共查询到20条相似文献,搜索用时 6 毫秒
1.
Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance
and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism,
it has been found that palmitate inhibits insulin receptor (IR) gene expression, leading to a reduced amount of IR protein
in insulin target cells. PDK1-independent phosphorylation of PKCε causes this reduction in insulin receptor gene expression. One of the pathways through which fatty acid can induce insulin
resistance in insulin target cells is suggested by these studies. We provide an overview of this important area, emphasizing
the current status. 相似文献
2.
Insulin resistance (IR) in childhood has importance to the understanding and prevention of the growing epidemic of insulin
resistance syndrome (IRS) in adults with attendant obesity, type 2 diabetes (T2DM), atherosclerotic diseases, hypertension,
gout, non-alcoholic, steato-hepatitis (NASH), gall bladder disease, nephropathy, polycystic ovarian disease (PCOS), infertility
and premature senility. The severity of IR and its’ complications in children unfortunately and usually progresses in their
pubertal transition to adulthood; affected young children are more likely than adults to have underlying causal monogenic
disorders; the sequence of natural history and events give insights into disease pathogeneses, and optimal life style choices
that last are best made during the early formative years. Some features of IR in children discussed herein are: a strong tendency
to low birth weight for gestational age, adverse effects of adrenarche and therapeutic steroid therapy, predisposition to
premature pubarche, acanthosis nigricans, tall stature despite pituitary GH suppression, allergic diathesis, hyperandrogenism
and PCOS, dyslipidemia and fatty liver disease, and diagnosis by clinical and biochemical markers of IR including insulin
regulated hepatic hormonal binding proteins such as IGFBP-1. The national preoccupation with the “metabolic syndrome” T2DM
and obesity, should be appropriately directed to an improved understanding of IR in children and their management, if the
looming health crisis in affected adults is to be seriously addressed. The nation is facing its’ first generation of children
who will be less healthy and die younger than the previous generation (Marks (2005) Presentation to the American Association
of Diabetes Educators 32nd Annual Meeting and Exhibition, August 10–13, Washington, DC). 相似文献
3.
4.
L. S. Litvinova E. V. Kirienkova I. O. Mazunin M. A. Vasilenko N. S. Fattakhov 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2014,8(3):192-202
This review considers molecular mechanisms of insulin resistance developed under conditions of metabolic inflammation; special attention is paid to analysis of the results of experimental and clinical studies work aimed at identifying molecular targets for the development of new methods for prevention and treatment of insulin resistance. 相似文献
5.
6.
Oike Y Akao M Yasunaga K Yamauchi T Morisada T Ito Y Urano T Kimura Y Kubota Y Maekawa H Miyamoto T Miyata K Matsumoto S Sakai J Nakagata N Takeya M Koseki H Ogawa Y Kadowaki T Suda T 《Nature medicine》2005,11(4):400-408
Angiopoietin-related growth factor (AGF), a member of the angiopoietin-like protein (Angptl) family, is secreted predominantly from the liver into the systemic circulation. Here, we show that most (>80%) of the AGF-deficient mice die at about embryonic day 13, whereas the surviving AGF-deficient mice develop marked obesity, lipid accumulation in skeletal muscle and liver, and insulin resistance accompanied by reduced energy expenditure relative to controls. In parallel, mice with targeted activation of AGF show leanness and increased insulin sensitivity resulting from increased energy expenditure. They are also protected from high-fat diet-induced obesity, insulin resistance and nonadipose tissue steatosis. Hepatic overexpression of AGF by adenoviral transduction, which leads to an approximately 2.5-fold increase in serum AGF concentrations, results in a significant (P < 0.01) body weight loss and increases insulin sensitivity in mice fed a high-fat diet. This study establishes AGF as a new hepatocyte-derived circulating factor that counteracts obesity and related insulin resistance. 相似文献
7.
