1.7)Co(0.3)O(2) catalyst was more active than Mg(0.3)Co(1.7)O(2) in the transesterification of palm oil with methanol. The catalysts calcined at temperature 300 °C for 4 h resulted in highly active oxides and the highest transesterification of 90% was achieved at methanol/oil molar ratio of 9:1, catalyst loading of 5.00 wt.%, reaction temperature of 150 °C and reaction time of 2 h. The catalyst could easily be removed from reaction mixture, but showed 50% decrease in activity when reused due to leaching of active sites.  相似文献   

2.
Al(HSO4)3 heterogeneous acid catalyst was prepared by the sulfonation of anhydrous AlCl3. This catalyst was employed to catalyze transesterification reaction to synthesis methyl ester when a mixed waste vegetable oil was used as feedstock. The physical and chemical properties of aluminum hydrogen sulphate catalyst were characterized by scanning electron microscopy (SEM) measurements, energy dispersive X-ray (EDAX) analysis and titration method. The maximum conversion of triglyceride was achieved as 81 wt.% with 50 min reaction time at 220 °C, 16:1 molar ratio of methanol to oil and 0.5 wt.% of catalyst. The high catalytic activity and stability of this catalyst was related to its high acid site density (-OH, Brönsted acid sites), hydrophobicity that prevented the hydration of -OH group, hydrophilic functional groups (-SO3H) that gave improved accessibility of methanol to the triglyceride. The fuel properties of methyl ester were analyzed. The fuel properties were found to be observed within the limits of ASTM D6751.  相似文献   

3.
The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6 h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182 °C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost.  相似文献   

4.
Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production.  相似文献   

5.
In this work, the process for ethyl ester production is studied using refined sunflower oil, and NaOH, KOH, CH3ONa, and CH3OK, as catalysts. In all cases, the reaction is carried out in a single reaction step. The best conversion is obtained when the catalyst is either sodium methoxide or potassium methoxide. We found that during the transesterification with ethanol, soap formation is more important than in the case of methanol. The saponification reaction consumes an important fraction of the catalyst. The amount of catalyst consumed by this reaction is 100% in the case of using hydroxides as catalyst (KOH or NaOH), and 25%, and 28% when using CH3ONa and CH3OK as catalysts, respectively. Ethanol increases the catalyst solubility in the oil-ethyl ester phase, thus accelerating the saponification reaction.It is possible to obtain high conversions in a one-step reaction, with a total glycerine concentration close to 0.25%.  相似文献   

6.
This work offers an optimized method in the transesterification of pristine (soybean) oil and cooked oil to bio-diesel, based on microwave dielectric irradiation as a driving force for the transesterification reaction and SrO as a catalyst. This combination has demonstrated excellent catalytic activity and stability. The transesterification was carried out with and without stirring. According to 1H NMR spectroscopy and TLC results, this combination accelerates the reaction (to less than 60 s), maintaining a very high conversion (99%) and high efficiency. The catalytic activity of SrO under atmospheric pressure in the presence of air and under the argon atmosphere is demonstrated. The optimum conversion of cooked oil (99.8%) is achieved under MW irradiation of 1100 W output with magnetic stirring after only 10 s. The optimum method decreases the cost of bio-diesel production and has the potential for industrial application in the transesterification of cooked oil to bio-diesel.  相似文献   

7.
In this study, a novel continuous reactor has been developed to produce high quality methyl esters (biodiesel) from palm oil. A microporous TiO2/Al2O3 membrane was packed with potassium hydroxide catalyst supported on palm shell activated carbon. The central composite design (CCD) of response surface methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst amount and cross flow circulation velocity on the production of biodiesel in the packed bed membrane reactor. The highest conversion of palm oil to biodiesel in the reactor was obtained at 70 °C employing 157.04 g catalyst per unit volume of the reactor and 0.21 cm/s cross flow circulation velocity. The physical and chemical properties of the produced biodiesel were determined and compared with the standard specifications. High quality palm oil biodiesel was produced by combination of heterogeneous alkali transesterification and separation processes in the packed bed membrane reactor.  相似文献   

