首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid peroxidation (LPO), physico-chemical properties of the membranes and isoformic composition of microsomal cytochrome P-450 from the rat liver were studied under conditions of antioxidant insufficiency (AOI) which was modelled by exclusion of alpha-tocopherol from the animals' ration. An insignificant accumulation of microsomal diene conjugates and schiff bases against a sharp increase of the ability to the prooxidant stimulated LPO in vitro took place. A significant decrease of membrane lipid microviscosity and a change in surface properties of microsomal membranes of rats with AOI was determined. Absence of alpha-tocopherol in the ration was accompanied by a significant change in the content of separate isoforms of cytochrome P-450 exhibited in growth of a polypeptide with m. w. 54 kDa and the lowering of proteins with m. w. 48 and 50 kDa. Less intensive quenching of tryptophan fluorescence by acrylamide was also revealed, which testified to a lower accessibility of the quencher to membrane proteins or their fluorophore sites. Modification of lipid composition and of physicochemical properties of the rat liver membrane microsomes which was observed at AOI was significantly correlated by pretreatment with the antioxidant 4-methyl-2,6-ditretbutylphenol (ionol).  相似文献   

2.
Rat and rabbit liver microsomes catalyze an NADPH-cytochrome P-450 reductase-dependent peroxidation of endogenous lipid in the presence of the chelate, ADP-Fe3+. Although liver microsomes from both species contain comparable levels of NADPH-cytochrome P-450 reductase and cytochrome P-450, the rate of lipid peroxidation (assayed by malondialdehyde and lipid hydroperoxide formation) catalyzed by rabbit liver microsomes is only about 40% of that catalyzed by rat liver microsomes. Microsomal lipid peroxidation was reconstituted with liposomes made from extracted microsomal lipid and purified protease-solubilized NADPH-cytochrome P-450 reductase from both rat and rabbit liver microsomes. The results demonstrated that the lower rates of lipid peroxidation catalyzed by rabbit liver microsomes could not be attributed to the specific activity of the reductase. Microsomal lipid from rabbit liver was found to be much less susceptible to lipid peroxidation. This was due to the lower polyunsaturated fatty acid content rather than the presence of antioxidants in rabbit liver microsomal lipid. Gas-liquid chromatographic analysis of fatty acids lost during microsomal lipid peroxidation revealed that the degree of fatty acid unsaturation correlated well with rates of lipid peroxidation.  相似文献   

3.
The ethanol-inducible form of cytochrome P-450 (P-450IIE1) has previously been shown to exhibit an unusually high rate of oxidase activity with the subsequent formation of reactive oxygen species, e.g., hydrogen peroxide, and to be the main contributor of microsomal oxidase activity in liver microsomes from acetone-treated rats [Ekstr?m & Ingelman-Sundberg (1989) Biochem. Pharmacol. (in press)]. The results here presented indicate that oxygen exposure of rats causes an about 4-fold induction of P-450IIE1 in rat liver and lung microsomes. The induction in liver was not accompanied by any measurable increase in the P-450IIE1 mRNA levels, but the enhanced amount of P-450IIE1 accounted for 60% of the net 50% increase in the level of hepatic P-450 as determined spectrophotometrically. The induction of P-450IIE1 was maximal after 60 h of O2 exposure, and concomitant increases in the rates of liver microsomal CCl4-dependent lipid peroxidation, O2 consumption, NADPH oxidation, O2- formation, H2O2 production, and NADPH-dependent microsomal lipid peroxidation were seen. Liver microsomes from oxygen-treated rats had very similar properties to those of microsomes isolated from acetone-treated rats with respect to the P-450IIE1 content and catalytic properties, but different from those of thyroxine-treated animals. Treatment of rats with the P-450IIE1 inducer acetone in combination with oxygen exposure caused a potentiation of the NADPH-dependent liver and lung microsomal lipid peroxidation and decreased the survival time of the rats. The results reached indicate a role for cytochrome P-450 and, in particular, for cytochrome P-450IIE1 in oxygen-mediated tissue toxicity.  相似文献   

4.
The question as to whether CCl4 decreases the activities of glucose-6-phosphatase and cytochrome P-450 in liver endoplasmic reticulum mainly through its action in stimulating lipid peroxidation has been investigated using Promethazine to block lipid peroxidation. The investigation, moreover, has compared the effects of CCl4, with and without Promethazine, on isolated rat hepatocytes with corresponding effects on rat liver microsomal suspensions. Our data give no support for the view that products of lipid peroxidation are the main cause of the decrease in cytochrome P-450 observed in CCl4-intoxication. However, our present results are consistent with lipid peroxidation being a major contributory factor to the decrease in glucose-6-phosphatase activity observed in CCl4-induced liver injury.  相似文献   

