首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present data on sexual maturity in young hamadryas baboon males (Papio hamadryas hamadryas) and its reproductive consequences in a large captive baboon colony. Hamadryas baboons live in a multilevel social system, with one-male units (OMUs) as the smallest social entity. Male leaders of OMUs are believed to monopolize matings within their OMUs; hence mating is believed to be polygynous and monandrous. In a captive colony of hamadryas baboons, we found evidence that young males less than 4 years old fathered at least 2.5% of 121 offspring born subsequent to vasectomy of all adult males, and males aged 4-5 years fathered at least 16.5% of the offspring. Additional evidence that these young males are able to sire offspring came from a morphological comparison of sperm from hamadryas males of different ages. The sperm of a 48-month-old hamadryas baboon were morphologically indistinguishable from viable sperm from adult males, whereas sperm from a 45-month-old male showed some aberrations. If successful copulations by adolescent males constitute a regular pattern even in free-ranging hamadryas baboons, a hamadryas male's chances to reproduce would not be limited to his role as an OMU leader as previously assumed, and a male's reproductive career would consist of two phases: the adolescent phase, and the OMU leader male phase.  相似文献   

2.
Hamadryas baboons are known for their complex, multi‐level social structure consisting of troops, bands, and one‐male units (OMUs) [Kummer, 1968. Social organization of hamadryas baboons. Chicago: The University of Chicago Press. 189p]. Abegglen [1984. On socialization in hamadryas baboons: a field study. Lewisburg, PA: Bucknell University Press. 207p.] observed a fourth level of social structure comprising several OMUs that rested near one another on sleeping cliffs, traveled most closely together during daily foraging, and sometimes traveled as subgroups independently from the rest of the band. Abegglen called these associations “clans” and suggested that they consisted of related males. Here we confirm the existence of clans in a second wild hamadryas population, a band of about 200 baboons at the Filoha site in lowland Ethiopia. During all‐day follows from December 1997 through September 1998 and March 2005 through February 2006, data were collected on activity patterns, social interactions, nearest neighbors, band fissions, and takeovers. Association indices were computed for each dyad of leader males, and results of cluster analyses indicated that in each of the two observation periods this band comprised two large clans ranging in size from 7 to 13 OMUs. All band fissions occurred along clan lines, and most takeovers involved the transfer of females within the same clan. Our results support the notion that clans provide an additional level of flexibility to deal with the sparse distribution of resources in hamadryas habitats. The large clan sizes at Filoha may simply be the largest size that the band can split into and still obtain enough food during periods of food scarcity. Our results also suggest that both male and female relationships play a role in the social cohesion of clans and that males exchange females within clans but not between them. Am. J. Primatol. 71:948–955, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Three levels of hamadryas social structure—the one male unit (OMU), the band, and the troop—have been observed at all sites studied, but a fourth—the clan—has been observed at only one site, Erer-Gota, Ethiopia, during a longitudinal check of the dispersion of identified individuals. The clan is important since it appears to provide the basis for male philopatry, although comparative data is needed from other sites to confirm this. We studied a huge commensal group of hamadryas baboons (over 600 animals) in Saudi Arabia. We put ear tags on baboons between 1998 and 2004 and analyzed social structure, relying on the interactions of these tagged animals by focusing especially on their dispersal patterns from OMUs. OMU membership tended to be looser than that of the Ethiopian hamadryas. Females tended to shift between OMUs on an individual basis in our study group, whereas the collapse of an OMU was a major occasion of adult female transfer in Ethiopia. We found neither stable bands (a “band” in our study group was defined as a regional assemblage of OMUs) nor clans that lasted for several years. Some OMUs moved and transferred into neighboring areas over both the short and long term. Further, some post-adolescent males appeared to move out of the study area. The ratio of adult females in an OMU in our study group was larger than for any other documented study site, and this may be the reason for enhanced female transfer between OMUs. A large proportion of the adolescent females showed no clear membership to OMUs, and no “initial units” (commonly observed in Ethiopia) were discernible. The ease with which young males acquired adult females at the study site must have disrupted the formation of a clan, a “male-bonded society.”  相似文献   