8.
A thermotolerant and rapidly-growing yeast for production of single cell protein from palm oil was isolated and identified as Candida tropicalis F129. The optimum temperature and pH for growth were 38°C and 6.0, respectively. The yeast grew with a high specific growth rate, of 0.92/h in 2% (v/v) palm oil medium, compared with other oil-assimilating yeasts or hydrocarbon-utilizing thermophilic yeasts. The overall cell yield was 1.01 g dry cells/g palm oil after 12 h.  相似文献   

9.
Among different sources of lipases, fungal lipases have continued to attract a wide range of applications. Further, halophilic lipases are highly desirable for biodiesel production due to the need to mitigate environmental pollution caused as result of extensive use of fossil fuels. However, currently, the high production cost limits the industrial application of lipases. In order to address this issue, we have attempted to optimize lipase production by Fusarium solani NFCCL 4084 and using palm oil mill effluent (POME) based medium. The production was optimized using a combinatory approach of Plackett-Burman (PB) design, one factor at a time (OFAT) design and face centred central composite design (FCCCD). The variables (malt extract, (NH4)2SO4, CaCl2, MgSO4, olive oil, peptone, K2HPO4, NaNO3, Tween-80, POME and pH) were analyzed using PB design and the variables with positive contrast coefficient were found to be K2HPO4, NaNO3, Tween-80, POME and pH. The significant variables selected were further analyzed for possible optimum range by using OFAT approach and the findings revealed that K2HPO4, NaNO3, and Tween-80 as the most significant medium components, and thus were further optimized by using FCCCD. The optimum medium yielded a lipase with an activity of 7.8 U/ml, a significant 3.2-fold increase compared to un-optimized medium. The present findings revealed that POME is an alternative and suitable substrate for halophilic lipase production at low cost. Also, it is clearly evident that the combinatory approach employed here proved to be very effective in producing high activity halophilic lipases, in general.  相似文献   

10.
The distillate produced by deodorization of palm oil (DDPO) is a waste that corresponds to 4% of the product formed in this process. DDPO is 83% free of fatty acids (FFA), making it a good material for biodiesel production. In this paper, a catalyst prepared from a waste material, Amazon flint kaolin, was used for the esterification of DDPO with methanol. Leached metakaolin treated at 950 °C and activated with 4 M sulfuric acid (labeled as MF9S4) offered maximum esterification activity (92.8%) at 160 °C with a DDPO:methanol molar ratio of 1:60 and a 4-h reaction time. The influences of reaction parameters, such as the molar ratio of the reactants, alcohol chain length, temperature, time and the presence of glycerides and unsaponifiable matter, have also been investigated. Based on the catalytic results, esterification of DDPO using MF9S4 can be a cheaper alternative for production of sustainable fuels.  相似文献   

11.
ZrO2 supported La2O3 catalyst prepared by impregnation method was examined in the transesterification reaction of sunflower oil with methanol to produce biodiesel. It was found that the catalyst with 21 wt% loaded La2O3 and calcined at 600 °C showed the optimum activity. The basic property of the catalyst was studied by CO2-TPD, and the results showed that the fatty acid methyl ester (FAME) yield was related to their basicity. The catalyst was also characterized by TG–DTA, XRD, FTIR, SEM and TEM, and the mechanism for the formation of basic sites was discussed. It was also found that the crystallite size of support ZrO2 decreased by loading of La2O3, and the model of the solid-state reaction on the surface of La2O3/ZrO2 catalyst was proposed. Besides, the influence of various reaction variables on the conversion was investigated.  相似文献   

