首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermostable and cellulase-free xylanase has been produced from Streptomyces sp. QG-11-3 in solid substrate fermentation using wheat bran and eucalyptus kraft pulp as the prime solid substrates. The maximum xylanase yield obtained using these two substrates were 2360 U/g and 1200 U/g dry solid substrate at substrate:moisture ratios of 1:3 and 1:2.5, respectively. In immobilized cell system using polyurethane foam (PUF) and three nonwoven fabrics, namely, polyester, silk, and cotton, the xylanase yields were enhanced by 2.5-fold (203 U/ml), 1.91-fold (155 U/ml), 1.54-fold (125 U/ml), and 1.47-fold (119 U/ml), respectively, compared to the xylanase yield in liquid-batch fermentation (81 U/ml). In the biobleaching experiments, the xylanase dose of 3.5 U/g moisture free pulp exhibited the optimum bleach boosting of eucalyptus kraft pulp at pH 8.5 and 50 degrees C after 2 h of treatment. When xylanase treated pulp was subsequently treated with 4.5% chlorine, it resulted in reduction of kappa number by 25%, enhanced the brightness (%ISO) by 20% and improved the pulp properties such as tensile strength and burst factor by up to 63% and 8%, respectively.  相似文献   

2.
The extensive use of synthetic plastics has caused serious waste disposal problems in our environment. Poly-3-hydroxybutyrates (PHB) are eco-friendly bacterial polyesters which are produced under unbalanced nutrient conditions. Few reports are available on PHB production by solid state fermentation (SSF). We have developed a novel SSF bioprocess in which polyurethane foam (PUF) is used as a physical inert support for the production of PHB by Bacillus sphaericus NII 0838. Media engineering for optimal PHB production was carried out using response surface methodology (RSM) adopting a Box–Behnken design. The factors optimized by RSM were inoculum size, pH and (NH4)2SO4 concentration. Under optimized conditions—6.5 % inoculum size, 1.7 % (w/v) (NH4)2SO4 and pH 9.0—PHB production and biomass were 0.169?±?0.03 and 0.4?±?0.002 g/g PUF, respectively. This is the first report on PHB production by SSF using PUF as an inert support. Our results demonstrate that SSF can be used as an alternative strategy for the production of PHB.  相似文献   

3.
The ability of Aspergillus japonicus ATCC 20236 to colonize different synthetic materials (polyurethane foam, stainless steel sponge, vegetal fiber, pumice stones, zeolites, and foam glass) and to produce fructooligosaccharides (FOS) from sucrose (165 g/L) is described. Cells were immobilized in situ by absorption, through direct contact with the carrier particles at the beginning of fermentation. Vegetal fiber was the best immobilization carrier as A. japonicus grew well on it (1.25 g/g carrier), producing 116.3 g/L FOS (56.3 g/L 1-kestose, 46.9 g/L 1-nystose, and 13.1 g/L 1-β-fructofuranosyl nystose) with 69% yield (78% based only in the consumed sucrose amount), giving also elevated activity of the β-fructofuranosidase enzyme (42.9 U/mL). In addition, no loss of material integrity, over a 2 day-period, was found. The fungus also immobilized well on stainless steel sponge (1.13 g/g carrier), but in lesser extents on polyurethane foam, zeolites, and pumice stones (0.48, 0.19, and 0.13 g/g carrier, respectively), while on foam glass no cell adhesion was observed. When compared with the FOS and β-fructofuranosidase production by free A. japonicus, the results achieved using cells immobilized on vegetal fiber were closely similar. It was thus concluded that A. japonicus immobilized on vegetal fiber is a potential alternative for high production of FOS at industrial scale.  相似文献   