4.
Unlike most cercopithecines, hamadryas baboons (Papio hamadryas hamadryas) are characterized by female-biased dispersal. To clarify this pattern within the context of their hierarchical social system (comprising one-male units, clans, bands, and troops), we report here 7 years of data on female transfers among social units in wild hamadryas baboons in Ethiopia. Female tenure in one-male units (OMUs) ranged from 1 to 2,556 days (N = 208) and survival analysis revealed a median tenure length of 1,217 days (40 months). Changes in OMU membership consisted almost exclusively of takeovers by males, not voluntary transfer. Of 130 takeovers, 67% occurred within the band and 33% across bands, and, of the 22 takeovers for which we have clan membership data, 77% occurred within, not between, clans. These results reinforce the notion that hamadryas female dispersal is not analogous to sex-biased dispersal in other taxa, because (1) at least in Ethiopian populations, females do not disperse voluntarily but are transferred, often forcibly, by males; (2) only dispersal between bands will promote gene flow, whereas females are most often rearranged within bands; (3) hamadryas females undergo social dispersal but not usually locational dispersal; and (4) while male hamadryas are far more philopatric than females, they have been observed to disperse. It thus appears that the ancestral baboon pattern of female philopatry and male dispersal has evolved into a system in which neither sex is motivated to disperse, but females are forcibly transferred by males, leading to female-mediated gene flow, and males more rarely disperse to find females.  相似文献   

5.
The multilevel society of hamadryas baboons, consisting of troops, bands, clans, and one-male units (OMUs), is commonly perceived to be an effective means of adapting to variable food availability while allowing spatial cohesion in response to predator pressure. The relationship between these variables, however, has never been tested quantitatively. The Filoha site in Awash National Park, Ethiopia is ideally suited to such an investigation as it contains nutrient-dense palm forests in addition to the Acacia scrublands typical of hamadryas distribution elsewhere, allowing comparisons of spatial cohesion across habitat types. Here, we use observations over a 1-year period to examine the relationship between resource availability, perceived predator pressure, and spatial cohesion in a band of wild hamadryas baboons at Filoha. Our results demonstrate that the band was more likely to break into OMUs when foraging in habitats with lower food availability, and that the band fissioned into independent clans more often when preferred resources were not available. Furthermore, the baboons remained in larger aggregations for longer periods of time (i.e., prior to embarking on their daily foraging route) on mornings after predators were heard in the vicinity, and increased cohesion in response to encounters with people who may have been perceived as predators. These results support the notion that hamadryas baboons change their social groupings in response to both food availability and predation risk and that the ability of hamadryas bands to cleave and coalesce in response to changes in these factors underlies the evolution of the hamadryas modular social structure.  相似文献   

6.
The concept of dominance has been shown to be useful in describing and predicting social interactions in group-living animals. However, the dominance relationships among adult hamadryas males (Papio hamadryas) are poorly understood, and systematic data are missing from the literature. This study investigated dominance relationships among male hamadryas baboons by applying novel statistical techniques to systematic detailed data on agonistic interactions. We also analyzed the dominance relationship with male age and evaluated the association between dominance and access to mating partners (i.e. the number of adult females per one-male unit (OMU)), food resources (i.e. monopolization of feeding areas), and greeting interactions. The derived dominance indexes showed that, in general, leader males were dominant over followers, and that dominance ability did not correlate with male age. Individual dominance values were very close to each other, suggesting that dominance relationships among hamadryas males were not very rigid. In addition, dominance values were positively correlated with number of adult females per OMU but not with feeding priority. Finally, greeting interactions occurred more frequently between individuals with similar dominance values and with low levels of dominance decidedness. We suggest the need of further studies, especially in wild populations, to confirm our findings.  相似文献   

