首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ghrelin is mainly produced in the stomach and has several physiologic functions. The aim of this study was to investigate whether ghrelin regulates apoptosis in the small intestinal mucosa of fasting rats. Intestinal mucosal apoptosis was evaluated as the percentage of fragmented DNA, villus height, and terminal deoxynucleotidyl transferase-mediated dUDP-biotin nick end-labeling (TUNEL) staining and by Western blot analysis of caspase-3 in 48-hr fasting rats. Crypt cell proliferation was evaluated by counting the number of 5-bromo-2-deoxyuridine (BrdU) positive cells. Ghrelin was administered intraperitoneally at dosages of 2.5, 25, and 250 microg/kg per 48 hrs by continuous infusion via an Alzet micro-osmotic pump or injections at 12-hr intervals. Ghrelin was also infused in rats that underwent truncal vagotomy. The lowest dosage of ghrelin (2.5 microg/kg per 48 hrs) was administered into the third cerebroventricle. Ghrelin treatment attenuated the percentage of fragmented DNA in the small intestinal mucosa in 48-hr fasting rats in a dose-dependent manner. Continuous infusion of ghrelin and injections of ghrelin at 12-hr intervals suppressed intestinal apoptosis almost equally. This effect on apoptosis was not attenuated by truncal vagotomy. Cerebroventricular infusion of ghrelin also attenuated intestinal apoptosis. The antiapoptotic effect of ghrelin was confirmed by decreased TUNEL staining, recovery of the villus height, and decreased expression of caspase-3. BrdU uptake indicated that ghrelin enhanced cell proliferation in the intestinal crypt. Taken together, these data indicate that ghrelin enhanced intestinal growth with the suppression of small intestinal mucosal apoptosis in 48-hr fasting rats, suggesting that ghrelin controls intestinal function through the regulation of intestinal apoptosis.  相似文献   

2.
We have previously demonstrated that fasting induced apoptosis and decreased cell proliferation in the rat intestinal mucosa. The aim was to investigate the effect of expanded polystyrene as indigestible material on apoptosis and cell proliferation in rat small intestinal mucosa during fasting. Male SD rats were divided into 3 groups. The first group was fed with chow and water ad libitum. The second group fasted for 72 hrs. The third group was fasted for 24 hrs and was fed expanded polystyrene. Intestinal apoptosis was evaluated by percent fragmented DNA assay, terminal deoxynucleotidyl transferase-mediated dUDP-biotin nick end-labeling (TUNEL) staining, and caspase-3 assay. Cell proliferation was analyzed by 5-bromo-2'-deoxyuridine (5-BrdU) uptake. Truncal vagotomy was performed to evaluate a role of the central nervous system. In the 72-hr fasted rat, mucosal height of the rat jejunum was decreased to 73% of that in rats fed ad libitum, and this decrease was partly restored to 90% in rats fed expanded polystyrene. The fragmented DNA was increased in fasted rats (28.0%) when compared with that in rats fed ad libitum (2.6%). The increase in fragmented DNA in fasted rats was recovered by feeding them expanded polystyrene (8.3%). TUNEL staining confirmed this result. The effect of polystyrene on apoptosis was decreased by truncal vagotomy. Expression of cleaved caspase-3 was increased in fasted rats, which was then decreased by feeding of expanded polystyrene. In contrast to apoptosis, feeding of expanded polystyrene had no reconstructive effect on 5-BrdU uptake in the intestinal epithelium, which was decreased by fasting to 60% of that in rats fed ad libitum. In conclusion, feeding of indigestible material partly restored the decrease in intestinal mucosal length in the fasted rats through the apoptotic pathway without any influence on BrdU uptake. Further exploration focused on the mechanism of this effect of indigestible material is required.  相似文献   

