首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The investigation results on the UV-induced changes of lactate dehydrogenase structural and functional properties in the presence of some chemical substances, which are able to interact with the oxygen active forms have been summarized. As well the kinetic characteristics of the photoinactivation processes for heart and muscle LDH types in free state and in the complex with the exogenous agents have been studied. Singlet molecular oxygen has been shown to play an important role in the process of UV-modification of different protein isoforms. The scheme of probable physical and chemical processes, leading to the inactivation of lactate dehydrogenase molecules, has been suggested.  相似文献   

2.
The dissociation constant for the complex of rhodanese and Cibacron Blue, determined by analytical affinity chromatography using rhodanese immobilized on controlled-pore glass (CPG) beads (200 nm pore diameter) and aminohexyl-Cibacron Blue, was 44 microM which agreed well with the kinetic inhibition constant, suggesting that the dye binds at or near the active site of this enzyme. Formation of a binary complex of the dye and lactate dehydrogenase (LDH) was also characterized by direct chromatography of LDH on CPG/immobilized Cibacron Blue (KD = 0.29 microM). The binary complex formed between LDH and NADH was characterized by analytical affinity chromatography using both CPG/immobilized LDH and immobilized Cibacron Blue. Since the dye competes with NADH in binding to the active site of LDH, competitive elution chromatography using the immobilized dye allows determination of the dissociation constant of the soluble LDH.NADH complex. Agreement between the dissociation constants determined by direct chromatography of NADH on immobilized LDH (KD = 1.4 microM) and that determined for the soluble complex (KD = 2.4 microM) indicates that immobilization of LDH did not affect the interaction. Formation of various binary, ternary and quaternary complexes of bovine liver glutamate dehydrogenase (GDH) with glutamate, NADPH, NADH, and ADP was also investigated using immobilized GDH. This approach allows characterization of the enzyme/ligand interactions without the complicating effect of enzyme self-association. The affinity for NADPH is considerably greater in the ternary complex (including glutamate) as compared to the binary complex (0.38 microM vs 22 microM); however, occupancy of the regulatory site by ADP greatly reduces the affinity in both complexes (6.4 microM and 43 microM, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The technique of differential scanning calorimetry (DSC) has been applied to the study of temperature-induced irreversible denturation and thus to the heat stability of soluble and Sepharose-bound liver alcohol dehydrogenase (LADH, EC 1.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) in the presence of various coenzymes or coenzyme fragments. The transition temperature (Ttr) of 82.5 degrees C obtained for soluble LADH was increased by 12.5 degrees C in the presence of a saturating concentration of NACH. In the presence of NAD+, Ttr increased by 8.5 degrees C, whereas ADP-ribose and AMP caused an increase in Ttr of only 2 and 1 degree C, respectively. The Ttr of 85.5 degrees C obtained for Sepharose-bound LADH was increased by about 12 degrees C after the addition of free NADH. However, when the enzyme was immobilized simultaneously with a NADH analogue (which also binds to the matrix), a broad endotherm with a Ttr of 91.5 degrees C was obtained, indicating the presence of immobilized enzyme molecules both with, and without, associated NADH. Corresponding increases in heat stability were observed for LDH in solution in the presence of NADH, NAD+, and AMP, leading to increases in Ttr from 72 to 79.5 and 74 and 73 degrees C, respectively. The addition of pyruvate and NAD+ to the enzyme to form an abortive ternary complex led to the same stabilization as that observed with NADH, attendant with a large increase in the enthalpy of transition, deltaHtr. In these studies the technique of DSC was utilized because it is applicable both to soluble and immobilized enzymes and (1) provides rapid information about Ttr and thus thermal stability of enzymes, (2) different energetic states of an enzyme molecule can be identified, and (3) an overall picture of the thermal process is rapidly obtained.  相似文献   

4.
The methods for the highly sensitive flow injection analysis of lactate and lactate dehydrogenase (LDH) activity in serum using immobilized enzymes in column form and chemiluminescence detection which does not require a blank correction are described. The methods were based on the determination of chemiluminescence formed by the reaction of a luminol-ferricyanide mixture with hydrogen peroxide. This hydrogen peroxide was produced by the lactate oxidase (LOD) reaction from lactate, which was in serum or was produced by the action of LDH in serum. The action of LDH in a flow injection analysis system was performed for 2 min in an incubation coil placed parallel to the substrate-buffer line between the LOD column and the LOD/catalase column. Endogenous lactate in serum was removed by an immobilized LOD/catalase column prior to the action of LDH. The present method gave perfect linearity of the data up to 5.6 mmol/liter for lactate and 1840 IU/liter for LDH activity with satisfactory precision, reproducibility, and accurate reaction recoveries. The results from the lactate and LDH activity correlated satisfactorily with those obtained by other well-established methods.  相似文献   