5.
2-Mercaptopropionylglycine, a synthetic thiol, significantly stimulated NADPH-dependent lipid peroxidation by rat liver microsomes, while the thiol inhibited the microsomal aminopyrine N-demethylase activity with an increase in lipid peroxidation. But, a strong inhibition of lipid peroxidation by EDTA could not abolish the inhibition of the N-demethylase activity by the thiol. Besides, the thiol markedly increased not only the Km value for aminopyrine N-demethylase but also the apparent Ks value for aminopyrine binding to the microsomal oxidized cytochrome P-450 by interacting with the cytochrome P-450.  相似文献   

6.
The development of an oxidative stress condition in the liver by lindane intoxication is discussed as a possible hepatotoxic mechanism of the insecticide. Lindane is metabolized by liver microsomal enzymes to a variety of metabolites, which are susceptible of conjugation for proper elimination. In addition, the interaction of lindane with the liver tissue results in the induction of the microsomal cytochrome P-450 system, together with enhanced rates of superoxide radical generation and a significant increase in indicators of lipid peroxidation. Concomitantly, lindane intoxication induces a derangement of some antioxidant mechanisms of the liver cell, including decreased superoxide dismutase and catalase activities and alterations in reduced glutathione content leading to depressed GSH/GSSG ratios. The time course study of the changes in hepatic lipid peroxidation and antioxidant parameters are closely interrelated and coincide with the onset and progression of morphological lesions.  相似文献   

7.
Rat liver microsomal membranes contain a reduced-glutathione-dependent protein(s) that inhibits lipid peroxidation in the ascorbate/iron microsomal lipid peroxidation system. It appears to exert its protective effect by scavenging free radicals. The present work was carried out to assess the effect of this reduced-glutathione-dependent mechanism on carbon tetrachloride-induced microsomal injury and on carbon tetrachloride metabolism because they are known to involve free radicals. Rat liver microsomes were incubated at 37 degrees C with NADPH, EDTA and carbon tetrachloride. The addition of 1 mM-reduced glutathione (GSH) markedly inhibited lipid peroxidation and glucose 6-phosphatase inactivation and, to a lesser extent, inhibited cytochrome P-450 destruction. GSH also inhibited covalent binding of [14C]carbon tetrachloride-derived 14C to microsomal protein. These results indicate that a GSH-dependent mechanism functions to protect the microsomal membrane against free-radical injury in the carbon tetrachloride system as well as in the iron-based systems. Under anaerobic conditions, GSH had no effect on chloroform formation, carbon tetrachloride-induced destruction of cytochrome P-450 or covalent binding of [14C]carbon tetrachloride-derived 14C to microsomal protein. Thus, the GSH protective mechanism appears to be O2-dependent. This suggests that it may be specific for O2-based free radicals. This O2-dependent GSH protective mechanism may partly underlie the observed protection of hyperbaric O2 against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity.  相似文献   

8.
The free radical-reducing activity and the membrane fluidity of liver microsomes from selenium-deficient (SeD) rats were examined by means of electron paramagnetic resonance (EPR) spin label method using nitroxyl-labeled stearic acids. Our findings show that the membrane fluidity and lipid peroxidation levels in SeD rat liver microsome were relatively unchanged compared with normal rat. In contrast, SeD caused the induction of liver microsomal cytochrome P-450 activity. The nitroxyl spin probes are substrates for reduction-relating cytochrome P-450. Previous in vivo studies suggested that the total liver free radical reduction activity in SeD rat was decreased. In contrast, SeD caused the induction of liver microsomal cytochrome P-450 activity, and the reduction rate of nitroxyl radical existing at shallow depth in membrane was increased. Selenium-deficient rats experienced an increase in hydrogen peroxide (H2O2) due to a pronounced loss of glutathione peroxidase (GSH-Px) activity. This masked the overall reduction rate of the nitroxyl spin probe by reoxidation of the hydroxylamine form. Although the SeD condition caused induction of liver cytochrome P-450 and chronic increased H2O2, this did not result in oxidative liver damage. An increased level of glutathione in SeD liver was also evident, likely due to the absence of GSH-Px activity. Using the EPR spin label method, we have shown that SeD causes complicated redox changes in the liver, notably, alterations in the levels of cytochrome P-450 and GSH-Px systems.  相似文献   