4.
Development of suitable antimicrobial biomaterials for hygienic wound dressing and healing is an important requirement for medical application. Durable mechanical properties increase the application range of biomaterial in different environmental and biological conditions. Due to the inherent brittleness of silk fibroin (SF), polyurethane fiber (PUF) was used to modify SF containing actinomycin X2 (Ac.X2) to prepare silk fibroin@actinomycin X2/polyurethane fiber (ASF/PUF) blend membranes. The ASF/PUF blend membrane was developed by solution casting method. Incorporation of PUF improved the flexibility of material and introduction of Ac.X2 has increased antibacterial activity of materials. Excellent mechanical properties (tensile strength up to 25.7 MPa and elongation at break up to 946.5 %) of 50 % SF+50 % PUF blend membrane were proved by tensile testing machine. FT-IR spectra, TGA, contact angle and DMA were tested to prove the blend membrane's physico-chemical characteristics. ASF/PUF blend membrane displayed satisfactory antibacterial activity against S. aureus, and the cytotoxicity tests showed that the blend membrane has better biosafety compared to directly applied Ac.X2 in soluble form. These results suggest that the modification of SF through PUF for development of flexible antibacterial membranes has great potential application value in the field of silk-like material fabrication.  相似文献   

5.
An esterase, designated as PE8 (219 aa, 23.19 kDa), was cloned from a marine bacterium Pelagibacterium halotolerans B2T and overexpressed in Escherichia coli Rosetta, resulting an active, soluble protein which constituted 23.1% of the total cell protein content. Phylogenetic analysis of the protein showed it was a new member of family VI lipolytic enzymes. Biochemical characterization analysis showed that PE8 preferred short chain p-nitrophenyl esters (C2–C6), exhibited maximum activity toward p-nitrophenyl acetate, and was not a metalloenzyme. PE8 was an alkaline esterase with an optimal pH of 9.5 and an optimal temperature of 45 °C toward p-nitrophenyl acetate. Furthermore, it was found that PE8 exhibited activity and enantioselectivity in the synthesis of methyl (R)-3-(4-fluorophenyl)glutarate ((R)-3-MFG) from the prochiral dimethyl 3-(4-fluorophenyl)glutarate (3-DFG). (R)-3-MFG was obtained in 71.6% ee and 73.2% yield after 36 h reaction under optimized conditions (0.6 M phosphate buffer (pH 8.0) containing 17.5% 1,4-dioxane under 30 °C). In addition, PE8 was tolerant to extremely strong basic and high ionic strength solutions as it exhibited high activity even at pH 11.0 in 1 M phosphate buffer. Given its highly soluble expression, alkalitolerance, halotolerance and enantioselectivity, PE8 could be a promising candidate for the production of (R)-3-MFG in industry. The results also demonstrate the potential of the marine environment as a source of useful biocatalysts.  相似文献   

6.
Recombinant Escherichia coli JM101 was immobilized with porous polyurethane foam (PUF) particle as supporter matrix for human epidermal growth factor (hEGF) production. Flask culture showed that cell immobilization in PUF can improve cell growth and hEGF expression. A bubble column and a three-phase fluidized bed bioreactor by self-design was further applied to produce hEGF, respectively. The results demonstrated that PUF is a feasible immobilized supporter material with good biocompatibility. Immobilization could also decrease the probability for segregational plasmid loss and overgrowth of plasmid-free cells. Cell density, plasmid stability and hEGF productivity were higher than those without the foam matrix, respectively. hEGF productivity was enhanced from 8.73 mg/l h of free-culture to 11.4 mg/l h of immobilized cultivation.  相似文献   

7.
The microbody isoenzyme of malate dehydrogenase (EC 1.1.1.37) from leaves of Spinacia oleracea was purified to a specific activity of 3000 units/mg protein and examined for a number of physical, kinetic, and immunological properties. The purified enzyme has a molecular weight of approximately 70,000 and an isoelectric point of 5.65. Thermal inactivation first order rate constants were 0.068 (35 °C), 0.354 (45 °C), and 2.11 (55 °C) for irreversible denaturation. Apparent millimolar Michaelis constants are 0.34 (NAD, pH 8.5) 0.16 (NADH, pH 7.5), 3.33 (malate, pH 8.5), 0.07 (OAA, pH 6.0), 0.06 (OAA, pH 7.5), and 0.50 (OAA, pH 9.0). The enzyme is stablized by 20% glycerol and can be stored for several months at 4 °C without detectable loss of activity. The purified enzyme is sensitive to the ionic strength of the assay medium exhibiting a pH optimum of 5.65 at high ionic strength and 7.00 at low ionic strength. Rabbit antiserum prepared against the purified microbody MDH shows a single precipitin band on immunodiffusion analysis. Immunological studies indicate that rabbit antiserum prepared against the purified microbody enzyme cross reacts approximately 10% with the mitochondrial isoenzyme of MDH. No cross reaction was shown with the soluble isoenzyme. In general, the data presented in this report tend to support the notion of organelle specific isoenzymes of malate dehydrogenase in higher plant tissues and uniqueness of the microbody form of malate dehydrogenase in particular.  相似文献   