3.
Polidori C  Luciani F  Fedeli A  Geary N  Massi M 《Peptides》2003,24(9):1441-1444
Leptin, a hormone secreted by the adipocytes and involved in feeding and energy balance control, has been proposed to modulate alcohol craving in mice and humans. This study evaluated whether leptin modulates alcohol intake in Marchigian Sardinian alcohol-preferring (msP) rats. Rats were offered 10% ethanol either 2h per day at the beginning of dark period of the 12:12h light/dark cycle, or 24h per day. Leptin was injected into the lateral ventricle (LV), the third ventricle (3V), or intraperitoneally (IP) once a day, 1h before the onset of the dark period. Neither acute nor chronic (9 days) leptin injections (1 or 8microg per rat) into the LV or 3V modified ethanol intake in male msP rats, offered ethanol 2h per day. Chronic LV injection of leptin (8 or 32 microg per rat in male rats and 8 or 16 microg per rat in female rats for 7 days), or chronic IP injections of leptin (1mg/kg in male rats for 5 days) failed to modify the intake of ethanol, offered 24h per day. Finally, chronic LV leptin injections (8 or 32 microg per rat for 12 days) did not modify ethanol intake in male msP rats, adapted to ad libitum access to ethanol and then tested after a 6-day period of ethanol deprivation. In contrast, in most of these conditions leptin significantly reduced food intake. These data do not support a role for leptin in alcohol intake, preference, or craving in msP rats.  相似文献   

4.
Leptin, a hormone produced by adipocytes, has been shown to affect a number of central functions, such as regulation of the hypothalamo-pituitary-adrenal axis, feeding, and body weight regulation. Because hypothalamic monoamines are intricately involved in the regulation of these functions, we hypothesized that leptin may produce its effects by altering the activity of these neurotransmitters. To test this hypothesis, male rats received peripheral (0, 100, or 500 microg ip), or central (0 or 5 microg icv) injections of leptin. The animals were killed 5 h later, and their brains were removed, frozen, and sectioned. Serum was collected to measure leptin and corticosterone by RIA. The paraventricular nucleus (PVN), arcuate nucleus (AN), ventromedial hypothalamus (VMH), dorsomedial dorsal nucleus (DMD), median eminence (ME), and medial preoptic area (MPA) were obtained using Palkovits' microdissection technique, and monoamine concentrations in these areas were determined using HPLC-EC. Intraperitoneal administration of leptin increased serum leptin concentrations in a dose-dependent manner (P < 0.05). Both intraperitoneal and intracerebroventricular administration of leptin decreased serum corticosterone significantly (P < 0.05). Norepinephrine (NE) concentration decreased significantly in the PVN, AN, and VMH after both intraperitoneal and intracerebroventricular administration of leptin (P < 0.05). NE concentrations decreased significantly in the DMN after intracerebroventricular administration of leptin (P < 0.05). Leptin treatment (both ip and icv) decreased dopamine concentrations significantly in the PVN. Serotonin (5-HT) concentration decreased significantly in the PVN after both intraperitoneal and intracerebroventricular injections of leptin and decreased in the VMH only with intracerebroventricular treatment of leptin. Leptin did not affect any of the monoamines in the ME and MPA. These results indicate that both central and systemic administration of leptin can affect hypothalamic monoamines in a region-specific manner, which, in turn, could mediate many of leptin's central and neuroendocrine effects.  相似文献   

5.
Recent findings show that ciliary neurotrophic factor (CNTF) and leptin have similar effects on food intake and body weight, suggesting possible overlapping mechanisms. Intracerebroventricular (icv) injection of leptin results in adipose tissue apoptosis. To determine if CNTF has similar activity, male Sprague Dawley rats implanted with lateral cerebroventricular cannulas were randomly assigned to four treatment groups ( N = 8), including control (aCSF), 10 microg/day leptin, 1 microg/day CNTF, and 5 microg/day CNTF. Rats received daily icv injections for 4 successive days. Both leptin and CNTF (5 microg) decreased BW (8.6% and 11.77%, respectively, p <.05) and cumulative food intake was decreased 43% by leptin ( p <.05). Leptin and CNTF (5 microg) reduced adipose tissue mass in epididymal adipose (Epi) by 30 and 33.5%, ( p <.05), in inguinal adipose (Ing) by 51 and 55% ( p <.05), in retroperitoneal adipose (Rp) by 65 and 64% ( p <.05), and in intrascapular brown adipose (iBAT) by 34 and 25% ( p <.05), respectively. Gastrocnemius muscle was not affected. Leptin and CNTF (5 microg) increased apoptosis in Epi by 84 and 150%, respectively ( p <.05) and in Rp by 121 and 146%, respectively ( p <.05). Loss of adipocytes by apoptosis may provide an explanation for the unexpected delay in return to initial energy status following CNTF treatments.  相似文献   