Jones CN Abbasi F Carantoni M Polonsky KS Reaven GM 《American journal of physiology. Endocrinology and metabolism》2000,278(3):E501-E508
Plasma glucose, insulin, and C-peptide concentrations were determined in response to graded infusions of glucose, and insulin secretion rates were calculated over each sampling period. Measurements were also made of insulin clearance, resistance to insulin-mediated glucose, uptake, and the plasma glucose, insulin, and C-peptide concentrations at hourly intervals from 8:00 AM to 4:00 PM in response to breakfast and lunch. Plasma glucose, insulin, and C-peptide concentrations were significantly (P < 0.01) higher in obese women in response to the graded intravenous glucose infusion, associated with a 40% (P < 0.005) greater insulin secretory response. Degree of insulin resistance correlated positively (P < 0.05) with the increase in insulin secretion rate in both nonobese (r = 0.52) and obese (r = 0.58) groups and inversely (P < 0.05) with the decrease in insulin clearance in obese (r = -0.46) and nonobese (r = -0.39) individuals. Weight loss was associated with significantly lower plasma glucose, insulin, and C-peptide concentrations in response to graded glucose infusions and in day-long insulin concentrations. Neither insulin resistance nor the insulin secretory response changed after weight loss, whereas there was a significant increase in the rate of insulin clearance during the glucose infusion. It is concluded that 1) obesity is associated with a shift to the left in the glucose-stimulated insulin secretory dose-response curve as well as a decrease in insulin clearance and 2) changes in insulin secretion and insulin clearance in obese women are more a function of insulin resistance than obesity. 相似文献
8.
Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a worldwide pandemic with few tangible and safe treatment options. Although it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many “distal” causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity—those that directly regulate energy metabolism or caloric intake—seem to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin-resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. 相似文献
9.
Molecular genetics of severe insulin resistance 总被引:2,自引:0,他引:2
L J Elsas N Longo S Langley L D Griffin R C Shuster 《The Yale journal of biology and medicine》1989,62(5):533-547
Leprechaunism and type A diabetes represent inborn errors of insulin resistance whose phenotypes suggested causation by mutations in the insulin receptor gene. Cells cultured from patients with leprechaunism specifically lacked high-affinity insulin binding. Partial but different degrees of impairment were observed in cells cultured from first-degree relatives. Different mutations in the insulin receptor's alpha subunit were proposed in different families (Ark-1, Atl, Minn, Mount Sinai) based on phenotype, cellular insulin binding, and insulin receptor structure. Molecular cloning and sequencing of mutant insulin receptor cDNA from family Ark-1 confirmed that the proband inherited a maternal missense and a paternal nonsense mutation in the alpha subunit and was a compound heterozygote. The insulin receptor was immunologically present on the plasma membrane of fibroblasts cultured from patients Ark-1 and Atl but was markedly reduced in cells from patients Minn and Mount Sinai. In cells from patient Minn, but not from patient Mount Sinai, the decreased number of insulin receptors was associated with reduced insulin receptor mRNA. In two families with the less severe form of insulin resistance, type A diabetes, mutations altered post-translational processing of the insulin receptor molecule. At a cellular level, these mutations of the alpha subunit of the insulin receptor shared defective binding and impaired stimulation of sugar transport by insulin. In family Atl, however, glucose uptake was constitutively increased. Thus, genetic variation in the insulin receptor gene causes a spectrum of inherited insulin-resistant syndromes and altered cellular signaling. 相似文献
10.
Molecular basis of insulin resistance. 总被引:4,自引:0,他引:4
The recent application of recombinant DNA technology to clinical investigation now allows the identification of the molecular alterations responsible for insulin resistance. In this review, the recent knowledge concerning these investigations is reported. Genetic mutations of the insulin gene as the source of insulin resistance have been reported for a long time. More recently a series of mutations of the insulin receptor gene have been identified as the cause of the extreme insulin resistance, observed in rare syndromes, such as type A insulin resistance or leprechaunism. However, it is probable that the majority of the molecular defects causing insulin resistance occur at the postreceptor level. The key proteins involved in the different intracellular signalling pathways of insulin are only partly identified. A better understanding of the mechanisms of insulin action is essential for the identification of corresponding genetic alterations. The investigations concerning the glucose transporter GLUT4 and glucokinase genes are good examples of complex but promising research, which has recently started. Elucidation of the genetic and molecular basis of diseases such as type II diabetes or other states associated with insulin resistance, is the long-term goal. 相似文献
11.
12.
Ceramide kinase (CERK) is an enzyme that phosphorylates ceramide to produce ceramide 1-phosphate. Recently, evidence has emerged that CERK has a role in inflammatory signaling of immune cells. Since obesity is accompanied by chronic, low-grade inflammation, we examined whether CERK might be involved using CERK-null mice. We determined that CERK deficiency suppresses diet-induced increases in body weight, and improves glucose intolerance. Furthermore, we demonstrated that CERK deficiency attenuates MCP-1/CCR2 signaling in macrophages infiltrating the adipose tissue, resulting in the suppression of inflammation in adipocytes, which might otherwise lead to obesity and diabetes. 相似文献
13.