8.
The bovine milk lipocalin, β-Lactoglobulin (β-LG), has been associated with the binding and transport of small hydrophobic and amphiphilic compounds, whereby it is proposed to increase their bioavailability. We have studied the binding of the fluorescent phospholipid-derivative, NBD-didecanoylphosphatidylethanolamine (NBD-diC10PE) to β-LG by following the increase in amphiphile fluorescence upon binding to the protein using established methods. The equilibrium association constant, KB, was (1.2 ± 0.2) × 106 M− 1 at 25 °C, pH 7.4 and I = 0.15 M. Dependence of KB on pH and on the monomer-dimer equilibrium of β-LG gave insight on the nature of the binding site which is proposed to be the hydrophobic calyx formed by the β-barrel in the protein. The monomer-dimer equilibrium of β-LG was re-assessed using fluorescence anisotropy of Tryptophan. The equilibrium constant for dimerization, KD, was (7.0 ± 1.5) × 105 M− 1 at 25 °C, pH 7.4, and 0.15 M ionic strength. The exchange of NBD-diC10PE between β-LG and POPC lipid bilayers was followed by the change in NBD fluorescence. β-LG was shown to be a catalyst of phospholipid exchange between lipid bilayers, the mechanism possibly involving adsorption of the protein at the bilayer surface.  相似文献   

9.
Extracellular polymeric substances (EPS) play an important role in cell aggregation, cell adhesion, and biofilm formation, and protect cells from a hostile environment. The EPS was isolated by trichloroacetic acid/ethanol extraction from broth culture of a marine bacterium isolate. The EPS was composed of glucose and galactose as determined by HPLC and TLC; the protein content was on average 15 ± 5% of EPS dry mass. The solution structure of EPS at different values of pH was revealed by small-angle x-ray scattering. Scattering curves of EPS solutions (0.4%, w/v) consistently showed two nearly linear log-log regions with slopes a and b in the q-ranges from 0.06 nm−1 to 0.26 nm−1, and from 0.27 nm−1 to 0.88 nm−1, respectively. Slope a was sensitive to pH changes whereas slope b was not. The observed sensitivity to pH was not a consequence of ionic strength variation with pH, as checked by salt addition. The pH variation causes major rearrangements of EPS structure mainly at length scales above 24 nm. To get a better understanding of the pH effect on EPS structure, the original model proposed by Geissler was refined into a mathematical model that enabled fitting of the experimental scattering curves in the pH range from 0.7 to 11.0. The model describes EPS structure as a network of randomly coiled polymeric chains with denser domains of polymeric chains. The results obtained from the model indicate that dense domains increase in average size from 19 nm at pH 11.0 to 52 nm at pH 0.7. The average distance between the polysaccharide chains at pH 0.7 was 2.3 nm, which indicates a compact EPS structure. Swelling was found to be at a maximum around pH = 8.8, where the average distance between the chains was 4.8 nm.  相似文献   

10.
Summary Anchorage-dependent mammalian cells were cultivated at high cell density in a novel culture system using polyurethane foam (PUF) as a substratum for cell attachment. PUF has a macroporous structure giving a high surface area to volume ratio. Monkey kidney cells (Vero) and Chinese hamster ovary cells (CHO-K1) attached to the internal surface of PUF and grew to a high cell density (1.04 × 108 cells/ cm3 PUF and 3.5 × 107 cells/ cm3 PUF, respectively) in PUF stationary cultures. In addition, we have designed a PUF-particle packed-bed culture system for high density mass cell culture. A maximum cell density of 2.4 × 107 cells/cm3 culture vessel volume was obtained in a packed-bed culture of Vero cells. Offprint requests to: K. Funatsu  相似文献   

