首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The quantitative analysis of protein mixtures is pivotal for the understanding of variations in the proteome of living systems. Therefore, approaches have been recently devised that generally allow the relative quantitative analysis of peptides and proteins. Here we present proof of concept of the new metal-coded affinity tag (MeCAT) technique, which allowed the quantitative determination of peptides and proteins. A macrocyclic metal chelate complex (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)) loaded with different lanthanides (metal(III) ions) was the essential part of the tag. The combination of DOTA with an affinity anchor for purification and a reactive group for reaction with amino acids constituted a reagent that allowed quantification of peptides and proteins in an absolute fashion. For the quantitative determination, the tagged peptides and proteins were analyzed using flow injection inductively coupled plasma MS, a technique that allowed detection of metals with high precision and low detection limits. The metal chelate complexes were attached to the cysteine residues, and the course of the labeling reaction was followed using SDS-PAGE and MALDI-TOF MS, ESI MS, and inductively coupled plasma MS. To limit the width in isotopic signal spread and to increase the sensitivity for ESI analysis, we used the monoisotopic lanthanide macrocycle complexes. Peptides tagged with the reagent loaded with different metals coelute in liquid chromatography. In first applications with proteins, the calculated detection limit for bovine serum albumin for example was 110 amol, and we have used MeCAT to analyze proteins of the Sus scrofa eye lens as a model system. These data showed that MeCAT allowed quantification not only of peptides but also of proteins in an absolute fashion at low concentrations and in complex mixtures.  相似文献   

2.
Identification of proteins in complex mixtures by mass spectrometry is most useful when quantitative data is also obtained. We recently introduced isotope-coded affinity tags (ICAT reagents) for the relative quantification of proteins present in two or more biological samples. In this report, we describe a new generation of ICAT reagents that contain the following additional features: (1) a visible tag that allows the electrophoretic position of tagged peptides during separation to be easily monitored; (2) a photocleavable linker that allows most of the tag to be removed prior to mass spectrometric analysis; (3) an isotope tag that contains carbon-13 and nitrogen-15 atoms instead of deuterium to ensure precise comigration of light and heavy tagged peptides by reverse-phase HPLC. These reagents contain an iodoacetyl group that selectively reacts with peptide cysteine residues. Peptide modification chemistry is also reported that allows tagging of peptides that are devoid of cysteine. The synthesis of these visible isotope-coded affinity tags (VICAT reagents), and their reaction with peptides are described in this report. VICAT reagents containing a carbon-14 visible probe or an NBD fluorophore are described. These reagents are most useful for the determination of the absolute quantity of specific target proteins in complex protein mixtures such as serum or cell lysates.  相似文献   

3.
Tyrosine nitration is a low-abundance post-translational protein modification that requires appropriate enrichment techniques to enable proteomic analyses. We report a simple yet highly specific method to enrich nitropeptides by chemoprecipitation involving only two straightforward chemical modifications of the nitropeptides before capturing the obtained derivatives with a strategically designed solid-phase active ester reagent. Specifically, capping of the aliphatic amines in the peptides is done first by reductive methylation to preserve the charge state of peptides for electrospray ionization mass spectrometric analysis, followed by reduction of nitrotyrosines to the corresponding aminotyrosines. These peptides are then immobilized on the solid-phase active ester reagent, whereas other peptides carrying no free amino groups are separated from the immobilized species by thoroughly washing the beads from which the tagged peptide derivatives can easily be released by acid-catalyzed hydrolysis at room temperature. The benefits of selective enrichment from a matrix of unmodified peptides for liquid chromatography-tandem mass spectrometry are demonstrated on three synthetic nitropeptides that are nitrated fragments of biologically relevant proteins. Identification of several in vitro nitrated human plasma proteins, also implicated under various pathological processes, by database searches from the enriched and tagged tryptic nitropeptides is presented as a practical application. We also show that converting the nitro-group to the small 4-formylbenzoylamido tag does not significantly alter fragmentation properties upon collision-induced dissociation compared with those of the native nitropeptides, and at the same time this derivatization actually improves electron capture dissociation due to conversion of the electron-predator nitro-group to this novel tag.  相似文献   

