首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
The effect of phase separation and batch duration on the trophic stages of anaerobic digestion was assessed for the first time in leach beds coupled to methanogenic reactors digesting maize (Zea mays). The system was operated for consecutive batches of 7, 14 and 28 days for ∼120 days. Hydrolysis rate was higher the shorter the batch, reaching 8.5 gTSdestroyed d−1 in the 7-day system. Phase separation did not affect acidification but methanogenesis was enhanced in the short feed cycle leach beds. Phase separation was inefficient on the 7-day system, where ∼89% of methane was produced in the leach bed. Methane production rate increased with shortening the feed cycle, reaching 3.523 l d−1 average in the 7-day system. Low strength leachate from the leach beds decreased methanogenic activity of methanogenic reactors’ sludges. Enumeration of cellulolytic and methanogenic microorganisms indicated a constant inoculation of leach beds and methanogenic reactors through leachate recirculation.  相似文献   

2.
A two-phase system composed by a leach bed and a methanogenic reactor was modified for the first time to improve volumetric substrate degradation and methane yields from a complex substrate (maize; Zeamays). The system, which was operated for consecutive feed cycles of different durations for 120 days, was highly flexible and its performance improved by altering operational conditions. Daily substrate degradation was higher the shorter the feed cycle, reaching 8.5 g TSdestroyed d−1 (7-day feed cycle) but the overall substrate degradation was higher by up to 55% when longer feed cycles (14 and 28 days) were applied. The same occurred with volumetric methane yields, reaching 0.839 m3 (m3)−1 d−1. The system performed better than others on specific methane yields, reaching 0.434 m3 kg−1 TSadded, in the 14-day and 28-day systems. The UASB and AF designs performed similarly as second stage reactors on methane yields, SCOD and VFA removal efficiencies.  相似文献   

3.
The performance of an anaerobic expanded bed reactor has been examined during the treatment of a synthetic low strength waste whose consistency and composition were constant. The organic loading rates used were in the range 0.2–5 kg total organic carbon m?3 day?1 and the removal efficiencies varied from 89 to 52%. Comparing these results with those obtained previously for the treatment of domestic sewage, whose strength and composition was very variable, showed that not only can higher removal efficiencies be achieved with the synthetic waste but also that a significantly better (R2 > 0.85, as opposed to <0.5) correlation between data could be obtained. This indicates the potential danger of using synthetic feedstocks for the prediction of reactor performance under real conditions.  相似文献   

4.
Laboratory scale two-stage anaerobic digestion process model was operated for 280 days to investigate the feasibility to produce both hydrogen and methane from a mixture feedstock (1:1 (v/v)) of municipal food waste and sewage sludge. The maximum hydrogen and methane yields obtained in the two stages were 0.93 and 9.5 mL/mL feedstock. To eliminate methanogenic activity and obtain substantial hydrogen production in the hydrogen reactor, both feedstock and mixed liquor required treatment. The heat treatment (100 °C, 10 min) for feedstock and a periodical treatment (every 2-5 weeks, either heating, removal of biomass particles or flushing with air) for mixed liquor were effective in different extent. The methane production in the second stage was significantly improved by the hydrogen production in the first stage. The maximum methane production obtained in the period of high hydrogen production was more than 2-fold of that observed in the low hydrogen production period.  相似文献   

5.
Kim HW  Nam JY  Shin HS 《Bioresource technology》2011,102(15):7272-7279
Assessing contemporary anaerobic biotechnologies requires proofs on reliable performance in terms of renewable bioenergy recovery such as methane (CH4) production rate, CH4 yield while removing volatile solid (VS) effectively. This study, therefore, aims to evaluate temperature-phased anaerobic sequencing batch reactor (TPASBR) system that is a promising approach for the sustainable treatment of organic fraction of municipal solid wastes (OFMSW). TPASBR system is compared with a conventional system, mesophilic two-stage anaerobic sequencing batch reactor system, which differs in operating temperature of 1st-stage. Results demonstrate that TPASBR system can obtain 44% VS removal from co-substrate of sewage sludge and food waste while producing 1.2 m3CH4/m3system/d (0.2 m3CH4/kgVSadded) at organic loading rate of 6.1 gVS/L/d through the synergy of sequencing-batch operation, co-digestion, and temperature-phasing. Consequently, the rapid and balanced anaerobic metabolism at thermophilic stage makes TPASBR system to afford high organic loading rate showing superior performance on OFMSW stabilization.  相似文献   

6.
This work describes the continuous synthesis of ethyl esters via enzymatic catalysis on a packed‐bed continuous reactor, using mixtures of immobilized lipases (combi‐lipases) of Candida antarctica (CALB), Thermomyces lanuginosus (TLL), and Rhizomucor miehei (RML). The influence of the addition of glass beads to the reactor bed, evaluation of the use of different solvents, and flow rate on reaction conditions was studied. All experiments were conducted using the best combination of lipases according to the fatty acid composition of the waste oil (combi‐lipase composition: 40% of TLL, 35% of CALB, and 25% of RML) and soybean oil (combi‐lipase composition: 22.5% of TLL, 50% of CALB, and 27.5% of RML). The best general reaction conditions were found to be using tert‐butanol as solvent, and the flow rate of 0.08 mL min?1. The combi‐lipase reactors operating at steady state for over 30 days (720 h), kept conversion yields of ~50%, with average productivity of 1.94 gethyl esters h?1, regardless of the type of oil in use. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:952–959, 2018  相似文献   