5.
Glucose oxidase (GOD) and lactate dehydrogenase (LDH) were immobilized onto magnetic nanoparticles, viz. Fe3O4, via carbodiimide and glutaraldehyde. The immobilization efficiency was largely dependent upon the immobilization time and concentration of glutaraldehyde. The magnetic nanoparticles had a mean diameter of 9.3 nm and were superparamagnetic. The immobilization of GOD and LDH on the nanoparticles slightly decreased their saturation magnetization. However, the FT-IR spectra showed that GOD and LDH were immobilized onto the nanoparticles by different binding mechanisms, the reason for which was not well explained. The optimum pH values of the immobilized GOD and LDH were changed to 8 and 10, respectively. The free and immobilized enzyme kinetic parameters (Km and Vmax) were determined by Michaelis-Menten enzyme kinetics. The Km values for free and immobilized GOD were 0.168 and 0.324 mM, respectively, while those for free and immobilized LDH were 0.19 and 0.163 mM for NAD, and 2.976 and 4.785 mM for lactate, respectively. High operational stability was observed, with more than 80% of the initial enzyme activity being retained for the immobilized GOD up to 12 h and for the immobilized LDH up to 24 h. The immobilized GOD was applied to a sequential injection analysis system for the application of bioprocess monitoring.  相似文献   

6.
For a long period lactate was considered as a dead-end product of glycolysis in many cells and its accumulation correlated with acidosis and cellular and tissue damage. At present, the role of lactate in several physiological processes has been investigated based on its properties as an energy source, a signalling molecule and as essential for tissue repair. It is noteworthy that lactate accumulation alters glycolytic flux independently from medium acidification, thereby this compound can regulate glucose metabolism within cells. PFK (6-phosphofructo-1-kinase) is the key regulatory glycolytic enzyme which is regulated by diverse molecules and signals. PFK activity is directly correlated with cellular glucose consumption. The present study shows the property of lactate to down-regulate PFK activity in a specific manner which is not dependent on acidification of the medium. Lactate reduces the affinity of the enzyme for its substrates, ATP and fructose 6-phosphate, as well as reducing the affinity for ATP at its allosteric inhibitory site at the enzyme. Moreover, we demonstrated that lactate inhibits PFK favouring the dissociation of enzyme active tetramers into less active dimers. This effect can be prevented by tetramer-stabilizing conditions such as the presence of fructose 2,6-bisphosphate, the binding of PFK to f-actin and phosphorylation of the enzyme by protein kinase A. In conclusion, our results support evidence that lactate regulates the glycolytic flux through modulating PFK due to its effects on the enzyme quaternary structure.  相似文献   

7.
Copper ions are known to inactivate a variety of enzymes, and lactate dehydrogenase (LDH) is exceptionally sensitive to the presence of this metal. We now found that NADH strongly enhances the Cu(II)-mediated loss of LDH activity. Surprisingly, NADH was not oxidized in this process and also NAD+ promoted the Cu(II)-dependent inactivation of LDH. Catalase only partly protected the enzyme, whereas hypoxia even enhanced LDH inactivation. NAD(H) accelerated sulfhydryl (SH) group oxidation of LDH by 5,5-dithio-bis(2-nitrobenzoic acid) (DTNB), and, vice versa, LDH-mediated Cu(II) reduction. LDH activity was preserved by thiol donators and pyruvate and partially preserved by lactate and oxamate. Our results suggest that reactive oxygen species (ROS) are of minor importance for the inactivation of LDH induced by Cu(II)/NADH. We propose that conformational changes of the enzymes' active sites induced by NAD(H)-binding increase the accessibility of active sites' cysteine residues to Cu(II) thereby accelerating their oxidation and, consequently, loss of catalytic activity.  相似文献   