6.
Obese Zucker rats (fa/fa) are characterized by inadequate leptin signaling caused by a mutation in the leptin receptor gene. Obese Zucker females are infertile and hyporesponsive to the inductive effects of ovarian hormones on sexual behaviors. Leptin treatment reverses aspects of reproductive dysfunction due to perturbations in energy balance in other animal models. Our first experiment tested the hypothesis that intracerebroventricular (icv) leptin administration would enhance the display of sexual behaviors in obese Zucker females. A second experiment compared lean and obese Zucker females' responses to leptin, during fed and fasted conditions. Ovariectomized (OVX) Zucker rats were implanted with lateral ventricular cannulae. In Experiment 1, fasted, obese females received estradiol benzoate, progesterone, and icv injections of 3, 18, or 36 microg murine leptin or vehicle. Leptin administration reduced food intake, but did not enhance sexual behaviors. In Experiment 2, steroid-replaced, OVX lean and obese females (from a different source than those in Experiment 1) received icv injections of vehicle or 3 or 36 microg leptin under fed and fasted conditions. Leptin treatment reduced food intake and weight gain in the fed, but not the fasted, condition in both genotypes. Sexual receptivity and locomotion were not affected, but icv leptin injections reduced proceptive behaviors in ad libitum-fed rats. These data confirm previous reports that centrally administered leptin decreases food intake and weight gain in obese Zucker rats; results from Experiment 2 suggest that lean and obese females are similarly responsive to these actions of leptin. Contrary to our hypothesis, leptin treatment did not stimulate sexual behaviors; rather, the hormone appears to inhibit the display of sexual proceptivity in ad libitum-fed lean and obese Zucker female rats.  相似文献   

7.
Leptin regulates energy homeostasis and body weight by balancing energy intake and expenditure. It was recently reported that leptin, released into the gut lumen during the cephalic phase of gastric secretion, is capable of initiating intestinal nutrient absorption. Vagal afferent neurons also express receptors for both CCK and leptin, which are believed to interact in controlling food intake. The present study was undertaken to investigate the central and peripheral effects of leptin on gastric emptying rate. Under anesthesia, male Sprague-Dawley rats (250-300 g) were fitted with gastric Gregory cannulas (n=12) and some had additional cerebroventricular cannulas inserted into their right lateral ventricles. Following recovery, the rate of gastric emptying of saline (300 mOsm/kg H(2)O) was determined after instillation into the gastric fistula (3 ml, 37 degrees C, containing phenol red, 60 mg/l as a non-absorbable dilution marker). Gastric emptying rate was determined from the volume and phenol red concentrations recovered after 5 min. Leptin, injected intraperitoneally (i.p.; 10, 30, 60, 100 microg/kg) or intracerebroventricularly (i.c.v.; 5, 15 microg/rat) 15 min before the emptying, delayed gastric emptying rate of saline at the dose of 30 microg/kg or 15 microg/rat (p<0.001). When CCK(1) receptor blocker L-364,718 (1 mg/kg, i.p.), CCK(2) receptor blocker L-365,260 (1 mg/kg, ip) or adrenergic ganglion blocker bretylium tosylate (15 mg/kg, i.p.) was administered 15 min before ip leptin (30 microg/kg) injections, leptin-induced delay in gastric emptying was abolished only by the CCK(1) receptor blocker (p<0.001). However, the inhibitory effect of central leptin on gastric emptying was reversed by adrenergic blockade, but not by either CCK antagonists. Our results demonstrated that leptin delays gastric emptying. The peripheral effect of leptin on gastric motility appears to be mediated by CCK(1) receptors, suggesting the release of CCK and the involvement of vagal afferent fibers. On the other hand, the central effect of leptin on gastric emptying is likely to be mediated by adrenergic neurons. These results indicate the existence of a functional interaction between leptin and CCK receptors leading to inhibition of gastric emptying and short-term suppression of food intake, providing an additional feedback control in producing satiety.  相似文献   