Immunity as a link between obesity and insulin resistance 总被引:1,自引:0,他引:1
Obesity is a major public health problem in the United States and worldwide. Further, obesity is causally linked to the pathogenesis of insulin resistance, metabolic syndrome and type-2 diabetes (T2D). A chronic low-grade inflammation occurring in adipose tissue is at least in part responsible for the obesity-induced insulin resistance. This adipose tissue inflammation is characterized by changes in immune cell populations giving rise to altered adipo/cytokine profiles, which in turn induces skeletal muscle and hepatic insulin resistance. Detailed molecular mechanisms of insulin resistance, adipose tissue inflammation and the implications of these findings on therapeutic strategies are discussed in this review. 相似文献
14.
15.
16.
Minn AH Lan H Rabaglia ME Harlan DM Peculis BA Attie AD Shalev A 《Molecular endocrinology (Baltimore, Md.)》2005,19(3):794-803
Type 2 diabetes occurs when pancreatic beta-cells become unable to compensate for the underlying insulin resistance. Insulin secretion requires beta-cell insulin stores to be replenished by insulin biosynthesis, which is mainly regulated at the translational level. Such translational regulation often involves the 5'-untranslated region. Recently, we identified a human insulin splice-variant (SPV) altering only the 5'-untranslated region and conferring increased translation efficiency. We now describe a mouse SPV (mSPV) that is found in the cytoplasm and exhibits increased translation efficiency resulting in more normal (prepro)insulin protein per RNA. The RNA stability of mSPV is not increased, but the predicted secondary RNA structure is altered, which may facilitate translation. To determine the role of mSPV in insulin resistance and diabetes, mSPV expression was measured by quantitative real-time RT-PCR in islets from three diabetic and/or insulin-resistant, obese and nonobese, mouse models (BTBRob/ob, C57BL/6ob/ob, and C57BL/6azip). Interestingly, mSPV expression was significantly higher in all diabetic/insulin-resistant mice compared with wild-type littermates and was dramatically induced in primary mouse islets incubated at high glucose. This raises the possibility that the mSPV may represent a compensatory beta-cell mechanism to enhance insulin biosynthesis when insulin requirements are elevated by hyperglycemia/insulin resistance. 相似文献
17.
Le Marchand-Brustel Y Tanti JF Cormont M Ricort JM Grémeaux T Grillo S 《Journal of receptor and signal transduction research》1999,19(1-4):217-228
Insulin resistance is commonly associated with obesity in rodents. Using mice made obese with goldthioglucose (GTG-obese mice), we have shown that insulin resistance results from defects at the level of the receptor and from intracellular alterations in insulin signalling pathway, without major alteration in the number of the Glut 4 glucose transporter. Activation of phosphatidylinositol 3-kinase (PI 3-kinase) was found to be profoundly affected in response to insulin. This defect appears very early in the development of obesity, together with a marked decrease in IRS 1 tyrosine phosphorylation. In order to better understand the abnormalities in glucose transport in insulin resistance, we have studied the pathway leading from the insulin receptor kinase stimulation to the translocation of the Glut 4 containing vesicles. This stimulation involves the activation of PI 3-kinase, which in turns activates protein kinase B. We have then focussed at the mechanism of vesicle exocytosis, and more specifically at the role of the small GTPase Rab4 in this process. We have shown that Rab4 participates, first in the intracellular retention of the Glut 4 containing vesicles, second in the insulin signalling pathway leading to glucose transporter translocation. 相似文献
18.
Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance 总被引:4,自引:0,他引:4
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance. 相似文献
19.
Type 2 diabetes is often associated with obesity, dyslipidemia and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown to reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. 相似文献
20.
White adipose tissue is the main site of energy storage, but it is now recognized as an active participant in regulating physiologic and pathologic processes including immunity and inflammation. It has an endocrine function by secreting at least two main hormones, leptin and adiponectin. It can secrete other products, named adipokines, including cytokines and chemokines, involved in inflammation process. The release of adipokines by either adipocytes or adipose tissue infiltrated macrophages lead to a chronic sub-inflammatory state that could play a central role in cardiovascular complications linked to obesity and insulin resistance, a risk factor to develop type-2 diabetes. 相似文献