4.
A completely automated peptide mapping liquid chromatography/mass spectrometry (LC/MS) system for characterization of therapeutic proteins in which a common high-performance liquid chromatography (HPLC) autosampler is used for automated sample preparation, including protein denaturation, reduction, alkylation, and enzymatic digestion, is described. The digested protein samples are then automatically subjected to LC/MS analysis using the same HPLC system. The system was used for peptide mapping of monoclonal antibodies (mAbs), known as a challenging group of therapeutic proteins for achieving complete coverage and quantitative representation of all peptides. Detailed sample preparation protocols, using an Agilent HPLC system, are described for Lys-C digestion of mAbs with intact disulfide bonds and tryptic digestion of mAbs after reduction and alkylation. The automated procedure of Lys-C digestion of nonreduced antibody, followed by postdigestion disulfide reduction, produces both the nonreduced and reduced digests that facilitate disulfide linkage analysis. The automated peptide mapping LC/MS system has great utility in preparing and analyzing multiple samples for protein characterization, identification, and quantification of posttranslational modifications during process and formulation development as well as for protein identity and quality control.  相似文献   

5.
Tryptic digestion of biotinylated Lys-C peptides followed by affinity chromatography allows the selective isolation of lysine-free tryptic peptides delimited by arginine residues (RRnK peptides). In silico analysis revealed that RRnK peptides represent 87% of the whole proteomes and their specific isolation simplifies the complex peptide mixture (5 peptides per protein). The good recoveries and high selectivity obtained in the isolation of RRnK peptides anticipate the applicability of this method in 2DE-free quantitative proteome analyses.  相似文献   

6.
Inexpensive methods were developed for isolating and isotopically labeling tryptic peptides that contain either cysteine or methionine. After covalently capturing cysteine-containing peptides with pyridyl disulfide reactive groups on agarose beads, extensive wash steps were applied, and the attached peptides were released using a reducing agent. This approach results in less nonspecifically bound peptides and eliminates the possibility of generating avidin peptide background ions that can arise when using methods based on biotin and avidin (e.g. isotope-coded affinity tag). The thiols were alkylated using either N-ethyl- or N-D5-ethyl-iodoacetamide, both of which can be synthesized in a single step using inexpensive reagents. This isotopic labeling does not greatly increase the peptide mass, nor does it affect the peptide ion charge state in electrospray ionization. In addition, methionine-containing peptides were captured using commercially available methionine-reactive beads, and relative quantitation of peptides was achieved by isotopic labeling of amino groups using activated esters of either nicotinic acid or D4-nicotinic acid. These methods were used to study the metalloprotease-mediated shedding of cell surface proteins from a mouse monocyte cell line that had been treated with a phorbol ester and lipopolysaccharide. In addition to the identification of proteins previously determined to be inducibly shed, three new shed proteins were identified: CD18, ICOS ligand, and tumor endothelial marker 7-related protein.  相似文献   

7.
Triply and doubly charged iTRAQ ( isobaric tagging for relative and absolute quantitation) labeled peptide cations from a tryptic peptide mixture of bovine carbonic anhydrase II were subjected to electron transfer ion/ion reactions to investigate the effect of charge bearing modifications associated with iTRAQ on the fragmentation pattern. It was noted that electron transfer dissociation (ETD) of triply charged or activated ETD (ETD and supplemental collisional activation of intact electron transfer species) of doubly charged iTRAQ tagged peptide ions yielded extensive sequence information, in analogy with ETD of unmodified peptide ions. That is, addition of the fixed charge iTRAQ tag showed relatively little deleterious effect on the ETD performance of the modified peptides. ETD of the triply charged iTRAQ labeled peptide ions followed by collision-induced dissociation (CID) of the product ion at m/ z 162 yielded the reporter ion at m/ z 116, which is the reporter ion used for quantitation via CID of the same precursor ions. The reporter ion formed via the two-step activation process is expected to provide quantitative information similar to that directly produced from CID. A 103 Da neutral loss species observed in the ETD spectra of all the triply and doubly charged iTRAQ labeled peptide ions is unique to the 116 Da iTRAQ reagent, which implies that this process also has potential for quantitation of peptides/proteins. Therefore, ETD with or without supplemental collisional activation, depending on the precursor ion charge state, has the potential to directly identify and quantify the peptides/proteins simultaneously using existing iTRAQ reagents.  相似文献   