11.
A series of oligopeptides with β-forming and adhesive properties, were synthesized and analyzed for adhesion shear strength, secondary structure, and association properties. The sequences contained related hydrophobic core segments varying in length from 5 to 12 residues and flanked by di- or tri-lysine segments. Three remarkable peptides consisting of just 11 residues with hydrophobic core sequences of FLIVI, IGSII, and IVIGS flanked by three lysine residues gave the highest dry adhesion shear strength and displayed unusual biophysical properties in the presence and absence of water. KKKFLIVIKKK had its highest adhesion strength at 2% (w/v) at pH 12.0 and showed the highest adhesion strength after exposure to water (water resistance). Both KKKIGSIIKKK and KKKIVIGSKKK, at 4% (w/v) at pH 12.0, displayed nearly identical dry shear strength values to that with the FLIVI core sequence. The peptide with IGSII core, however, displayed a lower water resistance and the latter, IVIGS, showed no water resistance, completely delaminating upon soaking in water. These are the smallest peptides with adhesive properties reported to date and show remarkable adhesion strength even at lower concentrations of 0.2% (w/v), which corresponds to 1.6 mM. The FLIVI containing peptide adopted a β-sheet secondary structure in water while the IGSII- and IVIGS-containing sequences folded similarly only in the absence of water. Analytical ultracentrifugation studies showed that when the FLIVI sequence adopts β-structure in aqueous solution, it associates into a large molecular weight assembly. The random coils of IGSII and IVIGS showed no tendency to associate at any pH.  相似文献   

12.
The adhesion of Pseudomonas fluorescens (ATCC 17552) to nonpolarized and negatively polarized thin films of gold was studied in situ by contrast microscopy using a thin-film electrochemical flow cell. The influence of the electrochemical potential was evaluated at two different ionic strengths (0.01 and 0.1 M NaCl; pH 7) under controlled flow. Adhesion to nonpolarized gold surfaces readily increased with the time of exposition at both ionic-strength values. At negative potentials (−0.2 and −0.5 V [Ag/AgCl-KCl saturated {sat.}]), on the other hand, bacterial adhesion was strongly inhibited. At 0.01 M NaCl, the inhibition was almost total at both negative potentials, whereas at 0.1 M NaCl the inhibition was proportional to the magnitude of the potential, being almost total at −0.5 V. The existence of reversible adhesion was investigated by carrying out experiments under stagnant conditions. Reversible adhesion was observed only at potential values very close to the potential of zero charge of the gold surface (0.0 V [Ag/AgCl-KCl sat.]) at a high ionic strength (0.1 M NaCl). Theoretical calculations of the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy for the bacteria-gold interaction were in good agreement with experimental results at low ionic strength (0.01 M). At high ionic strength (0.1 M), deviations from DLVO behavior related to the participation of specific interactions were observed, when surfaces were polarized to negative potentials.  相似文献   

13.
Extracellular DNA (eDNA) is an important structural component of biofilms formed by many bacteria, but few reports have focused on its role in initial cell adhesion. The aim of this study was to investigate the role of eDNA in bacterial adhesion to abiotic surfaces, and determine to which extent eDNA-mediated adhesion depends on the physicochemical properties of the surface and surrounding liquid. We investigated eDNA alteration of cell surface hydrophobicity and zeta potential, and subsequently quantified the effect of eDNA on the adhesion of Staphylococcus xylosus to glass surfaces functionalised with different chemistries resulting in variable hydrophobicity and charge. Cell adhesion experiments were carried out at three different ionic strengths. Removal of eDNA from S. xylosus cells by DNase treatment did not alter the zeta potential, but rendered the cells more hydrophilic. DNase treatment impaired adhesion of cells to glass surfaces, but the adhesive properties of S. xylosus were regained within 30 minutes if DNase was not continuously present, implying a continuous release of eDNA in the culture. Removal of eDNA lowered the adhesion of S. xylosus to all surfaces chemistries tested, but not at all ionic strengths. No effect was seen on glass surfaces and carboxyl-functionalised surfaces at high ionic strength, and a reverse effect occurred on amine-functionalised surfaces at low ionic strength. However, eDNA promoted adhesion of cells to hydrophobic surfaces irrespective of the ionic strength. The adhesive properties of eDNA in mediating initial adhesion of S. xylosus is thus highly versatile, but also dependent on the physicochemical properties of the surface and ionic strength of the surrounding medium.  相似文献   