12.
A recent rise in crab aquaculture activities has intensified the generation of waste shells. In the present study, the waste shells were utilized as a source of calcium oxide to transesterify palm olein into methyl esters (biodiesel). Characterization results revealed that the main component of the shell is calcium carbonate which transformed into calcium oxide when activated above 700 °C for 2 h. Parametric studies have been investigated and optimal conditions were found to be methanol/oil mass ratio, 0.5:1; catalyst amount, 5 wt.%; reaction temperature, 65 °C; and a stirring rate of 500 rpm. The waste catalyst performs equally well as laboratory CaO, thus creating another low-cost catalyst source for producing biodiesel. Reusability results confirmed that the prepared catalyst is able to be reemployed up to 11 times. Statistical analysis has been performed using a Central Composite Design to evaluate the contribution and performance of the parameters on biodiesel purity.  相似文献   

13.
Twenty-five pregnant Red Sokoto goats (average liveweight, 33.14 ± 1.75 kg) were used from the last month of pregnancy until 118 day of lactation to evaluate the effect of varying the level of palm (Elaeis guineensis, Jacq.) oil (PO) in concentrate supplement on lactation performance. The goats were fed one of five iso-nitrogenous (16% CP) supplements containing 0% PO (control), 4% PO, 8% PO, 12% PO or 16% PO to a basal diet of Wooly finger grass (Digitaria smutsii, Stent) hay. Average consumption of concentrate was 400 g/goat/day, representing 48% of total dry matter intake. Daily dry matter intake decreased linearly with increasing levels of palm oil. The 4% PO concentrate elicited the highest milk production and was the most cost-effective, while improving daily milk production by 29% compared with the control. Milk composition and postpartum weight changes of the goats were not significantly affected by the concentrate supplements but milk fat percent was generally increased by inclusion level of palm oil in the supplement. It is concluded from this study that the concentrate supplement containing 4% palm oil can increase milk yield in Red Sokoto goats without adversely affecting dry matter intake.  相似文献   

14.
Oil palm (Elaeis guineensis Jacq.) crops are expanding rapidly in the tropics, with implications for the global carbon cycle. Little is currently known about soil organic carbon (SOC) dynamics following conversion to oil palm and virtually nothing for conversion of grassland. We measured changes in SOC stocks following conversion of tropical grassland to oil palm plantations in Papua New Guinea using a chronosequence of plantations planted over a 25‐year period. We further used carbon isotopes to quantify the loss of grassland‐derived and gain in oil palm‐derived SOC over this period. The grassland and oil palm soils had average SOC stocks of 10.7 and 12.0 kg m?2, respectively, across all the study sites, to a depth of 1.5 m. In the 0–0.05 m depth interval, 0.79 kg m?2 of SOC was gained from oil palm inputs over 25 years and approximately the same amount of the original grass‐derived SOC was lost. For the whole soil profile (0–1.5 m), 3.4 kg m?2 of SOC was gained from oil palm inputs with no significant losses of grass‐derived SOC. The grass‐derived SOC stocks were more resistant to decrease than SOC reported in other studies. Black carbon produced in grassfires could partially but not fully account for the persistence of the original SOC stocks. Oil palm‐derived SOC accumulated more slowly where soil nitrogen contents where high. Forest soils in the same region had smaller carbon stocks than the grasslands. In the majority of cases, conversion of grassland to oil palm plantations in this region resulted in net sequestration of soil organic carbon.  相似文献   

15.
Fatty acid methyl ester was produced from used vegetable cooking oil using Mg1−x Zn1+xO2 solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4 h 15 min reaction at 188 °C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle.  相似文献   

16.
In the organosolv pulping of the oil palm fronds, the influence of the operational variables of the pulping reactor (viz. cooking temperature and time, ethanol and NaOH concentration) on the properties of the resulting pulp (yield and kappa number) and paper sheets (tensile index and tear index) was investigated using a wavelet neural network model. The experimental results with error less than 0.0965 (in terms of MSE) were produced, and were then compared with those obtained from the response surface methodology. Performance assessment indicated that the neural network model possessed superior predictive ability than the polynomial model, since a very close agreement between the experimental and the predicted values was obtained.  相似文献   