7.
At least three diurnal primate taxa are still present in Eritrea, NE Africa: hamadryas baboons (Papio hamadryas hamadryas), olive baboons (Papio h. anubis) and grivet monkeys (Chlorocebus aethiops aethiops). However, information on status and distribution of primates and their habitats in Eritrea is outdated and incomplete. We conducted a primate survey, focussing on hamadryas baboons, to obtain data which will be integrated in a national wildlife management and conservation plan in Eritrea. We obtained information about the geographical distribution and abundance of baboons, their altitudinal range, habitat quality of their home-ranges, aggregation sizes at sleeping cliffs and predator presence. We described habitat quality via the Normalized Difference Vegetation Index (NDVI), a vegetation classification of Landsat MSS satellite data. Hamadryas and olive baboons are still present in Eritrea in ample numbers. Their geographical distributions in 1997 and 1998 did not deviate significantly from their historical distributions. An estimated 15,000 Papio hamadryas hamadryas lived in the 25,000-km2 area of survey (0.58 baboons/km2). Population densities of hamadryas baboons in many parts of the survey area are higher than at Kummer's (1968) study site in Ethiopia. Hamadryas baboons live at all altitudes in four of five ecogeographical zones of Eritrea. Olive baboons replaced them in the western lowlands. Both baboon taxa tend to select better quality habitats, characterized by a higher normalized difference vegetation index (NDVI) than the average for the respective ecogeographical zones. Hamadryas baboons show a greater ecological plasticity than olive baboons, which are confined to riverbeds with extended gallery forest. By the end of 1999, a hybrid zone could not be confirmed.  相似文献   

8.
In the multilevel societies of hamadryas baboons, adult males can be attached to single one-male units (OMUs) or to clans containing several such OMUs. This paper examines the effect of male number and rivalry between males within a clan on their ability to compete for access to a clumped food resource. The data come from a study of a multilevel colony of hamadryas baboons (Papio hamadryas hamadryas) housed at the Madrid Zoo. The colony consisted of 12 harem-holding males and 40 sexually mature females, and was organized into five single OMUs and two clans (containing three and four OMUs, respectively). The top-ranking male of one of the clans was removed and later reintroduced, so the study involved an analysis of the composition of clans and OMUs and of the males' use of the feeding area across three study periods: preseparation, separation, and reintroduction. The findings reported indicate that both males and females derived clear advantages in the context of contest competition for access to clumped food if they were members of clans, because the males and females from large clans had a feeding advantage over those from smaller clans and single OMUs. Furthermore, rivalry among males within the clan reduced their ability to compete for food against males outside their clan. This paper provides empirical evidence for one of the potential advantages that hamadryas males may enjoy if they are attached to clans, and also provides empirical support for the general hypothesis that a large number of males in a group may provide fitness-related benefits to the group members, provided they are able to cooperate with each other.  相似文献   

9.
Recent studies have demonstrated that human societies are hierarchically structured with a consistent scaling ratio across successive layers of the social network; each layer of the network is between three and four times the size of the preceding (smaller) grouping level. Here we show that similar relationships hold for four mammalian taxa living in multi-level social systems. For elephant (Loxodonta africana), gelada (Theropithecus gelada) and hamadryas (Papio hamadryas hamadryas) baboon, successive layers of social organization have a scaling ratio of almost exactly 3, indicating that such branching ratios may be a consistent feature of all hierarchically structured societies. Interestingly, the scaling ratio for orca (Orcinus orca) was 3.8, which might mean that aquatic environments place different constraints on the organization of social hierarchies. However, circumstantial evidence from a range of other species suggests that scaling ratios close to 3 may apply widely, even in species where hierarchical social structures have not traditionally been identified. These results identify the origin of the hierarchical, fractal-like organization of mammalian social systems as a fundamental question.  相似文献   

10.
This study reports group size, home range size, daily path lengths, seasonal effects on ranging behavior and qualitative information on diet for a population of hamadryas baboons inhabiting the lowlands of the northern Rift Valley in central Ethiopia. The minimum home range size and daily path length for this population are similar to those reported for other populations of hamadryas baboons in Ethiopia and Saudi Arabia. Group sizes, however, are much larger than those in most other hamadryas populations for which published data are available. The large group sizes in this area may be related to the abundance of one food resource in particular, doum palm nuts. Overall, this study suggests that hamadryas baboons may be more flexible in some aspects of their behavioral ecology (e.g. group size) than in others (e.g. ranging behavior).  相似文献   