14.
Summary Monkey kidney cells (Vero) and Chinese hamster ovary cells (CHO-K1) attached to the internal surface of polyurethane foam (PUF) and grew to a high cell density (1.1 × 108 cells/cm3 PUF and 4.2 × 107 cells/cm3 PUF, respectively) in a PUF-plates packed-bed culture system. This density of Vero cells was twice that obtained previously with a PUF-particles packed-bed culture system. A maximum cell density of 6.7 × 107 cells/cm3 culture vessel volume was obtained in a PUF-disc packed-bed culture of Vero cells. From the cell density of CHO-K1, growing in a monolayer on the surface of PUF and a petri dish, per bulk volume of PUF, we estimated that a surface area to volume ratio of PUF plates effective for cell growth was about 109 cm2/cm3.Offprint requests to: K. Funatsu  相似文献   

15.
A heterologous direct competitive enzyme-linked immunosorbent assay (ELISA) for parathion residue determination is described based on a monoclonal antibody and a new competitor. The effects of several physicochemical factors, such as methanol concentration, ionic strength, pH value, and sample matrix, on the performance of the ELISA were optimized for the sake of obtaining a satisfactory assay sensitivity. Results showed that when the assay medium was in the optimized condition (phosphate buffer solution [PBS] containing 10% [v/v] methanol and 0.2 mol/L NaCl at a pH value of 5.0), the sensitivity (estimated as the IC50 value) and the limit of detection (LOD, estimated as the IC10 value) were 1.19 and 0.08 ng/ml, respectively. The precision investigation indicated that the intraassay precision values all were below 10% and that the interassay precision values ranged from 4.89 to 19.12%. In addition, the developed ELISA showed a good linear correlation (r2 = 0.9962) to gas chromatography within the analyte’s concentration range of 0.1 to 16 ng/ml. When applied to the fortified samples (parathion adding level: 5-15 μg/kg), the developed ELISA presented mean recoveries of 127.46, 122.52, 91.92, 124.01, 129.72, 99.37, and 87.17% for tomato, cucumber, banana, apple, orange, pear, and sugarcane, respectively. Results indicated that the established ELISA is a potential tool for parathion residue determination.  相似文献   

16.
The authors examined the presence of Substance P (SP) and Vasoactive Intestinal Polypeptide (VIP) and their related fibers in the pseudocapsule of uterine fibroids (PUF) and in normal myometrium (NM) during myomectomies in 57 non-pregnant women. 4 samples were removed from the normal myometrium (NM) and from PUF. The samples were sent for histological and immune-fluorescent investigations. SP and VIP values were found non-significantly higher in PUF than in NM: SP values were 10.2 ± 0.1 conventional units (C.U.) in PUF at the fundus of the uterus (FU) vs. 8.1 ± 0.6 C.U. of NM in the FU (p > 0.05), and SP values were 25.1 ± 0.9 C.U. in PUF in the uterine body (UB) compared to. 23.2 ± 1.4 C.U. of NM in the myometrium of the UB (p > 0.05). VIP values were 11.5 ± 0.9 C.U. in the PUF in FU compared to 9.8 ± 1.4 C.U. of NM in the FU (p > 0.05), and VIP values were 33.9 ± 3.9 C.U. in the PUF in the UB vs. 32.6 ± 4.8 C.U. of the NM in the UB (p > 0.05). These findings show that SP and VIP neurofibers are present in the fibroid pseudocapsule, similar to the values in the normal myometrium of a non-pregnant uterus. An intracapsular myoma excision which respects the pseudocapsule permits a physiological healing process of the uterine scar, due to a neurotransmitter sparing at the hysterotomic site. In women planning pregnancy, the myomectomy should be preferably performed respecting the pseudocapsule in order to preserve the neurotransmission.  相似文献   