8.
Leptin interplays with other peptides to control feeding behaviour in humans and animals. Using exendin-4, an agonist of glucagon-like peptide-1, we investigated whether leptin modifies its effect on food intake in the rat. In the first series, exendin-4 alone (0.1, 2 or 10 microg per rat), leptin alone (0.1, 2, 10 or 100 microg per rat) or exendin-4 and leptin together (0.1 + 0.1, 2 + 2, 10 + 10, or 2 + 100 microg per rat, respectively) were injected once intraperitoneally. In the second series animals were injected either with exendin-4 (2 microg) alone, leptin (10 microg) alone, or leptin (10 microg) + exendin-4 (2 microg) daily for 5 subsequent days. At the lowest dose used, leptin and exendin-4 injected once together, but not separately, reduced significantly a 24-hour food intake. When used in higher doses, however, leptin did not change the exendin-4-dependent suppressory effect on food consumption. No significant differences in food intake were seen between rats treated repeatedly with exendin-4 only and animals injected with both drugs. Hence, leptin and exendin-4 may act additively to inhibit appetite when present in low concentrations while, at high leptin doses, this effect is abolished. The lack of synergistic effects of exendin-4 and high leptin concentrations on food intake may explain, at least in part, mechanisms responsible for leptin resistance in subjects with hyperleptinaemia.  相似文献   

9.
Many peptides, hormones and growth factors have been implicated in the control of cell renewal in the gastrointestinal epithelium. Leptin is present in the stomach and salivary glands and leptin receptors are seen throughout the gut. Leptin can stimulate mitogen-activated protein kinase activity in vitro and short-term infusion has been reported to have a proliferative action on the colon in vivo, suggesting a biological link between obesity, physical activity and colon cancer. Food intake is one of the most important determinants of intestinal mucosal cell renewal, thus any direct effects of leptin on the gut may be hidden. This problem has been avoided experimentally by maintaining animals on total parenteral nutrition (TPN). Male Wistar rats were anaesthetized and cannulae were inserted into the jugular vein to deliver the TPN diet to which had been added 0, 0.5, 2.5, or 10 mg/kg of recombinant murine leptin. Orally fed rats were also studied. After 6 days of treatment, all animals were injected with vincristine and killed 2 h later. Tissue weight was recorded and crypt cell proliferation (arrested metaphases) and crypt fission were scored in 'microdissected' crypts. Leptin infusion led to a small decrease in body weight and in the weight of the caecum. Intestinal cell proliferation was significantly reduced by TPN when compared to the orally fed rats, but the addition of leptin had no effect on the small intestine or colon. Crypt fission was also significantly lowered in the TPN group. Fission was slightly but significantly increased in the proximal and mid-colon of the leptin-treated rats, but was decreased in the distal colon. Although leptin did not significantly alter cell proliferation, it had significant effects on the process of crypt fission in the colon, which varied according to the exact locality.  相似文献   