9.
Using the experimental model of partial hepatectomy in the rat, we have examined the relationship between cell division and lipid peroxidation activity. In rats entrained to a regime of 12 h light/12 h dark and with a fixed 8 h feeding period in the dark phase, partial hepatectomy is followed by a rapid regeneration of liver mass with cycles of synchronized cell division at 24 h intervals. The latter phenomenon is indicated in this study by pulses of thymidine kinase activity having maxima at 24 h, 48 h and 72 h after partial hepatectomy. Microsomes prepared from regenerating livers show changes in lipid peroxidation activity (induced by NADPH/ADP/iron or by ascorbate/iron), which is significantly decreased relative to that in microsomes from sham-operated controls, again at 24 h, 48 h and 72 h after the operation. This phenomenon has been investigated with regard to possible underlying changes in the content of microsomal fatty acids, the microsomal enzymes NADPH:cytochrome c reductase and cytochrome P-450, and the physiological microsomal antioxidant alpha-tocopherol. The cycles of decreased lipid peroxidation activity are apparently due, at least in part, to changes in microsomal alpha-tocopherol content that are closely associated in time with thymidine kinase activity.  相似文献   

10.
Role of cytochrome P-450 in ochratoxin A-stimulated lipid peroxidation.   总被引:2,自引:0,他引:2  
The role of cytochrome P-450 in the stimulation of lipid peroxidation by the nephrotoxic mycotoxin ochratoxin A has been investigated. Ochratoxin A was previously shown to markedly stimulate lipid peroxidation in a reconstituted system consisting of phospholipid vesicles, NADPH-cytochrome P-450 reductase, Fe3+, ethylenediaminetetraacetic acid (EDTA), and reduced nicotinamide adenine dinucleotide phosphate (NADPH). We now show that purified cytochrome P-450IIB1 could effectively replace EDTA in stimulating lipid peroxidation suggesting that it could mediate the transfer of electrons from NADPH to Fe3+. Cobalt protoporphyrin is known to cause an extensive and long-lasting depletion of hepatic cytochrome P-450 in rats, and it has been used to evaluate the role of hepatic cytochrome P-450 in xenobiotic metabolism and toxicity. We have observed that microsomes isolated from livers of cobalt protoporphyrin-pretreated rats underwent ochratoxin A-dependent lipid peroxidation much more slowly than control microsomes. Also, the level of ethane exhaled (an index of in vivo lipid peroxidation) on ochratoxin A administration was much lower in cobalt protoporphyrin-pretreated rats than in control rats. Taken together, these results provide evidence for the stimulatory role of cytochrome P-450 in ochratoxin A-induced lipid peroxidation in a reconstituted system and strongly implicate its role in microsomal and in vivo ochratoxin A-induced lipid peroxidation.  相似文献   

11.
Treatment of rats with ethanol or rabbits with either imidazole or pyrazole, agents known to induce the ethanol-inducible form of liver microsomal cytochrome P-450 (P-450 LMeb), caused, compared to controls, 3-25-fold enhanced rates of CCl4-dependent lipid peroxidation or chloroform production in isolated liver microsomes. No significant differences were seen when the rate of CCl4-dependent lipid peroxidation was expressed relative to the amount of P-450 LMeb in the various types of microsomal preparations. In reconstituted membranous systems, this type of P-450 was a 100-fold more effective catalyst of CCl4 metabolism than either of the cytochromes P-450 LM2 or P-450 LM4. It is proposed that the induction of this isozyme provides the explanation on a molecular level for the synergism seen of ethanol on CCl4-dependent hepatotoxicity.  相似文献   

12.
The role of cytochrome P-450 in the stimulation of lipid peroxidation by the nephrotoxic mycotoxin ochratoxin A has been investigated. Ochratoxin A was previously shown to markedly stimulate lipid peroxidation in a reconstituted system consisting of phospholipid vesicles, NADPH-cytochrome P-450 reductase, Fe3+, ethylenediaminetetra-acetic acid (EDTA), and reduced nicotinamide adenine dinucleotide phosphate (NADPH). We now show that purified cytochrome P-450IIB1 could effectively replace EDTA in stimulating lipid peroxidation suggesting that it could mediate the transfer of electrons from NADPH to Fe3+. Cobalt protoporphyrin is known to cause an extensive and long-lasting depletion of hepatic cytochrome P-450 in rats, and it has been used to evaluate the role of hepatic cytochrome P-450 in xenobiotic metabolism and toxicity. We have observed that microsomes isolated from livers of cobalt protoporphyrin-pretreated rats underwent ochratoxin A-dependent lipid peroxidation much more slowly than control microsomes. Also, the level of ethane exhaled (an index of in vivo lipid peroxidation) on ochratoxin A administration was much lower in cobalt protoporphyrin-pretreated rats than in control rats. Taken together, these results provide evidence for the stimulatory role of cytochrome P-450 in ochratoxin A-induced lipid peroxidation in a reconstituted system and strongly implicate its role in microsomal and in vivo ochratoxin A-induced lipid peroxidation.  相似文献   