17.
Xie W  Yang D 《Bioresource technology》2011,102(20):9818-9822
The transesterification of soybean oil with methanol was carried out, to produce biodiesel, over silica-bonded N-propyl sulfamic acid in a heterogeneous manner. Results showed that a maximum conversion of 90.5% was achieved using a 1:20 M ratio of soybean oil to methanol and a catalyst amount of 7.5 wt.% at 423 K for 60 h. It was found that the free fatty acid (FFA) and water present in the feedstock had no significant influence on the catalytic activity to the transesterification reaction. Besides, the catalyst also showed activities towards the esterification reaction of FFAs, in terms of the FFA conversion of 95.6% at 423 K for 30 h. Furthermore, the catalyst could be recovered with a better reusability.  相似文献   

18.
Biological kinetic (bio-kinetic) study of the anaerobic stabilization pond treatment of palm oil mill effluent (POME) was carried out in a laboratory anaerobic bench scale reactor (ABSR). The reactor was operated at different feed flow-rates of 0.63, 0.76, 0.95, 1.27, 1.9 and 3.8 l of raw POME for a day. Chemical oxygen demand (COD) as influent substrates was selected for bio-kinetic study. The investigation showed that the growth yield (YG), specific biomass decay (b), maximum specific biomass growth rate (μmax), saturation constant (Ks) and critical retention time (Θc) were in the range of 0.990 g VSS/g CODremoved day, 0.024 day−1, 0.524 day−1, 203.433 g COD l−1 and 1.908 day, respectively.  相似文献   

19.
A thorough outlook on the effect of palm oil mill effluent (POME) final discharge towards bacterial community dynamics in the receiving river is provided in this study by using a high-throughput MiSeq. The shift of bacterial composition could be used to determine the potential bacterial indicators to indicate contamination caused by POME. This study showed that the POME final discharge did not only alter the natural physicochemical properties of the river water but also caused the reduction of bacterial diversity in the receiving river. The Chromatiaceae and Alcaligenaceae which were not detected in the upstream but were detected in the downstream part of the river are proposed as the indicator bacteria to indicate the river water contamination caused by POME final discharge. The emergence of either one or both bacteria in the downstream part of the river were shown to be carried over by the effluent. Therefore, an accurate pollution monitoring approach using bacterial indicator is expected to complement the conventional POME pollution assessment method which is currently dependent on the physicochemical properties of the final discharge. This is the first study that reported on the potential indicator bacteria for the assessment of river water contamination caused by POME final discharge.  相似文献   

20.
CO2 flux from the soil was measured in situ under oil palms in southern Benin. The experimental design took into account the spatial variability of the root density, the organic matter in the soil-palm agrosystem and the effect of factors such as the soil temperature and moisture.Measurements of CO2 release in situ, and a comparison with the results obtained in the laboratory from the same soil free of roots, provided an estimation of the roots contribution to the total CO2 flux. The instantaneous values for total release in situ were between 3.2 and 10.0 mol CO2 m-2 s-1. For frond pile zones rich in organic matter, and around oil palm trunks, root respiration accounted for 30% of the efflux when the soil was at field capacity and 80% when the soil was dry with a pF close to 4.2. This proportion remained constant in interrow zones at around 75%, irrespective of soil moisture.Subsequently carbon allocation to the roots was determined. Total CO2 release over a year was 57 Mg of CO2 ha-1 yr-1 (around 1610 g of C per m2 per year), and carbon allocation to the roots was approximately 53 Mg of CO2 ha-1 yr-1 of which approximately 13 Mg CO2 ha-1 yr-1 (25%) was devoted to turn-over and 40 Mg CO2 ha-1 yr-1 (75%) to respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号