11.
The hamadryas baboon (Papio hamadryas hamadryas) is found both in East Africa and western Arabia and is the only free-ranging nonhuman primate in Arabia. It has been hypothesized that hamadryas baboons colonized Arabia in the recent past and were possibly even transported there by humans. We investigated the phylogeography of hamadryas baboons by sequencing a portion of the control region of mtDNA in 107 baboons from four Saudi Arabian populations and combing these data with published data from Eritrean (African) P. h. hamadryas. Analysis grouped sequences into three distinct clades, with clade 1 found only in Arabia, clade 3 found only in Africa, but clade 2 found in both Arabian and African P. h. hamadryas and also in the olive baboon, P. h. anubis. Patterns of variation within Arabia are neither compatible with the recent colonization of Arabia, implying that baboons were not transported there by humans, nor with a northerly route of colonization of Arabia. We propose that hamadryas baboons reached Arabia via land bridges that have formed periodically during glacial maxima at the straits of Bab el Mandab in the southern Red Sea. We suggest that the genetic differentiation of Arabian from African populations suggests that Arabian populations have a higher conservation status than recognized previously.  相似文献   

12.
Hamadryas baboons sleep on cliffs throughout their range, and this can be attributed to the safety cliffs provide against predators in the absence of tall trees. In this paper, we report the first documented occurrence of hamadryas baboons sleeping in doum palm trees rather than on cliffs. Data derive from a study of hamadryas baboons at the Filoha site in lowland Ethiopia. During all-day follows, data were collected on travel patterns, band activity, and location. Variation in the baboons' home range was characterized using vegetation transects. We discovered that one band in this population, Band 3, occasionally slept in doum palm trees (Hyphaene thebaica). The palm tree sleeping site differed from other palm fragments in the baboons' home range in that it contained a higher density of palm trees. Possible factors influencing this unique use of palm trees as a sleeping site include access to palm fruit, avoiding contact with Afar nomads, avoiding sharing sleeping cliffs with other bands, protection from predators, and the lack of cliffs in a section of the baboons' home range. Evidence from this study suggests that the palm tree sleeping site is used because it affords better protection from predators than other palm fragments in an area of the band's home range that does not contain cliffs.  相似文献   

13.
The consumption of meat may provide herbivorous animals with important nutrients that are scarce in their plant‐based diet. Seasonal variation in plant food availability has been suggested to motivate dietary flexibility in a range of species and thus primates may seek more prey when key plant resources are unavailable. Alternatively, prey encounter rate may drive meat eating. Here we investigate patterns of meat eating in hamadryas baboons (Papio hamadryas) at Filoha, Awash National Park, Ethiopia. The Filoha baboons rely largely on doum palm fruit (Hyphaene thebaica), which are available most months of the year, and the young leaves of Acacia senegal, which are more abundant during the wet season. We hypothesized that the baboons would consume more meat when H. thebaica and A. senegal were less available, which we tested by comparing meat eating and consumption of these plant food species from March 2005 through February 2006. Our results reveal a high rate of vertebrate meat eating at Filoha (0.028/hour of observation) compared with other hamadryas sites. We found no relationship, however, between meat eating (either insect or vertebrate) and either rainfall or consumption of H. thebaica or A. senegal, indicating that availability of preferred plant resources does not drive meat consumption. Vertebrate consumption and time spent feeding were significantly negatively associated; there was no relationship, however, between the consumption of animal matter and either home range size or daily path length. Vertebrate and insect consumption alternated throughout the year such that the baboons maintained a small amount of animal matter in their diet year‐round. Our results suggest that the baboons do not often actively seek animal matter, but consume it opportunistically, with the presence of locust and dragonfly swarms driving insect consumption, and both prey availability and the availability of feeding time shaping vertebrate predation.  相似文献   