10.
The present study was designed to determine whether exogenous leptin reduces remote organ injury in the rats with thermal burn trauma. Leptin (10 microg/kg) or saline was administered intraperitoneally after burn injury, and the rats were decapitated at either 6 or 24 h. Plasma samples of 24-h burn group were assayed for the determination of monocyte and neutrophil apoptosis. Thermal injury increased tissue-associated myeloperoxidase (MPO) activity and microscopic damage scores in the lung, liver, stomach, colon and kidney of both 6- and 24-h burn groups. In the 6-h burn group, leptin reduced microscopic damage score in the liver and kidney only, while damage scores in the 24-h burn group were reduced in all the tissues except the lung. Also, in both burn groups, leptin reduced elevated MPO activity in all tissues except the lung. The percentage of mononuclear cells was significantly reduced at the 24 h of burn injury, while the granulocyte percentage was increased. Leptin treatment, however, had no significant effect on burn-induced reversal of white blood cell ratios. On the other hand, burn-induced increase in the death of mononuclear cells and granulocytes was significantly reduced in leptin-treated rats. The results of the present study suggest that leptin may provide a therapeutic benefit in diminishing burn-induced inflammation and associated multiple organ failure.  相似文献   

11.
Food deprivation stimulates foraging and hoarding and to a much lesser extent, food intake in Siberian hamsters. Leptin, the anorexigenic hormone secreted primarily from adipocytes, may act in the periphery, the brain, or both to inhibit these ingestive behaviors. Therefore, we tested whether leptin given either intracerebroventricularly or intraperitoneally, would block food deprivation-induced increases in food hoarding, foraging, and intake in animals with differing foraging requirements. Hamsters were trained in a running wheel-based food delivery foraging system coupled with simulated burrow housing. We determined the effects of food deprivation and several peripheral doses of leptin on plasma leptin concentrations. Hamsters were then food deprived for 48 h and given leptin (0, 10, 40, or 80 microg ip), and additional hamsters were food deprived for 48 h and given leptin (0, 1.25, 2.5, or 5.0 microg icv). Foraging, food intake, and hoarding were measured postinjection. Food deprivation stimulated food hoarding to a greater degree and duration than food intake. In animals with a foraging requirement, intracerebroventricular leptin almost completely blocked food deprivation-induced increased food hoarding and intake, but increased foraging. Peripheral leptin treatment was most effective in a sedentary control group, completely inhibiting food deprivation-induced increased food hoarding and intake at the two highest doses, and did not affect foraging at any dose. Thus, the ability of leptin to inhibit food deprivation-induced increases in ingestive behaviors differs based on foraging effort (energy expenditure) and the route of administration of leptin administration.  相似文献   

12.
Synergistic interaction between CCK and leptin to regulate food intake   总被引:12,自引:0,他引:12  
Leptin administered (either intracerebroventricularly, icv, or intraperitoneally, ip) acts in synergy with CCK to suppress food intake and body weight in lean mice or rats. The potentiating effect induced by the co-injection of ip CCK and leptin to inhibit food consumption in mice is mediated by the CCK-A receptor and capsaicin sensitive afferents. In vitro, studies in rats showed that a subset of gastric vagal afferent fibers responded to leptin injected directly into the gastric artery only after a prior intra-arterial CCK injection. Moreover, the tonic activity of gastric-related neurons in the nucleus tractus solitarius (NTS) increased when leptin was delivered into the gastric chamber of an in vitro stomach-brainstem preparation. CCK co-injected with leptin potentiated Fos expression selectively in the area postrema, NTS and paraventricular nucleus of the hypothalamus (PVN), which points to the PVN as part of the afferent and efferent limbs of the circuitry involved in the synergistic interaction between leptin and CCK. The dampening of CCK or leptin inhibitory action on ingestive behavior when either factor is not present or their receptors are non functional supports the notion that such leptin-CCK interaction may have a physiological relevance. These observations provide a mean through which leptin and CCK integrate short- and mid-term meal-related input signals into long-term control of energy balance.  相似文献   