17.
Antennal gustatory sensilla of the ground beetle Pterostichus aethiops (Pz., 1797) (Coleoptera, Carabidae) respond to salts, the three sensory cells, A-, B- and C-cells, producing action potentials that are distinguished by differences in their shape, amplitude, duration and polarity of spikes. The B-cell (salt cell) was highly sensitive to both ionic composition and concentration of the tested nine salt solutions showing phasic-tonic type of reaction with a pronounced phasic component. The stimulating effect was dominated by the cations involved, and in most cases, monovalent cations were more effective stimuli than divalent cations. Salt concentration/response relations were tested with NaCl at 1, 10, 100 and 1000 mmol l−1: mean firing rates increased from 0.8 to 44 spikes per first second of the response, respectively. The pH value of the stimulating solutions also influenced the B-cell rate of firing. By contrast, the pH level of stimulus solutions influenced the A-cells’ phasic-tonic response more than the ionic composition or concentration of these solutions. Compared to a standard 100 mmol l−1 salt (NaCl) solution (pH 6.3), alkaline solutions of the salts NaCH3COO, Na2HPO4 and Na2B4O7 (pH 7.9, 8.5 and 9.3, respectively, all 100 mmol l−1) induced remarkably stronger responses in the A-cell. On the other hand, the reaction to an acid solution of NaH2PO4 (pH 4.5, 100 mmol l−1) was minimal. A-cell responses to neutral salts like NaCl, KCl, CaCl2, MgCl2 and C5H14NOCl (pH 6.1-6.5) varied largely in strength. Very low or no responses were observed with chlorides of divalent cations, CaCl2 and MgCl2, and choline chloride (C5H14NOCl), indicating that the ionic composition of the solutions also affected A-cell responses. Neural activity of the C-cell was not influenced by the salt solutions tested.  相似文献   

18.
Due to their high porosity and biocompatibility, polyurethane foam (PUF) and cellulose foam were adopted for insect cell immobilization and baculovirus expression. Spodoptera frugiperda (SF-21) cells were grown within the macroporous matrix and then infected by Autographa californica nuclear polyhedrosis virus (AcNPV) which was encoded with human interleukin-5 (hIL-5) gene. An appropriate initial cell loading density and medium circulation velocity determined from the previous study were applied in this actual cell cultivation experiments to obtain a uniform initial and final axial cell distribution. The growth of insect cells and the expression of baculovirus were successful in the macroporous packed bed systems used. The final average cell density in cellulose foam achieved was 5.2×107?cells/cm3 and 4.3×107?cells/cm3 in PUF. Under the conditions of sufficient nutrition and oxygen supplement, the average productivity of hIL-5 in cellulose foam packed bed bioreactor reached 7.2×107 unit/l-day. With 50% fresh medium replacement after viral infection, the average productivity of hIL-5 in PUF packed bed reached 8.4×107 unit/l-day, about two fold than that without any fresh medium replacement at infection.  相似文献   

19.
Robust voltammetric responses were obtained for wild-type and Y72F/H83Q/Q107H/Y108F azurins adsorbed on CH3(CH2)nSH:HO(CH2)mSH (n = m = 4, 6, 8, 11; n = 13, 15 m = 11) self-assembled-monolayer (SAM) gold electrodes in acidic solution (pH 4.6) at high ionic strengths. Electron-transfer (ET) rates do not vary substantially with ionic strength, suggesting that the SAM methyl headgroup binds to azurin by hydrophobic interactions. The voltammetric responses for both proteins at higher pH values (>4.6-11) also were strong. A binding model in which the SAM hydroxyl headgroup interacts with the Asn47 carboxamide accounts for the relatively strong coupling to the copper center that can be inferred from the ET rates. Of particular interest is the finding that rate constants for electron tunneling through n = 8, 13 SAMs are higher at pH 11 than those at pH 4.6, possibly owing to enhanced coupling of the SAM to Asn47 caused by deprotonation of nearby surface residues.  相似文献   

20.
A method has been described for obtaining coimmobilizates by the simultaneous binding of glucose oxidase to the cell and the enzyme-bound cell to cotton thread through adhesion using polyethylenimine (PEI). Glucose oxidase was found to adsorb onto PEI-coated yeast cells from a water suspension. The desorption observed at higher ionic strength could be obviated by cross-linking with 2% glutaraldehyde for 2 min. The enzyme-bound yeast cells could then be immobilized by adhesion on cotton thread. The coimmobilizate could be reused for over 10 batches without appreciable loss in activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号