共查询到20条相似文献,搜索用时 0 毫秒
1.
Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization 总被引:1,自引:0,他引:1
Reducing the inner resistances is crucial for the enhancement of hydrogen generation in microbial electrolysis cells (MECs). This study demonstrates that the optimization of the anode arrangement is an effective strategy to reduce the system resistances. By changing the normal MEC configuration into a stacking mode, namely separately placing the contacted anodes from one side to both sides of cathode in parallel, the solution, biofilm and polarization resistances of MECs were greatly reduced, which was also confirmed with electrochemical impedance spectroscopy analysis. After the anode arrangement optimization, the current and hydrogen production rate (HPR) of MEC could be enhanced by 72% and 118%, reaching 621.3 ± 20.6 A/m3 and 5.56 m3/m3 d respectively, under 0.8 V applied voltage. A maximum current density of 1355 A/m3 with a HPR of 10.88 m3/m3 d can be achieved with 1.5 V applied voltage. 相似文献
2.
Patrick D. KielyRoland Cusick Douglas F. CallPriscilla A. Selembo John M. ReganBruce E. Logan 《Bioresource technology》2011,102(1):388-394
Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current. 相似文献
3.
A microbiological process was established to harvest electricity from the carbon monoxide (CO). A CO fermenter was enriched with CO as the sole carbon source. The DGGE/DNA sequencing results showed that Acetobacterium spp. were enriched from the anaerobic digester fluid. After the fermenter was operated under continuous mode, the products were then continuously fed to the microbial fuel cell (MFC) to generate electricity. Even though the conversion yield was quite low, this study proved that synthesis gas (syn-gas) can be converted to electricity with the aid of microbes that do not possess the drawbacks of metal catalysts of conventional methods. 相似文献
4.
Recent advances in the separators for microbial fuel cells 总被引:2,自引:0,他引:2
Separator plays an important role in microbial fuel cells (MFCs). Despite of the rapid development of separators in recent years, there are remaining barriers such as proton transfer limitation and oxygen leakage, which increase the internal resistance and decrease the MFC performance, and thus limit the practical application of MFCs. In this review, various separator materials, including cation exchange membrane, anion exchange membrane, bipolar membrane, microfiltration membrane, ultrafiltration membranes, porous fabrics, glass fibers, J-Cloth and salt bridge, are systematically compared. In addition, recent progresses in separator configuration, especially the development of separator electrode assemblies, are summarized. The advances in separator materials and configurations have opened up new promises to overcome these limitations, but challenges remain for the practical application. Here, an outlook for future development and scaling-up of MFC separators is presented and some suggestions are highlighted. 相似文献
5.
Dena Z. Khater K.M. El-Khatib Rabeay Y.A. Hassan 《Journal of Genetic Engineering and Biotechnology》2018,16(2):369-373
Construction of efficient performance of microbial fuel cells (MFCs) requires certain practical considerations. In the single chamber microbial fuel cell, there is no border between the anode and the cathode, thus the diffusion of the dissolved oxygen has a contrary effect on the anodic respiration and this leads to the inhibition of the direct electron transfer from the biofilm to the anodic surface. Here, a fed-batch single chambered microbial fuel cells are constructed with different distances 3 and 6?cm (anode- cathode spacing), while keeping the working volume is constant. The performance of each MFC is individually evaluated under the effects of vitamins & minerals with acetate as a fed load. The maximum open circuit potential during testing the 3 and 6?cm microbial fuel cells is about 946 and 791?mV respectively. By decreasing the distance between the anode and the cathode from 6 to 3?cm, the power density is decreased from 108.3?mW?m?2 to 24.5?mW?m?2. Thus, the short distance in membrane-less MFC weakened the cathode and inhibited the anodic respiration which affects the overall performance of the MFC efficiency. The system is displayed a maximum potential of 564 and 791?mV in absence & presence of vitamins respectively. Eventually, the overall functions of the acetate single chamber microbial fuel cell can be improved by the addition of vitamins & minerals and increasing the distance between the cathode and the anode. 相似文献
6.