7.
Recirculation of the leachate in the acidogenic reactor was proposed to enhance anaerobic digestion of food waste in the hybrid anaerobic solid–liquid (HASL) system. Recirculation of the leachate in the acidogenic reactor provided better conditions for extraction of organic matter from the treated food waste and buffering capacity to prevent excessive acidification in the acidogenic reactor. It ensured faster supply of nutrients in the methanogenic reactor in experiment. The highest dissolved COD and VFA concentrations in the leachate from the acidogenic reactor were reached for shorter time and were 16,670 mg/l and 9450 mg/l in control and 18,614 mg/l and 11,094 mg/l in experiment, respectively. Recycling of the leachate in the acidogenic reactor intensified anaerobic digestion of food waste and diminished time needed to produce the same quantity of methane by 40% in comparison with anaerobic digestion of food waste without recirculation.  相似文献   

8.
Food waste (FW) minimization at the source by using food waste biodigester (FWBs) has a vast potential to lower down the impact of increasing organic fraction in municipal solid waste generation. To this end, this research sought to check the performance of locally isolated hydrolase-producing bacteria (HPB) to improve food waste biodegradation rate. Two under-explored HPB identified as Bacillus paralicheniformis GRA2 and Bacillus velezensis TAP5 were able to produce maximum amylase, cellulase, protease and lipase activities, and demonstrated a significant hydrolase synergy in co-culture fermentation. In vitro biodegradation analysis of both autoclaved and non-autoclaved FW revealed that the HPB inoculation was effective to degrade total solids (>62%), protein (>19%), total fat (>51), total sugar (>86%), reducing sugar (>38%) and starch (>50%) after 8-day incubation. All co-culture treatments were recorded superior to the respective monocultures and the uninoculated control. The results of FW biodegradation using batch-biodigester trial indicated that the 1500 mL and 1000 mL inoculum size of HPB inoculant reached a plateau on the 4th day, with gross biodegradation percentage (GBP) of >85% as compared to control (66.4%). The 1000 mL inoculum was sufficient to achieve the maximum GBP (>90%) of FW after an 8-day biodigestion in a FWB.  相似文献   

9.
《Process Biochemistry》2014,49(3):520-528
The magnetic beads were synthesized using glycidylmethacrylate (GMA) and methylmethacrylate (MMA) monomers. A multimodal ligand (i.e., p-amino-benzamidine) was covalently immobilized onto magnetic beads after glutaraldehyde activation, and consequently used for purification of the trypsin from bovine pancreas. The p-amino-benzamidine ligand immobilized magnetic beads were characterized by FTIR, VSM, SEM, and analytical methods. Trypsin adsorption experiments were investigated under different experimental conditions (i.e., medium pH, initial trypsin concentration, temperature, and ionic strength) in a batch system. Maximum trypsin adsorption capacity was found to be 75.9 ± 2.6 mg/g beads. Adsorbed trypsin was eluted by using (0.1 M acetate buffer, pH 3.0) with a 97% recovery. The purification factor of trypsin from crude pancreas extract was 8.7 folds. The purity of the eluted trypsin from p-amino-benzamidine functionalized magnetic beads was determined as 86% by HPLC. The method developed in this report was successfully applied for purification of the trypsin from crude pancreas extract in a magnetically stabilized fluidized bed reactor.  相似文献   

10.
Production of optically pure products can be based on simple unselective synthesis of racemic mixtures combined with a subsequent separation of the enantiomers; however, this approach suffers from a 50% yield limitation which can be overcome by racemization of the undesired enantiomer and recycling. Application of biocatalyst for the racemization steps offers an attractive option for high‐yield manufacturing of commercially valuable compounds. Our work focuses on exploiting the potential of racemization with immobilized mandelate racemase. Immobilization of crude mandelate racemase via covalent attachment was optimized for two supports: Eupergit® CM and CNBr‐activated Sepharose 4 Fast Flow. To allow coupling of enzymatic reaction with enantioselective chromatography, a mobile phase composition compatible with both processes was used in enzymatic reactor. Kinetic parameters obtained analyzing experiments carried out in a batch reactor could be successfully used to predict fixed‐bed reactor performance. The applicability of the immobilized enzyme and the determined kinetic parameters were validated in transient experiments recording responses to pulse injections of R‐mandelic acid. The approach investigated can be used for futher design and optimization of high yield combined resolution processes. The characterized fixed‐bed enzymatic reactor can be integrated e.g. with chromatographic single‐ or multicolumn steps in various configurations.  相似文献   