13.
We had previously demonstrated that indomethacin affected the corticosterone secretion induced by central stimulation of alpha-but not beta-adrenergic receptors in conscious rats. In the present study we investigated whether hypothalamic and/or pituitary prostaglandins (PGs) were involved in the central adrenergic stimulation of ACTH secretion. Indomethacin, 2 mg/kg ip or 10 microg intracerebroventricularly (icv), was administered 15 min before phenylephrine (30 microg icv), an alpha-adrenergic agonist, clonidine (10 microg), an alpha2-adrenergic agonist, and isoprenaline (20 microg) or clenbuterol (10 microg), a beta1- or beta2-adrenergic agonist. One hour after the last injection the rats were decapitated and plasma levels of ACTH were measured. The present results show that the ACTH responses induced by icv administration of phenylephrine and clonidine were considerably impaired by icv or ip pretreatment with indomethacin, an inhibitor of prostaglandin synthesis. Indomethacin given by either route only slightly diminished the isoprenaline-induced ACTH response and did not substantially alter the clenbuterol-induced response. The adrenergic-induced ACTH responses were more potently inhibited by ip than by icv pretreatment with indomethacin, which may result from a stronger inhibition of PGs synthesis in the median eminence and anterior pituitary by ip pretreatment with indomethacin than in hypothalamic structures by its icv administration. These results indicate a significant involvement of PGs in central stimulation of the hypothalamic-pituitary adrenal (HPA) axis by alpha1- and alpha2- but not beta-adrenergic receptors.  相似文献   

14.
We have previously demonstrated that fasting and ischemia-reperfusion (I/R) induced apoptosis in rat intestinal mucosa. It is widely accepted that apoptosis is induced through two main pathways. This study aimed to compare apoptotic pathways following fasting and I/R. Rats were divided into two groups: the I/R group involved occlusion of the superior mesenteric artery for 60 min, followed by 60-min reperfusion, whereas the fasting group involved fasting for 24 or 48 h. Intestinal apoptosis was assessed as percentage of fragmented DNA, by electrophoresis and by a terminal deoxynucleotidyl transferase mediated dUDP-biotin nick- end labeling (TUNEL) assay. Apoptotic proteins including death ligands/receptors and caspases were evaluated by Western blot analysis. Small intestinal mucosal height and mitochondrial dehydrogenase function were assessed. Fasting and I/R significantly induced intestinal apoptosis. Mucosal height was significantly decreased in fasting rats, and mitochondrial dysfunction was induced only by I/R. Expressions of Fas, Fas ligand, and TNF-alpha type 1 receptor were enhanced in fasting and I/R rats. After I/R, expressions of cytochrome c and cleaved caspase-9 were significantly increased. In contrast, expressions of cleaved caspase-8 and cleaved caspase-3 increased in fasting rats. Fasting promoted mucosal apoptosis via a receptor-mediated type I apoptotic pathway in the rat small intestine, and I/R induced apoptosis via a mitochondria-mediated type II pathway.  相似文献   

15.
Leptin has been suggested to be involved in tissue injury and/or mucosal defence mechanisms. Here, we studied the effects of leptin on colonic mucus secretion and rat mucin 2 (rMuc2) expression. Wistar rats and ob/ob mice were used. Secretion of mucus was followed in vivo in the rat perfused colon model. Mucus secretion was quantified by ELISA, and rMuc2 mRNA levels were quantified by real-time RT PCR. The effects of leptin alone or in association with protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) inhibitors on mucin secreted by human mucus-secreting HT29-MTX cells were determined. Leptin was detected in the rat colonic lumen at substantial levels. Luminal perfusion of leptin stimulates mucus-secreting goblet cells in a dose-dependent manner in vivo in the rat. Leptin (10 nmol/l) increased mucus secretion by a factor of 3.5 and doubled rMuc2 mRNA levels in the colonic mucosa. There was no damage to mucosa 24 h after leptin, but the number of stained mucus cells significantly increased. Leptin-deficient ob/ob mice have abnormally dense mucus-filled goblet cells. In human colonic goblet-like HT29-MTX cells expressing leptin receptors, leptin increased mucin secretion by activating PKC- and PI3K-dependent pathways. This is the first demonstration that leptin, acting from the luminal side, controls the function of mucus-secreting goblet cells. Because the gel layer formed by mucus at the surface of the intestinal epithelium has a barrier function, our data may be relevant physiologically in defence mechanisms of the gastrointestinal tract.  相似文献   