8.
A method for specific labeling of cysteine-containing peptides has been developed using Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Prior to cleavage with proteases or chemical reagents, proteins are reacted with DTNB, resulting in the formation of a mixed disulfide between the protein sulfhydryl group and 2-nitro-5-thiobenzoic acid (TNB). The formation of the mixed disulfide introduces a chromophore, with an absorbance peak at 328 nm. By monitoring peptide maps generated by HPLC at 210 and 328 nm, peptides containing cysteine residues are readily identified. The stability of the derivative was tested using glutathione-TNB as a model compound. Glutathione-TNB is stable to conditions used for CNBr cleavage, as well as those for tryptic cleavage. The TNB label may also increase the hydrophobicity of small peptides, which otherwise might not bind to reverse-phase matrices. This was the case for an oxidatively modified tetrapeptide isolated from Escherichia coli glutamine synthetase.  相似文献   

9.
For the purpose of purification and structural characterization, the CB1 cannabinoid receptors are expressed in methylotrophic yeast Pichia pastoris. The expression plasmid was constructed in which the CB1 gene is under the control of the highly inducible promoter of P. pastoris alcohol oxidase I gene. To facilitate easy detection and purification, a FLAG tag was introduced at the N-terminal, a c-myc epitope and a hexahistidine tag were introduced at the C-terminal of the CB1. In membrane preparations of CB1 gene transformed yeast cells, Western blot analysis detected the expression of CB1 proteins. Radioligand binding assays demonstrated that the tagged CB1 receptors expressed in P. pastoris have a pharmacological profile similar to that of the untagged CB1 receptors expressed in mammalian systems. Furthermore, the tagged CB1 receptors were purified by anti-FLAG M2 affinity chromatography and the identity of the purified CB1 receptor proteins was confirmed by Western blot analysis. MALDI/TOF mass spectrometry analysis of the peptides extracted from tryptic digestions of purified CB1 preparations detected 17 peptide fragments derived from the CB1, thus further confirming the identity of the purified receptor. In conclusion, these data demonstrated for the first time that epitope tagged, functional CB1 cannabinoid receptors can be expressed in P. pastoris for purification and mass spectrometry characterization.  相似文献   

10.
In order to identify and compare the protein content of very low quantity samples of high complexity, a protocol has been established that combines the differential profiling strength of a new cleavable 13C isotope-coded affinity tag (cICAT) reagent with the high sequence coverage provided by multidimensional liquid chromatography and two modes of tandem mass spectrometry. Major objectives during protocol optimization were to minimize sample losses and establish a robust procedure that employs volatile buffer systems that are highly compatible with mass spectrometry. Cleavable ICAT-labeled tryptic peptides were separated from nonlabeled peptides by avidin affinity chromatography. Subsequently, peptide samples were analyzed by nanoflow liquid chromatography electrospray ionization tandem mass spectrometry and liquid chromatography matrix-assisted laser desorption/ionization tandem mass spectrometry. The use of two ionization/instrumental configurations led to complementary peptide identifications that increased the confidence of protein assignments. Examples that illustrate the power of this strategy are taken from two different projects: i) immunoaffinity purified complexes containing the prion protein from the murine brain, and ii) human tracheal epithelium gland secretions. In these studies, a large number of novel proteins were identified using stringent match criteria, in addition to many that had been identified in previous experiments. In the latter case, the ICAT method produced significant new information on changes that occur in protein expression levels in a patient suffering from cystic fibrosis.  相似文献   

11.
Protein tagging with a peptide is a commonly used technique to facilitate protein detection and to carry out protein purification. Flexibility with respect to the peptide tag is essential since no single tag suites all purposes. This report describes the usage of two short peptides from the SARS-associated coronavirus nucleocapsid (SARS-N) protein as protein tags. Plasmids for the generation of tagged proteins were generated by ligating synthetic oligonucleotides for the peptide-coding regions downstream of the protein coding sequence. The data show recognition of prokaryotically expressed HIV-1 Gag/p24 fusion protein by Western blot and efficient affinity purification using monoclonal antibodies against the tags. The SARS peptide antibody system described presents an alternative tagging opportunity in the growing field of protein science.  相似文献   