11.
Pseudomonas testosteroni CPW301 degraded phenol and 4-chlorophenol simultaneously, but degradation rates of these compounds were affected by 4-chlorophenol. Phenol increased the cell concentration and therefore the degradation efficiency of 4-chlorophenol was improved. Pseudomonas solanacearum TCP114 could degrade only 2,4,6-trichlorophenol. A defined mixed culture of P. testosteroni CPW301 and P. solanacearum TCP114 could treat phenol, 4-chlorophenol, and 2,4,6-trichlorophenol completely and overcome the inhibition of substrates to other microorganisms. The degradation capacity of the packed bed reactor (PBR) was higher than that of the continuous stirred tank reactor, but the PBR was unsuitable for oxygen-sensitive microorganisms.  相似文献   

12.
The longevity and robustness of bioreactors used for wastewater treatment is determined by the activity of the microorganisms under steady and transient loading conditions. Two identical continuously operated inverse fluidized bed bioreactors (IFB), IFB R1 and IFB R2, were tested for sulphate removal under the same operating conditions for 140 d (Periods I–IV). Later, IFB R1 was used as the control reactor (Period V), while IFB R2 was operated under feast (Period V-A) and famine (Period V-B) feeding conditions for 66 d. The sulphate removal efficiency was comparable in both IFB, <20% in Period I and ∼70% during Periods II, III and IV. The robustness of the IFB was evident when the sulphate removal efficiency remained comparable during the feast Period (67 ± 15%) applied to IFB R2 compared to continuous feeding Periods (Period IV (71 ± 4%) for IFB R2 and Period V (61 ± 15%) for IFB R1). The IFB performance was modelled using a three-layered artificial neural networks (ANN) model (5-11-3) and a sensitivity analysis, the sulphate removal was found to be dependent on the COD:sulphate ratio. Besides, the robustness, resilience and adaptation time of the IFB were affected by the degree of mixing and the hydraulic retention time.  相似文献   

13.
An integrated solvent (ABE) fermentation and product removal process was investigated. A stable solvent productivity of 3.5 g/L h was achieved by using cells of Clostridium acetobutylicum immobilized onto a packed bed of bonechar, coupled with continuous product removal by pervaporation. Using a concentrated feed solution containing lactose at 130g/L, a lactose value of 97.9% was observed. The integrated fermentation and product removal system, with recycling of the treated fermentor effluent containing only low amount of solvents (/but lactose and acids), leads to only low acid losses. Therefore, most of the acids are converted to solvents, and this results in a high solvent yield of 0.39 g solvents/g lactose utilized. The pervaporation system provided a high product removal rate even at low solvent concentrations. A solvent membrane flux of 7.1 g/m(2) h with a selectivity of 5 was achieved during these investigations. The system proved to be very reliable.  相似文献   

14.
Optically active (R)-alpha-monobenzoyl glycerol (MBG) was synthesized by Candida antarctica lipase B (CHIRAZYME L-2) catalyzed asymmetric esterification of glycerol with benzoic anhydride in organic solvents. Various conditions, such as the type and composition of the organic solvent, water content of the system, reaction temperature, and concentrations of the substrates were systematically examined and optimized in screw-capped test tubes with respect to both the reaction rate and the enzyme selectivity. 1,4-Dioxane was found to be the best solvent and no additional water was needed for the system. The optimum temperature was around 30 degrees C, while the most suitable substrate concentrations were 100 mM each for glycerol and benzoic anhydride, respectively. However, when excessive anhydride (e.g., 200 mM) was used, the produced MBG could be further transformed into 1,3-dibenzoyl glycerol (DBG) by the same enzyme with a priority to (S)-MBG, resulting in a significant improvement of the product optical purity from ca. 50-70% e.e. Under optimal conditions (100 mM glycerol, 100-200 mM benzoic anhydride, dioxane, 25-30 degrees C), the enzymatic synthesis of (R)-MBG was successfully operated in a packed-bed reactor for about 1 week, with an average productivity of 0.79 g MBG/day/g biocatalyst in the case of continuous operation and 0.94 g MBG/day/g biocatalyst in the case of semicontinuous operation. After refinement and preferential crystallization of the crude product, (R)-MBG could be obtained in an almost optically pure form (>98% e.e.).  相似文献   

15.
Five different mesophilic systems were evaluated in this study for the anaerobic treatment of food waste. Systems A and B were one stage methane with unsonicated and sonicated feeds, respectively, while, systems C and D were two-stage hydrogen and methane with unsonicated and sonicated feeds, respectively. System E comprised a novel sonicated biological hydrogen reactor (SBHR) followed by methane reactor. The results showed that sonication inside the reactor in the first stage (system E) showed superior results compared to all other systems. Overall VSS removal efficiencies of 67%, 59%, 51%, 44%, and 36% were achieved in systems E, D, C, B, and A, respectively. Volumetric hydrogen production rates of 4.8, 3.3, and 2.6 L H2/Lreactor d were achieved in the SBHR, CSTR with and without sonicated feed, respectively, while, methane production rates of 1.6, 2.1, 2.3, 2.6, and 3.2 L CH4/Lreactor d were achieved in systems A-E, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号