13.
The effects on cellular structures of products of peroxidation of rat liver microsomal lipids were investigated. A system containing actively peroxidizing liver microsomal fraction was separated from a revealing or target system by a dialysis membrane. The target system, contained in the dialysis tube, consisted of either intact cells (erythrocytes) or subcellular fractions (liver microsomal fraction). When liver microsomal fractions were incubated with NADPH (or an NADPH-generating system), lipid peroxidation, as measured by the amount of malonaldehyde formed, occurred very rapidly. The malon-aldehyde concentration tended to equilibrate across the dialysis membrane. When the target system consisted of erythrocytes, haemolysis occurred abruptly after a lag phase. The lysis was greatly accelerated when erythrocytes from vitamin E-deficient rats were used, but no haemolysis was observed when erythrocytes from vitamin E-treated rats were used. When, in the same system, freshly prepared liver microsomal fractions were exposed to diffusible factors produced by lipid peroxidation, the glucose 6-phosphatase activity markedly decreased. A similar decrease in glucose 6-phosphatase activity, as well as a smaller but significant decrease in cytochrome P-450, was observed when the target microsomal fractions were exposed to diffusible factors derived from the peroxidation of liver microsomal lipids in a separate preincubation step. These and additional experiments indicated that the toxicological activity is relatively stable. Experiments in which the hepatic microsomal fractions destined for lipid peroxidation contained radioactively labelled arachidonic acid, previously incorporated into the membranes, showed that part of the radioactivity released from the microsomal fraction into the incubation medium entered the dialysis tube and was recovered bound to the constituents of the microsomal fractions of the target system. These results indicate that during the course of the peroxidation of liver microsomal lipids toxic products are formed that are able to induce pathological effects at distant loci.  相似文献   

14.
The effects of cobaltic protoporphyrin IX (CPP) administration on hepatic microsomal drug metabolism, carbon tetrachloride activation and lipid peroxidation have been investigated using male Wistar rats. CPP (125 mumol/kg, 72 h before sacrifice) profoundly decreased the levels of hepatic microsomal heme, particularly cytochrome P-450. Consequently, the associated mixed-function oxidase systems were equally strongly depressed. An unexpected finding was that CPP administration also greatly decreased the activity of NADPH/cytochrome c reductase, a result not generally found with the administration of the more widely used cytochrome P-450 depleting agents, cobaltous chloride. Activation of carbon tetrachloride, measured as covalent binding of [14C] CCl4, spin-trapping of CCl3 and CCl4-stimulated lipid peroxidation, was much lower in liver microsomes from CPP-treated rats. Other microsomal lipid peroxidation systems, utilising cumene hydroperoxide or NADPH/ADP-Fe2+, were also depressed in parallel with the decrease in microsomal enzyme activities.  相似文献   

15.
1. NADPH-dependent iron and drug redox cycling, as well as lipid peroxidation process were investigated in microsomes isolated from human term placenta. 2. Paraquat and menadione were found to undergo redox cycling, catalyzed by NADPH:cytochrome P-450 reductase in placental microsomes. 3. The drug redox cycling was able to initiate microsomal lipid peroxidation in the presence of micromolar concentrations of iron and ethylenediaminetetraacetate (EDTA). 4. Superoxide was essential for the microsomal lipid peroxidation in the presence of iron and EDTA. 5. Drastic peroxidative conditions involving superoxide and prolonged incubation in the presence of iron were found to destroy flavin nucleotides, inhibit NADPH:cytochrome P-450 reductase and inhibit propagation step of lipid peroxidation. 6. Reactive oxo-complex formed between iron and superoxide is proposed as an ultimate species for the initiation of lipid peroxidation in microsomes from human term placenta as well as for the destruction of flavin nucleotides and inhibition of NADPH:cytochrome P-450 reductase as well as for impairment of promotion of lipid peroxidation under drastic peroxidative conditions.  相似文献   