12.
Element-coded affinity tags for peptides and proteins   总被引:2,自引:0,他引:2  
Isotope-coded affinity tags (ICAT) represent an important new tool for the analysis of complex mixtures of proteins in living systems [Aebersold, R., and Mann, M. (2003) Nature, 422, 198-207]. We envisage an alternative protein-labeling technique based on tagging with different element-coded metal chelates, which affords affinity chromatography, quantification, and identification of a tagged peptide from a complex mixture. As proof of concept, a synthetic peptide was modified at a cysteine side chain with either a carboxymethyl group or acetamidobenzyl-1,4,7,10-tetraazacyclododecane-N,N',N' ',N' "-tetraacetic acid (AcBD) chelates of terbium or yttrium. A mixture of the three modified peptides in a mole ratio of 100:1.0:0.83 carboxymethyl:AcBD-Tb:AcBD-Y was trypsinized, purified on a new affinity column that binds rare-earth DOTA chelates, and analyzed by LC-MS/MS. Chelate-tagged tryptic peptides eluted cleanly from the affinity column; the tagged peptides chromatographically coeluted during LC-MS analysis, were present in the expected ratio as indicated by MS ion intensity, and were sequence-identified by tandem mass spectrometry. DOTA-rare earth chelates have exceptional properties for use as affinity tags. They are highly polar and water-soluble. Many of the rare earth elements are naturally monoisotopic, providing a variety of simple choices for preparing mass tags. Further, the rare earths are heavy elements, whose mass defects give the masses of tagged peptides exact values not normally shared by molecules that contain only light elements.  相似文献   

13.
Lipid rafts were prepared according to standard protocols from Jurkat T cells stimulated via T cell receptor/CD28 cross-linking and from control (unstimulated) cells. Co-isolating proteins from the control and stimulated cell preparations were labeled with isotopically normal (d0) and heavy (d8) versions of the same isotope-coded affinity tag (ICAT) reagent, respectively. Samples were combined, proteolyzed, and resultant peptides fractionated via cation exchange chromatography. Cysteine-containing (ICAT-labeled) peptides were recovered via the biotin tag component of the ICAT reagents by avidin-affinity chromatography. On-line micro-capillary liquid chromatography tandem mass spectrometry was performed on both avidin-affinity (ICAT-labeled) and flow-through (unlabeled) fractions. Initial peptide sequence identification was by searching recorded tandem mass spectrometry spectra against a human sequence data base using SEQUEST software. New statistical data modeling algorithms were then applied to the SEQUEST search results. These allowed for discrimination between likely "correct" and "incorrect" peptide assignments, and from these the inferred proteins that they collectively represented, by calculating estimated probabilities that each peptide assignment and subsequent protein identification was a member of the "correct" population. For convenience, the resultant lists of peptide sequences assigned and the proteins to which they corresponded were filtered at an arbitrarily set cut-off of 0.5 (i.e. 50% likely to be "correct") and above and compiled into two separate datasets. In total, these data sets contained 7667 individual peptide identifications, which represented 2669 unique peptide sequences, corresponding to 685 proteins and related protein groups.  相似文献   

14.
The membrane-binding characteristics of a number of modified vitamin K-dependent proteins and peptides showed a general pattern of structural requirements. The amino-terminal peptides from human prothrombin (residues 1-41 and 1-44, 60:40) bovine factor X (residues 1-44), and bovine factor IX (residues 1-42), showed a general requirement for a free amino-terminal group, an intact disulfide, and the tyrosine homologous to Tyr44 of factor X for membrane binding. Consequently, the peptide from factor IX did not bind to membranes. Any of several modifications of the amino terminus, except reaction with trinitrobenzenesulfonic acid, abolished membrane binding by the factor X and prothrombin peptides. Calcium, but not magnesium, protected the amino terminus from chemical modification. The requirement for a free amino terminus was also shown to be true for intact prothrombin fragment 1, factor X, and factor IX. Although aggregation of the peptide-vesicle complexes greatly complicated accurate estimation of equilibrium binding constants, results with the factor X peptide indicated an affinity that was not greatly different from that of the parent protein. The most striking difference shown by the peptides was a requirement for about 10 times as much calcium as the parent proteins. In a manner similar to the parent proteins, the prothrombin and factor X peptides showed a large calcium-dependent quenching of tryptophan fluorescence. This fluorescence quenching in the peptides also required about 10 times the calcium needed by the parent proteins. Thus, the 1-45 region of the vitamin K-dependent proteins contained most of the membrane-binding structure but lacked component(s) needed for high affinity calcium binding. Protein S that was modified by thrombin cleavage at Arg52 and Arg70 showed approximately the same behavior as the amino-terminal 45-residue peptides. That is, it bound to membranes with overall affinity that was similar to native protein S but required high calcium concentrations. These results suggested that the second disulfide loop of protein S (Cys47-Cys72) and prothrombin (Cys48-Cys61) were involved in high affinity calcium binding. Since factor X lacks a homologous disulfide loop, an alternative structure must serve a similar function. A striking property of protein S was dissociation from membranes by high calcium. While this property was shared by all the vitamin K-dependent proteins, protein S showed this most dramatically and supported protein-membrane binding by calcium bridging.  相似文献   