14.
The nested one-male units (OMUs) of the hamadryas baboon are part of a complex social system in which "leader" males achieve near exclusive mating access by forcibly herding females into permanent consortships. Within this multi-level social system (troops, bands, clans and OMUs) are two types of prereproductive males--the follower and solitary male--whose different trajectories converge on the leader role. Here we compare OMU formation strategies of followers, who associate with a particular OMU and may have social access to females, with those of solitary males, who move freely within the band and do not associate regularly with OMUs. Data were derived from 42 OMU formations (16 by followers and 26 by solitary males) occurring over 8 years in a hamadryas baboon band at the Filoha site in Ethiopia. "Initial units" (IUs) with sexually immature females (IU strategy) were formed by 44% of followers and 46% of solitary males. The remaining followers took over mature females when their leader was deposed (challenge strategy) or disappeared (opportunistic strategy), or via a seemingly peaceful transfer (inheritance strategy). Solitary males took over mature females from other clans and bands, but mainly from old, injured or vanished leaders within their clan (via both the challenge and opportunistic strategies). Former followers of an OMU were more successful at taking over females from those OMUs than any other category of male. Despite this advantage enjoyed by ex-follower leaders, ex-solitary leaders were equally capable of increasing their OMU size at a comparable rate in their first 2 years as a leader. These results demonstrate the potential for males to employ both multiple roles (follower vs. solitary male) and multiple routes (IU, inheritance, challenge, opportunistic) to acquire females and become a leader male in a mating system characterized by female defense polygyny in a competitive arena.  相似文献   

15.
It is important to characterise the amount of variation on the mammalian Y chromosome in order to assess its potential for use in evolutionary studies. We report very low levels of polymorphism on the Y chromosome of Saudi-Arabian hamadryas baboons, Papio hamadryas hamadryas. We found no segregating sites on the Y, despite sequence analysis of 3 kb noncontiguous intron sequence in 16 males with divergent autosomal microsatellite genotypes, and a further analysis of 1.1 kb intron sequence in 97 males from four populations by SSCP. In addition, we tested seven human-derived Y-linked microsatellites in baboons. Only four of these loci were male-specific and only one was polymorphic in our 97 male sample set. Polymorphism on the Y chromosome of Arabian hamadryas appears to be low compared to other primate species for which data are available (eg humans, chimpanzees and bonobos). Low effective population size (Ne) of paternal genes due to polygyny and female-biased adult sex ratio is a potential reason for low Y chromosome variation in this species. However, low Ne for the Y should be counterbalanced to some extent by the species' atypical pattern of male philopatry and female-biased dispersal. Allelic richness averaged over seven loci was not significantly different between an African and an Arabian population, suggesting that loss of variation during the colonisation of Arabia does not explain low Y variation. Finally, in the absence of nucleotide polymorphism, it is unclear to what extent selection could be responsible for low Y variation in this species.  相似文献   

16.
In contrast to other papionin monkeys, hamadryas baboons are characterized by female-biased dispersal. Given that hamadryas females do not disperse voluntarily, one mechanism for female transfer between bands is thought to be abductions during aggressive intergroup conflict. To date, however, no successful abductions have been witnessed. We describe three abduction events at the Filoha field site in Ethiopia, two interband and one intraband, in which the abductors successfully separated a female from her leader male for several minutes or hours. In each case, the original leader male located the abductor and retrieved the female, even if it involved entering the social sphere of another band. These observations suggest that a hamadryas leader male will risk injury and loss of additional females in his attempt to retrieve a female from an abductor unless the abductor has openly challenged the leader for possession of his female and physically defeated him.  相似文献   

17.
Behavior is influenced by genes but can also shape the genetic structure of natural populations. Investigating this link is of great importance because behavioral processes can alter the genetic diversity on which selection acts. Gene flow is one of the main determinants of the genetic structure of a population and dispersal is the behavior that mediates gene flow. Baboons (genus Papio) are among the most intensely studied primate species and serve as a model system to investigate the evolution of social systems using a comparative approach. The general mammalian pattern of male dispersal and female philopatry has thus far been found in baboons, with the exception of hamadryas baboons (Papio hamadryas). As yet, the lack of data on Guinea baboons (Papio papio) creates a taxonomic gap in genus-wide comparative analyses. In our study we investigated the sex-biased dispersal pattern of Guinea baboons in comparison to hamadryas, olive, yellow, and chacma baboons using sequences of the maternally transmitted mitochondrial hypervariable region I. Analyzing whole-range georeferenced samples (N = 777), we found strong evidence for female-biased gene flow in Guinea baboons and confirmed this pattern for hamadryas baboons, as shown by a lack of genetic-geographic structuring. In addition, most genetic variation was found within and not among demes, in sharp contrast to the pattern observed in matrilocal primates including the other baboon taxa. Our results corroborate the notion that the Guinea baboons’ social system shares some important features with that of hamadryas baboons, suggesting similar evolutionary forces have acted to distinguish them from all other baboons.  相似文献   