A medium-scale (0.77 l) air-cathode, brush-anode microbial fuel cell (MFC) operated in fed-batch mode using xylose (20 mM) generated a maximum power density of 13 +/- 1 W/m(3) (673 +/- 43 mW/m(2)). Xylose was rapidly removed (83.5%) within 8 h of a 60-h cycle, with 42.1% of electrons in intermediates (8.5 +/- 0.2 mM acetate, 5.9 +/- 0.01 mM ethanol, 4.3 +/- 0.1 mM formate, and 1.3 +/- 0.03 mM propionate), 9.1% captured as electricity, 16.1% in the remaining xylose, and 32.7% lost to cell storage, biomass, and other processes. The final Coulombic efficiency was 50%. At a higher initial xylose concentration (54 mM), xylose was again rapidly removed (86.9% within 24 h of a 116-h cycle), intermediates increased in concentration (18.4 +/- 0.4 mM acetate, 7.8 +/- 0.4 mM ethanol and 2.1 +/- 0.2 mM propionate), but power was lower (5.2 +/- 0.4 W/m(3)). Power was increased by operating the reactor in continuous flow mode at a hydraulic retention time of 20 h (20 +/- 1 W/m(3)), with 66 +/- 1% chemical oxygen demand removal. These results demonstrate that electricity generation is sustained over a cycle primarily by stored substrate and intermediates formed by fermentation and that the intermediates produced vary with xylose loading. 相似文献
7.
A wall-jet microbial fuel cell (MFC) was developed for the monitoring of anaerobic digestion (AD). This biofilm based MFC biosensor had a character of being portable, short hydraulic retention time (HRT) for sample flow through and convenient for continuous operation. The MFC was installed in the recirculation loop of an upflow anaerobic fixed-bed (UAFB) reactor in bench-scale where pH of the fermentation broth and biogas flow were monitored in real time. External disturbances to the AD were added on purpose by changing feedstock concentration, as well as process configuration. MFC signals had good correlations with online measurements (i.e. pH, gas flow rate) and offline analysis (i.e. COD) over 6-month operation. These results suggest that the MFC signal can reflect the dynamic variation of AD and can potentially be a valuable tool for monitoring and control of bioprocess. 相似文献
8.
Mi-Jin ChoiKyu-Jung Chae Folusho F. AjayiKyoung-Yeol Kim Hye-Weon YuChang-won Kim In S. Kim 《Bioresource technology》2011,102(1):298-303
This study examines the effects of biofouling on the electrochemical properties of cation exchange membranes (CEMs), such as membrane electrical resistance (MER), specific proton conductivity (SC), and ion transport number (t+), in addition to on microbial fuel cell (MFC) performance. CEM biofouling using a 15.5 ± 4.6 μm biofilm was found to slightly increase the MER from 15.65 Ω cm2 (fresh Nafion) to 19.1 Ω cm2, whereas an increase of almost two times was achieved when the electrolyte was changed from deionized water to an anolyte containing a high cation concentration supporting bacterial growth. The simple physical cleaning of CEMs had little effect on the Coulombic efficiency (CE), whereas replacing a biofouled CEM with new one resulted in considerable increase of up to 59.3%, compared to 45.1% for a biofouled membrane. These results clearly suggest the internal resistance increase of MFC was mainly caused by the sulfonate functional groups of CEM being occupied with cations contained in the anolyte, rather than biofouling itself. 相似文献
9.
《Process Biochemistry》2014,49(6):973-980
The pseudo-capacitive behaviour of a high surface area carbon veil electrode in a tubular microbial fuel cell (MFC) was investigated as a mechanism to enhance power quality and energy efficiency. Accumulated charge and energy from the anodic biofilm after prolonged open circuit times (1–120 min) were compared against equivalent periods of steady state loading (R = 100–3000 Ω). A significant difference in the amount of accumulated charge with different loads was observed, resulting in 1.051 C (R = 100 Ω) compared to 0.006 C (R = 3 kΩ). The automated application of short open and closed circuit (0.5–10 s) cycles resulted in an increase of power/current production (closed circuit alone), but presented lower efficiency considering entire open and closed period. The cumulative charge on the carbon veil electrode with biofilm was 39,807 C m−2 at 100 Ω. Electrochemical Impedance Spectroscopy (EIS) showed that the Helmholtz layer presented a double layer capacitance of more than ten times the biofilm on electrode. The results indicate that the capacitive behaviour could be utilized to increase the power quality, i.e. its availability/applicability with respect to the operation of low power consuming devices. 相似文献
10.
Increased power production from a sediment microbial fuel cell with a rotating cathode 总被引:7,自引:0,他引:7
The application of a rotating cathode in a river sediment microbial fuel cell increased the oxygen availability to the cathode, and therefore improved the cathode reaction rate, resulting in a higher power production (49 mW/m2) compared to a nonrotating cathode system (29 mW/m2). The increased dissolved oxygen in the water of our lab-scale sediment MFC, however, resulted in a less negative anode potential and a higher anodic charge transfer resistance, which constrained the maximum power density. Thus, an optimum balance between the superior cathode reaction rates and the inferior anode reaction rates due to higher dissolved oxygen levels must be ascertained. 相似文献
11.