15.
Acyl-CoA:cholesterol acyltransferase (ACAT) plays important roles in cellular cholesterol homeostasis and is involved in atherosclerosis. ACAT-1 protein is located mainly in the ER. The hydropathy plot suggests that ACAT-1 protein contains multiple transmembrane segments. We inserted either the hemagglutinin tag or the HisT7 tag at various hydrophilic regions within the human ACAT-1 protein and used immunofluorescence microscopy to determine the topography of the tagged proteins expressed in mutant Chinese hamster ovary cells lacking endogenous ACAT. All of the tagged proteins are located mainly in the ER and retain full or partial enzyme activities. None of the tagged proteins produces detectable intracellular degradation intermediates. Treating cells with digitonin at 5 micrograms/ml permeabilizes the plasma membranes while leaving the ER membranes sealed; in contrast, treating cells with 0.25% Triton X-100 or with cold methanol permeabilizes both the plasma membranes and the ER membranes. After appropriate permeabilization, double immunostaining using antibodies against the N-terminal region and against the inserted tag were used to visualize various regions of the tagged protein. The results show that human ACAT-1 in the ER contains seven transmembrane domains.  相似文献   

16.
Genetic engineering has been used to construct fusion proteins of Fusarium solani pisi cutinase and tryptophan-based tags, expressed in Saccharomyces cerevisiae, to increase the partitioning in aqueous two-phase systems. The separation systems were composed of thermoseparating polymers (random copolymers of ethylene oxide and propylene oxide, EOPO) and detergents (C(12)EO(n)). In this study, the fluorescence behaviour of the peptide-tagged protein, free peptide tag and tryptophan was investigated. The tryptophan-tagged proteins, cutinase-(WP)(4) and cutinase-TGGSGG-(WP)(4), showed emission spectra similar to the free peptides and tryptophan, indicating solvent exposure of the tag. The influence of polymers and detergents on the fluorescence of tagged proteins was examined. When peptides and tagged proteins were exposed to polymer, a slight blue shift of the emission maximum was observed. Larger blue shifts of the emission maximum were observed when C(12)EO(n) detergents were utilised. The results correlate with aqueous two-phase partitioning where addition of C(12)EO(n) detergents results in more extreme partitioning compared to systems containing only polymers. Dynamic light scattering (DLS) measurements of the EOPO copolymers were carried out, showing that the polymers did not aggregate at concentrations used in aqueous two-phase systems. Quenching of fluorescence with iodide for both proteins and peptide tags was studied. Plots according to the Stern-Volmer equation resulted in a linear fit, indicating exposed tryptophan residues for both free peptides and fusion proteins. The quenching constants were similar for both tagged protein and free peptide tag. The fluorescence results indicated that the tryptophan residues in the tag were exposed to the solvent and could interact with detergents and polymers in the two-phase systems.  相似文献   

17.
Nonenzymatic glycation of peptides and proteins by d-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this work, we report the first proteomics-based characterization of nonenzymatically glycated proteins in human plasma and erythrocyte membranes from individuals with normal glucose tolerance, impaired glucose tolerance, and type 2 diabetes mellitus. Phenylboronate affinity chromatography was used to enrich glycated proteins and glycated tryptic peptides from both human plasma and erythrocyte membranes. The enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation-tandem mass spectrometry, resulting in the confident identification of 76 and 31 proteins from human plasma and erythrocyte membranes, respectively. Although most of the glycated proteins could be identified in samples from individuals with normal glucose tolerance, slightly higher numbers of glycated proteins and more glycation sites were identified in samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus.  相似文献   