16.
To investigate the site-dependent functional difference in the small intestine, proteomic analysis was carried out on the three distinct parts of the rat small intestine. Male Wistar rats (7 weeks old) were fed a semi-purified diet ad libitum for 1 week. Intestinal tissues from the proximal, middle and distal regions of the small intestine were subjected to two-dimensional polyacrylamide gel electrophoresis, and the abundance of each spot was determined fluorometrically. MALDI-TOF/MS and LC-MS/MS analysis of the tryptic peptides were performed to identify the proteins. Many of the 180 identified proteins showed a distinctive distribution pattern along the small intestine. Glutathione S-transferase, Catechol O-methyltransferase and Villin 2 decreased gradually from the jejunum to the ileum, in contrast, non-specific dipeptidase and Keratin 19 increased gradually toward the ileum. The voltage-dependent anion channel 2 was most abundant in the duodenum while the L- and I-Fatty acid binding protein (FABP) and Cellular retinol binding protein (CRBP-II) were in the jejunum, and the Bile acid binding protein (BABP) was only observed in the ileum. The findings of these and of another proteins identified in this study may contribute to further understanding of the small intestinal function, and to clinical applications of small intestinal diseases.  相似文献   

17.
Role of leptin in the control of postprandial pancreatic enzyme secretion.   总被引:3,自引:0,他引:3  
Leptin released by adipocytes has been implicated in the control of food intake but recent detection of specific leptin receptors in the pancreas suggests that this peptide may also play some role in the modulation of pancreatic function. This study was undertaken to examine the effect of exogenous leptin on pancreatic enzyme secretion in vitro using isolated pancreatic acini, or in vivo in conscious rats with chronic pancreatic fistulae. Leptin plasma level was measured by radioimmunoassay following leptin administration to the animals. Intraperitoneal (i.p.) administration of leptin (0.1, 1, 5, 10, 20 or 50 microg/kg), failed to affect significantly basal secretion of pancreatic protein, but markedly reduced that stimulated by feeding. The strongest inhibition has been observed at dose of 10 microg/kg of leptin. Under basal conditions plasma leptin level averaged about 0.15 +/- 0.04 ng/ml and was increased by feeding up to 1.8 +/- 0.4 ng/ml. Administration of leptin dose-dependently augmented this plasma leptin level, reaching about 0.65 +/- 0.04 ng/ml at dose of 10 microg/kg of leptin. This dose of leptin completely abolished increase of pancreatic protein output produced by ordinary feeding, sham feeding or by diversion of pancreatic juice to the exterior. Leptin (10(-10)-10(-7) M) also dose-dependently attenuated caerulein-induced amylase release from isolated pancreatic acini, whereas basal enzyme secretion was unaffected. We conclude that leptin could take a part in the inhibition of postprandial pancreatic secretion and this effect could be related, at least in part, to the direct action of this peptide on pancreatic acini.  相似文献   

18.
Does leptin play a vital role in initiating puberty in female rats and can it overrule a nutrionally imposed (i.e. a 30% feed restriction, FR) delay in puberty onset? Prepubertal female rats were chronically infused for 14 days with leptin (icv or sc) or leptin-antiserum (icv) while puberty onset was monitored by means of scoring the moment of vaginal opening (VO). Median VO age was higher (35 days versus 27 days) in FR animals but leptin levels at VO were significantly decreased (1.44 +/- 0.17 ng/ml versus 2.79 +/- 0.31 ng/ml). Centrally (icv) and peripherally (sc) infused leptin (1 microg/day) advanced VO age compared to FR controls (30 days versus 35 days and 31 days versus 41 days, respectively). Congruently, centrally (icv) administered leptin-antiserum (0.6 microg/day) delayed puberty onset. In normally fed rats median VO age was only marginally advanced (26 days versus 27 days) but only if leptin was applied centrally. The effects of FR on puberty onset are counteracted or even normalized by the infusion of leptin, whereas immunoneutralization of central leptin postpones puberty onset. We therefore conclude that central leptin is crucial for initiating puberty in female rats.  相似文献   