This study evaluated fermentative biohydrogen production from sucrose supplemented with dairy cattle manure at different sucrose:manure ratios. Hydrogen yields found in this study (2.9-5.3 M hydrogen/M sucrose) at ambient temperature are higher than literature results obtained at mesophilic temperatures. This study demonstrated that dairy cattle manure could serve as a buffering agent to maintain recommended pH levels; as a nutrient source to provide the required nutrients for hydrogen production; as a seed to produce hydrogen from sucrose; and as a co-substrate to improve the hydrogen yield. Based on an analysis of the net energy gain, it is concluded that positive net energy gains can be realized with non-thermal pretreatment and/or by combining dark fermentation with anaerobic digestion or microbial fuel cells to extract additional energy from the aqueous products of dark fermentation. 相似文献
12.
Dark fermentative hydrogen gas production from cheese whey powder solution was realized at 55°C. Experiments were performed at different initial biomass concentrations varying between 0.48 and 2.86 g L?1 with a constant initial substrate concentration of 26 ± 2 g total sugar (TS) per liter. The highest cumulative hydrogen evolution (633 mL, 30°C), hydrogen yield (1.56 mol H2 mol?1 glucose), and H2 formation rate (3.45 mL h?1) were obtained with 1.92 g L?1 biomass concentration. The specific H2 production rate decreased with increasing biomasss concentration from the highest value (47.7 mL g?1 h?1) at 0.48 g L?1 biomass concentration. Total volatile fatty acid concentration varied beetween 10 and 14 g L?1 with the highest level of 14.2 g L?1 at biomass concentration of 0.48 g L?1 and initial TS content of 28.4 g L?1. The experimental data were correlated with the Gompertz equation and the constants were determined. The most suitable initial biomass to substrate ratio yielding the highest H2 yield and formation rate was 0.082 g biomass per gram of TS. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 931–936, 2012 相似文献
13.
Biodiesel production through transesterification of lipids generates large quantity of biodiesel waste (BW) containing mainly glycerin. BW can be treated in various ways including distillation to produce glycerin, use as substrate for fermentative propanediol production and discharge as wastes. This study examined microbial fuel cells (MFCs) to treat BW with simultaneous electricity generation. The maximum power density using BW was 487 ± 28 mW/m2 cathode (1.5 A/m2 cathode) with 50 mM phosphate buffer solution (PBS) as the electrolyte, which was comparable with 533 ± 14 mW/m2 cathode obtained from MFCs fed with glycerin medium (COD 1400 mg/L). The power density increased from 778 ± 67 mW/m2 cathode using carbon cloth to 1310 ± 15 mW/m2 cathode using carbon brush as anode in 200 mM PBS electrolyte. The power density was further increased to 2110 ± 68 mW/m2 cathode using the heat-treated carbon brush anode. Coulombic efficiencies (CEs) increased from 8.8 ± 0.6% with carbon cloth anode to 10.4 ± 0.9% and 18.7 ± 0.9% with carbon brush anode and heat-treated carbon brush anode, respectively. 相似文献
14.
Aba Aldrovandi Enrico Marsili Loredana Stante Patrizia Paganin Silvia Tabacchioni Andrea Giordano 《Bioresource technology》2009,100(13):3252-3260
Microbial fuel cells (MFCs) fed with wastewater are currently considered a feasible strategy for production of renewable electricity. 相似文献
15.
Sukkasem C Laehlah S Hniman A O'thong S Boonsawang P Rarngnarong A Nisoa M Kirdtongmee P 《Bioresource technology》2011,102(22):10363-10370
A biodiesel wastewater treatment technology was investigated for neutral alkalinity and COD removal by microbial fuel cell. An upflow bio-filter circuit (UBFC), a kind of biocatalyst MFC was renovated and reinvented. The developed system was combined with a pre-fermented (PF) and an influent adjusted (IA) procedure. The optimal conditions were operated with an organic loading rate (OLR) of 30.0 g COD/L-day, hydraulic retention time (HRT) of 1.04 day, maintained at pH level 6.5-7.5 and aerated at 2.0 L/min. An external resistance of circuit was set at 10 k?. The purposed process could improve the quality of the raw wastewater and obtained high efficiency of COD removal of 15.0 g COD/L-day. Moreover, the cost of UBFC system was only US$1775.7/m3 and the total power consumption was 0.152 kW/kg treated COD. The overall advantages of this invention are suitable for biodiesel wastewater treatment. 相似文献
16.