18.
Profile of the disulfide bonds in acetylcholinesterase   总被引:20,自引:0,他引:20  
The inter- and intrasubunit disulfide bridges for the 11 S form of acetylcholinesterase isolated from Torpedo californica have been identified. Localized within the basal lamina of the synapse, the dimensionally asymmetric forms of acetylcholinesterase contain either two (13 S) or three (17 S) sets of catalytic subunits linked to collagenous and noncollagenous structural subunits. Limited proteolysis of these molecules yields a tetramer of catalytic subunits that sediments at 11 S. Each catalytic subunit contains 8 cysteine residues which were identified following tryptic digestion of the reduced, 14C-carboxymethylated protein. The tryptic peptides were purified by gel filtration followed by reverse-phase high performance liquid chromatography (HPLC) and then sequenced. The disulfide bonding profile was determined by treating the native, nonreduced 11 S form of acetylcholinesterase with a fluorescent, sulfhydryl-specific reagent, monobromobimane, prior to tryptic digestion. Peptides again were resolved by gel filtration and reverse-phase HPLC. One fluorescent cysteine-containing peptide was identified, indicating that a single sulfhydryl residue, Cys231, was present in its reduced form. Three pairs of disulfide-bonded peptides were identified. These were localized in the polypeptide chain based on the cDNA-deduced sequence of the protein and were identified as Cys67-Cys94, Cys254-Cys265, and Cys402-Cys521. Hence, three loops are found in the secondary structure. Cys572, located in the carboxyl-terminal tryptic peptide, was disulfide-bonded to an identical peptide and most likely forms an intersubunit cross-link. Since the 6 cysteine residues in acetylcholinesterase that are involved in intrachain disulfide bonds are conserved in the sequence of the homologous protein thyroglobulin, it is likely that both proteins share a common folding pattern in their respective tertiary structures. Cys231 and the carboxyl-terminal cysteine residue Cys572 are not conserved in thyroglobulin.  相似文献   

19.
Protein termini play important roles in biological processes, but there have been few methods for comprehensive terminal proteomics. We have developed a new method that can identify both the amino and the carboxyl termini of proteins. The method independently uses two proteases, (lysyl endopeptidase) Lys-C and peptidyl-Lys metalloendopeptidase (Lys-N), to digest proteins, followed by LC-MS/MS analysis of the two digests. Terminal peptides can be identified by comparing the peptide masses in the two digests as follows: (i) the amino terminal peptide of a protein in Lys-C digest is one lysine residue mass heavier than that in Lys-N digest; (ii) the carboxyl terminal peptide in Lys-N digest is one lysine residue mass heavier than that in Lys-C digest; and (iii) all internal peptides give exactly the same molecular masses in both the Lys-C and the Lys-N digest, although amino acid sequences of Lys-C and Lys-N peptides are different (Lys-C peptides end with lysine, whereas Lys-N peptides begin with lysine). The identification of terminal peptides was further verified by examining their MS/MS spectra to avoid misidentifying pairs as termini. In this study, we investigated the usefulness of this method using several protein and peptide mixtures. Known protein termini were successfully identified. Acetylation on N-terminus and protein isoforms, which have different termini, was also determined. These results demonstrate that our new method can confidently identify terminal peptides in protein mixtures.  相似文献   

20.
Mass spectrometry has proved to be an important tool for protein biomarker discovery, identification and characterization. However, global proteomic profiling strategies often fail to identify known low-abundance biomarkers as a result of the limited dynamic range of mass spectrometry (two to three orders of magnitude) compared with the large dynamic range of protein concentrations in biologic fluids (11 to 12 orders of magnitude for serum). In addition, the number of peptides generated in such methods vastly overwhelms the resolution capacity of mass spectrometers, requiring extensive sample clean-up (e.g., affinity tag, retentate chromatography and/or high-performance liquid chromatography) before mass spectrometry analysis. Baiting and affinity pre-enrichment strategies, which overcome the dynamic range and sample complexity issues of global proteomic strategies, are very difficult to couple to mass spectrometry. This is due to the fact that it is nearly impossible to sort target peptides from those of the bait since there will be many cases of isobaric peptides. IDBEST (Target Discovery, Inc.) is a new tagging strategy that enables such pre-enrichment of specific proteins or protein classes as the resulting tagged peptides are distinguishable from those of the bait by a mass defect shift of approximately 0.1 atomic mass units. The special characteristics of these tags allow: resolution of tagged peptides from untagged peptides through incorporation of a mass defect element; high-precision quantitation of up- and downregulation by using stable isotope versions of the same tag; and potential analysis of protein isoforms through more complete peptide coverage from the proteins of interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号