19.
Acute administration of peptide YY(3-36) [PYY(3-36)] results in a reduction in food intake in several different vertebrates. However, long-term continuous administration of PYY(3-36) causes only a transient reduction in food intake, thus potentially limiting its therapeutic efficacy. We hypothesized that a fall in leptin levels associated with reduced food intake could contribute to the transient anorectic effects of continuous PYY(3-36) infusion and thus that leptin replacement might prolong the anorectic effects of PYY(3-36). Seven-day administration of 100 microg x kg body wt(-1) x day(-1) PYY(3-36) using osmotic minipumps caused a significant reduction in food intake of ad libitum-fed rats, but only for the first 2 days postimplantation. Circulating levels of leptin were reduced 1 day following continuous infusion of PYY(3-36), and combined leptin infusion at a dose of leptin that had no anorectic effects on its own (100 microg x kg body wt(-1) x day(-1)) prolonged the anorectic actions of PYY(3-36) in ad libitum-fed rats for up to 6 days postimplantation and yielded reduced weight gain compared with either peptide alone. The inhibitory effects of 100 microg x kg body wt(-1) x day(-1) PYY(3-36) on food intake were absent in rats refed after a 24-h fast and substantially reduced at a dose of 1,000 microg x kg body wt(-1) x day(-1) PYY(3-36). Leptin replacement was unable to recover the anorectic effects of PYY(3-36) in fasted rats. Our results suggest that an acute fall in leptin levels is not solely responsible for limiting duration of action of chronic PYY(3-36) infusion, yet chronic coadministration of a subanorectic dose of leptin can extend the anorectic effects of PYY(3-36).  相似文献   

20.
In humans there is a circadian rhythm of leptin concentrations in plasma with a minimum in the early morning and a maximum in the middle of the night. By taking blood samples from adult male rats every 3 hr for 24 hr, we determined that a circadian rhythm of plasma leptin concentrations also occurs in the rat with a peak at 0130h and a minimum at 0730h. To determine if this rhythm is controlled by nocturnally released hormones, we evaluated the effect of hormones known to be released at night in humans, some of which are also known to be released at night in rats. In humans, prolactin (PRL), growth hormone (GH), and melatonin are known to be released at night, and adrenocorticotropic hormone (ACTH) release is inhibited. In these experiments, conscious rats were injected intravenously with 0.5 ml diluent or the substance to be evaluated just after removal of the first blood sample (0.3 ml), and additional blood samples (0.3 ml) were drawn every 10 min thereafter for 2 hr. The injection of highly purified sheep PRL (500 microg) produced a rapid increase in plasma leptin that persisted for the duration of the experiment. Lower doses were ineffective. To determine the effect of blockade of PRL secretion on leptin secretion, alpha bromoergocryptine (1.5 mg), a dopamine-2-receptor agonist that rapidly inhibits PRL release, was injected. It produced a rapid decline in plasma leptin within 10 min, and the decline persisted for 120 min. The minimal effective dose of GH to lower plasma leptin was 1 mg/rat. Insulin-like growth factor (IGF-1) (10 microg), but not IGF-2 (10 microg), also significantly decreased plasma leptin. Melatonin, known to be nocturnally released in humans and rats, was injected at a dose of 1 mg/rat during daytime (1100h) or nighttime (2300h). It did not alter leptin release significantly. Dexamethasone (DEX), a potent glucocorticoid, was ineffective at a 0. 1-mg dose but produced a delayed, significant increase in leptin, manifest 100-120 min after injection of a 1 mg dose. Since glucocorticoids decrease at night in humans at the time of the maximum plasma concentrations of leptin, we hypothesize that this increase in leptin from a relatively high dose of DEX would mimic the response to the release of corticosterone following stress in the rat and that glucocorticoids are not responsible for the circadian rhythm of leptin concentration. Therefore, we conclude that an increase in PRL secretion during the night may be responsible, at least in part, for the nocturnal elevation of leptin concentrations observed in rats and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号