8.
Some information about the lactate dehydrogenase NAD binding site has been obtained by working with coenzymes analogs of incomplete molecules. 5'AMP, 5'-ADP, ATP, 5'-c-AMP and 3'(2)-AMP inhibit chicken liver LDH activity competitively with NADH. 5"-AMP and 5'-ADP show a stronger inhibition power than ATP, suggesting that the presence of one or two phosphate groups at the 5' position of adenosine, is essential for the binding of the coenzyme analogs at the enzyme binding site. Ribose and ribose-5'-P do not appear to inhibit the LDH activity, proving that purine base lacking mononucleotides do not bind to the enzyme. 5"-ADPG inhibits LDH activity in the exactly as 5'-ADP, showing that ribose moiety may be replaced by glucose, without considerable effects on the coenzyme analog binding. 2'-desoxidenosin-5'-phosphate proves to be a poorer inhibitor of the LDH activity than 5'-AMP, indicating that an interaction between the--OH groups and the amino-acids of the LDH active center takes place. Nicotinamide does not produce any inhibition effect, while NMN and CMP induce a much weaker inhibition than the adenine analogues, thus indicating a lesser binding capacity to the enzyme. Therefore, the LDH binding site seems to show some definite specificity towards the adenina groups of the coenzyme.  相似文献   

9.
Using differential scanning microcalorimetry and measurements of protein fluorescence, the thermal denaturation of lactate dehydrogenase (LDH) from porcine muscle (in the apo-form as well as in the form of the enzyme-pyruvate, enzyme-NAD+ and enzyme-NAD-pyruvate-adduct complexes) was studied. Pyruvate binding did not affect the thermal stability of LDH. NAD+ exerted a stabilizing effect on the enzyme, the value of which was proportional to the number of ligand molecules bound per LDH tetramer. The formation of the abortive LDH-NAD-pyruvate complex in one, two or three active centers of the enzyme tetramer did not influence the values of calorimetric parameters of thermal denaturation in comparison with those for the apoenzyme. The occupancy of all four active centers of LDH by the adduct resulted in a sharp increase of the enzyme thermal stability and tightness of the LDH adduct complex as compared with complexes formed upon partial saturation. The experimental results are suggestive of the existence of a concerted conformational transition of the LDH tetramer induced by the formation of the LDH-NAD-pyruvate complex in the last active center of the tetramer.  相似文献   

10.
A comparative analysis of some electron-microscopic techniques has been carried out to reveal biogenous amines in the rat muscle nucleus caudatus. Monoaminergic terminals were identified by the presence of large and small granular vesicles. The best results were obtained by chromaffine reaction of frozen sections: the revealing of small granular vesicles by this method is 11 fold more effective than that by the use of chromaffine reaction carried out on tissue samples.  相似文献   

11.
The influence of phosphorylation on the properties of lactate dehydrogenase (LDH) has been studied. Data obtained using the immobilization approach support the assumption that the autophosphorylation of LDH discovered previously in the presence of ATP has no relation to protein kinase activity of the enzyme. Phosphorylation of native LDH by tyrosine kinases was shown to be inefficient. However, the efficiency of the phosphorylation considerably increased after the dissociation of LDH into non-native forms of the enzyme. Ca2+/calmodulin-dependent protein kinase catalyzes incorporation of 0.8-0.9 mole phosphate per mole of LDH tetramer. The phosphorylation results in an increase in activity by 25-30% and increases markedly the stability of the enzyme during cold inactivation. Phosphorylation of LDH by Ca2+/calmodulin-dependent protein kinase, unlike the phosphorylation on tyrosine residues, is supposed to be of importance for the control of cell metabolism.  相似文献   

12.
The effects of o-phthalaldehyde (OPTA) on lactate dehydrogenase (LDH) have been studied by following changes in enzymatic activity, aggregation state and conformation. Treatment with OPTA resulted in pseudo first-order inactivation of LDH over a wide concentration range of the inhibitor, and the second-order rate constant was estimated to be 1.52 M−1 s−1. The loss of enzyme activity was concomitant with the increases in absorbance at 337 nm and fluorescence intensity at 405 nm. Complete loss of enzyme activity was accompanied by the formation of approximately 4 mol isoindole derivatives per mole LDH subunit. Cross-linking experiments verified enzyme dissociation during OPTA modification, which could be attributed to the modification of both thiol groups and lysine residues. Circular dichroism (CD) spectra showed that the secondary structure of the OPTA-modified enzyme decreased correspondingly. Comparison of the inactivation with the conformational changes of the enzyme suggests that the active site of the enzyme exhibits greater conformational flexibility than the enzyme molecule as a whole. It is concluded that OPTA modification has multiple effects on LDH, including its inactivation, dissociation and partial unfolding.  相似文献   