Sund CJ McMasters S Crittenden SR Harrell LE Sumner JJ 《Applied microbiology and biotechnology》2007,76(3):561-568
Effects of select electron mediators [9,10-anthraquinone-2,6-disulfonic acid disodium salt (AQDS), safranine O, resazurin,
methylene blue, and humic acids] on metabolic end-products and current production from cellulose digestion by Clostridium cellulolyticum in microbial fuel cells (MFCs) were studied using capillary electrophoresis and traditional electrochemical techniques. Addition
of the mediator resazurin greatly enhanced current production but did not appear to alter the examined fermentation end-products
compared to MFCs with no mediator. Assays for lactate, acetate, and ethanol indicate that the presence of safranine O, methylene
blue, and humic acids alters metabolite production in the MFC: safranine O decreased the examined metabolites, methylene blue
increased lactate formation, and humic acids increased the examined metabolites. Mediator standard redox potentials (E
0) reported in the literature do not coincide with redox potentials in MFCs due presumably to the electrolytic complexity of
media that supports bacterial survival and growth. Current production in MFCs: (1) can be effected by the mediator redox potential
while in the media, which may be significantly shifted from E
0, and (2) depended on the ability of the mediator to access the bacterial electron source, which may be cytoplasmic. In addition,
some electron mediators had significant effects on metabolic end-products and therefore the metabolism of the organism itself.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
17.
Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell 总被引:3,自引:0,他引:3
Increased interest in sustainable agriculture and bio-based industries requires that we find more energy-efficient methods for treating cellulose-containing wastewaters. We examined the effectiveness of simultaneous electricity production and treatment of a paper recycling plant wastewater using microbial fuel cells. Treatment efficiency was limited by wastewater conductivity. When a 50 mM phosphate buffer solution (PBS, 5.9 mS/cm) was added to the wastewater, power densities reached 501 +/- 20 mW/m(2), with a coulombic efficiency of 16 +/- 2%. There was efficient removal of soluble organic matter, with 73 +/- 1% removed based on soluble chemical oxygen demand (SCOD) and only slightly greater total removal (76 +/- 4%) based on total COD (TCOD) over a 500-h batch cycle. Cellulose was nearly completely removed (96 +/- 1%) during treatment. Further increasing the conductivity (100 mM PBS) increased power to 672 +/- 27 mW/m(2). In contrast, only 144 +/- 7 mW/m(2) was produced using an unamended wastewater (0.8 mS/cm) with TCOD, SCOD, and cellulose removals of 29 +/- 1%, 51 +/- 2%, and 16 +/- 1% (350-h batch cycle). These results demonstrate limitations to treatment efficiencies with actual wastewaters caused by solution conductivity compared to laboratory experiments under more optimal conditions. 相似文献
18.
A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more
than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently.
A stable power density of 28 W/m3 was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall
dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed
the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing
on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm
in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic
voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile
(dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed
that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and
interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
19.
Yuan Lu Qiheng Lai Chong Zhang Hongxin Zhao Kun Ma Xuebing Zhao Hongzhang Chen Dehua Liu Xin-Hui Xing 《Bioresource technology》2009,100(12):2889-2895
This paper presents the co-production of hydrogen and methane from cornstalks by a two- or three-stage anaerobic fermentation process augmented with effective artificial microbial community. Two-stage fermentation by using the anaerobic sludge and DGGE analysis showed that effective and stable strains should be introduced into the system. We introduced Enterobacter aerogens or Clostridium paraputrificum into the hydrogen stage, and C. paraputrificum was proven to be more effective. In the three-stage process consisting of the improved hydrolysis, hydrogen and methane production stages, the highest soluble sugars (0.482 kg/kg cornstalks) were obtained after the introduction of Clostridium thermocellum in the hydrolysis stage, under the thermophilic (55 °C) and acidic (pH 5.0) conditions. Hydrolysates from 1 kg of cornstalks could produce 2.61 mol (63.7 l) hydrogen by augmentation with C. paraputrificum and 4.69 mol (114.6 l) methane by anaerobic granular sludge, corresponding to 54.1% energy recovery. 相似文献
20.
Kuntke P Geleji M Bruning H Zeeman G Hamelers HV Buisman CJ 《Bioresource technology》2011,102(6):4376-4382
Ammonium recovery using a two chamber microbial fuel cell (MFC) was investigated at high ammonium concentration. Increasing the ammonium concentration (from 0.07 to 4 g ammonium-nitrogen/L) by addition of ammonium chloride did not affect the performance of the MFC. The obtained current densities by DC-voltammetry were higher than 6 A/m2 for both operated MFCs. Also continuous operation at lower external resistance (250 Ω) showed an increased current density (0.9 A/m2). Effective ammonium recovery can be achieved by migrational ion flux through the cation exchange membrane to the cathode chamber, driven by the electron production from degradation of organic substrate. The charge transport was proportional to the concentration of ions. Nonetheless, a concentration gradient will influence the charge transport. Furthermore, a charge exchange process can influence the charge transport and therefore the recovery of specific ions. 相似文献