18.
We used a cross-sectional sample to compare ontogenetic trajectories in the concentrations of monoamine neurotransmitter metabolites in cerebrospinal fluid of wild anubis (Papio anubis, n = 49) and hamadryas (P. hamadryas, n = 54) baboons to test the prediction that they would differ, especially in males, in association with their distinct behavioral ontogenies. Values of all 3 metabolites [3-methoxy-4-hydroxyphenylglycol (MHPG), the norepinephrine metabolite; 5-hydroxyindoleacetic acid (5-HIAA), the serotonin metabolite; and homovanillic acid (HVA), the dopamine metabolite] declined consistently with dentally-calibrated maturation, and few taxon-related differences were apparent among juveniles. Adult females were too few for adequate comparison, but a discriminant function suggested that they might differ by taxon. Adult males of the 2 species differed strikingly from juveniles and from each other. Contrary to our initial hypothesis, adult male anubis had significantly lower HVA and MHPG, and higher 5-HIAA levels, than predicted from the overall, age-related trend, and MHPG continued to decline with age among adults. As young adults, male hamadryas had low 5-HIAA and a high HVA/5-HIAA ratio, while older males [normatively one-male unit (OMU) leaders] showed a reversal in the trend, with 5-HIAA rising and the HVA/5-HIAA ratio tending to fall. We speculate that the results are related to the dispersing and philopatric ontogenies of anubis and hamadryas males, respectively. Adult male anubis, whose fitness depends on building social networks with nonkin, have high relative serotonin activity, commonly associated with greater social circumspection and skill. Young adult male hamadryas, living among agnatic kin and mating opportunistically, exhibit low 5-HIAA levels, generally associated with impulsivity and social irresponsibility. This reverses as a male approaches the age at which he is normatively the leader of a one-male unit (OMU), and his fitness depends on his maintaining stable relationships with other leaders and with females. An erratum to this article can be found at  相似文献   

19.
For primates, as for many other vertebrates, copulation which results in ejaculation is a prerequisite for reproduction. The probability of ejaculation is affected by various physiological and social factors, for example reproductive state of male and female and operational sex-ratio. In this paper, we present quantitative and qualitative data on patterns of sexual behaviour in a captive group of hamadryas baboons (Papio hamadryas), a species with a polygynous–monandric mating system. We observed more than 700 copulations and analysed factors that can affect the probability of ejaculation. Multilevel logistic regression analysis and Akaike’s information criterion (AIC) model selection procedures revealed that the probability of successful copulation increased as the size of female sexual swellings increased, indicating increased probability of ovulation, and as the number of females per one-male unit (OMU) decreased. In contrast, occurrence of female copulation calls, sex of the copulation initiator, and previous male aggression toward females did not affect the probability of ejaculation. Synchrony of oestrus cycles also had no effect (most likely because the sample size was too small). We also observed 29 extra-group copulations by two non-adult males. Our results indicate that male hamadryas baboons copulated more successfully around the time of ovulation and that males in large OMUs with many females may be confronted by time or energy-allocation problems.  相似文献   

20.
Baboons (Mammalia: Primates, Papio) are found primarily on the continent of Africa, but the range of hamadryas baboons (Papio hamadryas) extends to the Arabian Peninsula, and the origin of Arabian populations is unclear. To estimate the timing of the divergence between Arabian and African hamadryas populations we analyzed mitochondrial DNA (mtDNA) sequences from individuals of Arabian and African origin, and from representatives of the other major baboon taxa. The oldest hamadryas mitochondrial lineages in the Arabian Peninsula form an ancient trichotomy with the two major African lineages. This suggests that Arabia was colonized by hamadryas very soon after the appearance of the distinctive hamadryas phenotype, both events perhaps coinciding with a mid-Pleistocene stage of dry climate and low sea-level. The most closely related Arabian and African mtDNA haplotypes coalesce at approximately 35 ka, suggesting that no gene flow between African and Arabian baboons has occurred since the end of the last ice age, when a land bridge at the southern sill of the Red Sea was submerged. The mitochondrial paraphyly of Ethiopian hamadryas and anubis (P. anubis) baboons suggests an extensive and complex history of sex-specific introgression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号