13.
Summary In order to facilitate immobilization of the L-lactate dehydrogenase from Bacillus stearothermophilus, a single cysteine residue has been introduced by site-directed mutagenesis whose freely accessible thiol group is located on the protein surface without interfering with enzyme catalysis. The active lactate dehydrogenase mutant Arg331Cys could be coupled covalently to thiopropyl- or organomercurial-functionalized agarose beads with at least 56% recovery of enzymatic activity. The immobilized catalyst showed saturation kinetics similar to the free enzyme, but had an increased thermal stability.Abbreviations LDH lactate dehydrogenase - BSLDH Bacillus stearothermophilus - LDH WT, wild-type - ATS-4B Activated Thiol-Sepharose 4B, DTNB, 5,5-dithiobis-(2-nitrobenzoic acid) - FDP fructose-1,6-diphosphate - SDS sodium dodecyl sulfate - NAD+ and NADH oxidized and reduced form of nictotinamide adenine dinucleotide, respectively - 331Cys-BSLDH Gln102Arg/Cys97Gly/Arg331Cys-BSLDH mutant  相似文献   

14.
Successful nanobiotechnology implementation largely depends on control over the interfaces between inorganic materials and biological molecules. Controlling the orientations of biomolecules and their spatial arrangements on the surface may transform many technologies including sensors, to energy. Here, we demonstrate the self-organization of L -lactate dehydrogenase (LDH), which exhibits enhanced enzymatic activity and stability on a variety of gold surfaces ranging from nanoparticles to electrodes, by incorporating a gold-binding peptide tag (AuBP2) as the fusion partner for Bacillus stearothermophilus LDH (bsLDH). Binding kinetics and enzymatic assays verified orientation control of the enzyme on the gold surface through the genetically incorporated peptide tag. Finally, redox catalysis efficiency of the immobilized enzyme was detected using cyclic voltammetry analysis in enzyme-based biosensors for lactate detection as well as in biofuel cell energy systems as the anodic counterpart. Our results demonstrate that the LDH enzyme can be self-immobilized onto different gold substrates using the short peptide tag under a biologically friendly environment. Depending on the desired inorganic surface, the proposed peptide-mediated path could be extended to any surface to achieve single-step oriented enzyme immobilization for a wide range of applications.  相似文献   

15.
A flow-injection analysis (FIA) system based on fibre optic detection of oxygen consumption using immobilized glucose oxidase (GOD) and lactate oxidase (LOD) is described for the on-line monitoring of glucose and lactate concentrations in animal cell cultures. The consumption of oxygen was determined via dynamic quenching by molecular oxygen of the fluorescence of an indicator. GOD and LOD were immobilized on controlled pore glass (CPG) in enzyme reactors which were directly linked to a specially designed fibre optic flow-through cell covering the oxygen optrode. The system is linear for 0-30 mM glucose, with an r.s.d. of 5% at 30 mM (five measurements) and for 0-30 mM lactate, with an r.s.d. of 5% at 30 mM (five measurements). The enzyme reactors used were stable for more than 4 weeks in continuous operation, and it was possible to analyse up to 20 samples per hour. The system has been successfully applied to the on-line monitoring of glucose and lactate concentrations of an animal cell culture designed for the production of recombinant human antithrombine III (AT-III). Results of the on-line measurement obtained by the FIA system were compared with the off-line results obtained by a glucose and lactate analyser from Yellow Springs Instrument Company (YSI).  相似文献   

16.
A novel trienzyme sensor for the amperometric determination of lactate was constructed by immobilizing salicylate hydroxylase (SHL, E.C. 1.14.13.1), l-lactate dehydrogenase (LDH, E.C. 1.1.1.27), and pyruvate oxidase (PyOD, E.C. 1.2.3.3) on a Clark-type oxygen electrode. The enzymes were entrapped by a poly(carbamoyl) sulfonate (PCS) hydrogel on a Teflon membrane. LDH catalyzes the specific dehydrogenation of lactate consuming NAD(+). SHL catalyzes the irreversible decarboxylation and the hydroxylation of salicylate in the presence of oxygen and NADH produced by LDH. PyOD decarboxylates pyruvate using oxygen and phosphate. SHL and PyOD force the equilibrium of dehydrogenation of lactate by LDH to the product side by consuming NADH and pyruvate, respectively. Dissolved oxygen acts as an essential material for both PyOD and SHL during their respective enzymatic reactions. Therefore, an amplified signal, caused by the consumptions of dissolved oxygen by the two enzymes, was observed in the measurement of lactate. Regeneration of cofactor was found in the trienzyme system. A Teflon membrane was used to fabricate the sensor in order to avoid interferences. The sensor has a fast response (2s) and short recovery times (2 min). The total test time for a measurement by using this lactate sensor (4 min) was faster than using a commercial lactate testing kit (up to 10 min). The sensor has a linear range between 10 and 400 microM lactate, with a detection limit of 4.3 microM. A good agreement (R2 = 0.9984) with a commercial lactate testing kit was obtained in beverage sample measurements.  相似文献   

17.
1. A molecular sieve membrane was used to separate active dimer vs active tetramer fractions of M4-LDH and H4-LDH. 2. Dissociation of both enzymes was influenced by enzyme protein concentration and by the concentration of added substrates, pyruvate or lactate. 3. Increasing lactate concentrations increased the fraction of tetrameric enzyme whereas increasing pyruvate (up to saturating levels) had the opposite effect, raising the content of dimer fraction. 4. For H4-LDH, levels of pyruvate that caused substrate inhibition reversed the effect of lower concentrations of pyruvate and reduced the dimer content. 5. The data suggest that dissociation-association of LDH may have functional importance, the dimer having a preferential role in pyruvate reduction and the tetramer a preferred function in lactate oxidation.  相似文献   

18.
Sinitsyn SV 《Biofizika》2008,53(2):222-228
A biosensor of lactate has been constructed, made, and tested. The lactate biosensor uses the lactate dehydrogenase molecules from muscle. The lactate biosensor works according to the simplest scheme. An immobilized lactate dehydrogenase molecule binds a L-lactate molecule in the absence of the coenzyme NAD+. Then the L-lactate molecule is oxidized by the electric field of a metal electrode of the biosensor to generate an electron. The transfer of this electron between the immobilized lactate dehydrogenase molecule and the metal electrode of the biosensor is carried out without a redox mediator molecule. A new mechanism for the energy supply of the enzyme molecule is proposed to explain this effect. The new mechanism is based on the electric dipole-dipole interactions occurring in the enzyme molecule and surrounding water and on the thermal energy of this water.  相似文献   

19.
The inactivation and conformational changes of porcine heart lactate dehydrogenase (LDH) have been studied in sodium dodecyl sulfate (SDS) solutions. Increasing SDS concentration led to a quick and concentration-dependent inhibition of the enzyme, with complete inactivation within 5 min in the presence of 1.0 mM SDS. Meanwhile, fluorescence emission and circular dichroism spectra were used to follow the conformational changes of the enzyme during this process, concurrently showing that SDS less than 1.0 mM induced only limited conformational changes to LDH. The above results are in accordance with the suggestion by Tsou (Trends Biochem. Sci. 11 (1986) 427; Science 262 (1993) 380) that the active site usually be more flexible than the enzyme molecule as a whole. Furthermore, the results of polyacrylamide gel electrophoresis (PAGE) implied that unfolding intermediates were presented in the above process. When the SDS concentration used to treat LDH was increased, the bands of native enzyme on native PAGE faded and finally almost disappeared. Meanwhile, multiple bands with lower mobility but no activity emerged behind and enhanced correspondingly. Fast protein liquid chromatography indicated that dissociation occurred during the course of denaturation. The reasons for the above phenomena have been discussed. It was suggested that SDS, binding to LDH to form different LDH-SDS complexes, conferred an array of different unfolding states over the enzyme, and in turn resulted in the formation of the multiple bands on the native PAGE.  相似文献   

20.
Direct evidence was obtained for the existence of two distinct forms of active alpha-chymotrypsin immobilized on CNBr-activated Sepharose 4B. Electron paramagnetic resonance (EPR) spectra of five different spin-labeled immobilized enzyme formulations in the presence of indole were all resolved into the same two spectral components. Both subpopulation spectra were approximately identified experimentally, and the subpopulation exhibiting greatly restricted spin-label motion was shown also to be relatively inaccessible to solvent. Using overall specific activity data and subpopulation fractions from EPR spectral analysis, the specific activity of the more constricted immobilized enzyme active form was shown to be approximately 15 times smaller than that of the other class of immobilized enzyme molecules with an indole EPR spectrum similar to that of chymotrypsin in solution. Variations in overall specific activity of formulations with different loadings and different supports results entirely from changes in the proportions of the same two subpopulations of immobilized enzyme molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号