16.
Biophysical consequences of lipid peroxidation in membranes   总被引:8,自引:0,他引:8  
This article reviews the biophysical consequences of lipid peroxidation in biological membranes. In the lipid domain, lipid peroxidation (a) causes an increase in the order and "viscosity" of the membrane bilayer, particularly at the depth around acyl-carbon 12, (b) changes the thermotropic phase behaviour, (c) decreases the electrical resistance, and (d) facilitates phospholipid exchange between the two monolayers. Upon lipid peroxidation membrane proteins are crosslinked, and their rotational and lateral mobility is decreased. Studies with microsomal cytochrome P-450 suggest protein aggregation but not the increased lipid order to be the major cause of protein immobilization in peroxidized membranes.  相似文献   

17.
Lipid peroxidation of microsomal membranes isolated from rat liver, and Morris hepatomas 9618A (slow-growing) and 3924A (fast-growing) was induced by superoxide radicals generated by the action of xanthine oxidase on xanthine. The peroxidation, measured as malondialdehyde and lipid hydroperoxide formation, was optimized with regard to iron concentration and chelation of iron by ADP. In such conditions hepatoma microsomes catalyze lower rates of lipid peroxidation than the normal counterpart. However, while microsomes from hepatoma 3924A show a marked decrease in both the malondialdehyde and hydroperoxide production rates, microsomes from hepatoma 9618A differ moderately from the control, mainly in the long-term production of hydroperoxides. It is also reported here that the 9618A microsomes partially lack cytochrome P-450 (about 40% deficiency), but they have a fatty acid composition similar to that of control. No differences were found in the content of vitamin E between normal and hepatoma 3924A microsomes. Moreover, induction of vitamin E deficiency in hepatoma 3924A microsomes does not influence the rate of either malondialdehyde or lipid hydroperoxide production. On the basis of these results and previous data on the lipid composition of hepatoma 3924A microsomes it is proposed that the high resistance to superoxide-dependent lipid peroxidation of hepatoma 3924A microsomes is related to the low substrate availability rather than the content of membrane antioxidants; and a limitation only in the propagation phase characterizes the hepatoma 9618A microsomal lipid peroxidation and would be due to the partial deficiency of the endogenous propagating agent, cytochrome P-450.  相似文献   

18.
In order to evaluate the O-2 participation in NADPH-dependent microsomal lipid peroxidation, we used reconstructed system which contained detergent-solubilized NADPH-dependent cytochrome P-450 reductase, cytochrome P-450, phospholipid liposomes, NADPH and Fe3+-ADP. Lipid peroxidation, monitored by the formation of thiobarbituric acid-reactive substance, was increased with increasing concentration of detergent-solubilized NADPH cytochrome P-450 reductase, cytochrome P-450 or Fe3+-ADP. Cytochrome P-450-dependent lipid peroxidation was parallel to O-2 generation monitored by chemiluminescence probe with 2-methyl-6-(p-methoxyphenol)-3,7-dihydroimidazo[1,2-a]pyrazin++ +-3-one. Lipid peroxidation was significantly inhibited by superoxide dismutase, but not by catalase or sodium benzoate. The reconstructed system herein described is considered to be very close to NADPH-dependent microsomal lipid peroxidation system.  相似文献   

19.
A study has been made of the factors that contribute to the decreased rates of lipid peroxidation under different pro-oxidant conditions in intact Novikoff tumour cells, and in microsomal suspensions prepared from Novikoff tumour cells, compared with isolated normal rat hepatocytes and microsomal suspensions prepared from normal rat liver. The pro-oxidant conditions were the addition of either NADPH, NADPH + ADP + iron, NADPH + CCl4 or ascorbate+iron to the experimental systems used, or exposure to gamma-radiation. Contributory factors to the lower rates of lipid peroxidation observed include: a significant decrease in the polyunsaturated fatty acid content of Novikoff cells or Novikoff microsomes; the decreases are especially marked for the C20:4 and C22:6 fatty acids; a very marked reduction in NADPH-cytochrome c reductase; and no detectable content of cytochrome P-450. Another, and in our opinion critical, contribution to the diminished rate of lipid peroxidation in the tumour material is the substantial increase in alpha-tocopherol relative both to total lipid and to methylene-interrupted double bonds in fatty acids. Moreover, the alpha-tocopherol is the major contributor to lipid-soluble chain-breaking antioxidant in lipid extracts of normal liver and of Novikoff tumour material.  相似文献   

20.
d-Alpha-tocopherol (2R,4'R,8'R-Alpha-tocopherol) and d-alpha-tocotrienol are two vitamin E constituents having the same aromatic chromanol "head" but differing in their hydrocarbon "tail": tocopherol with a saturated and toctrienol with an unsaturated isoprenoid chain. d-Alpha-tocopherol has the highest vitamin E activity, while d-alpha-tocotrienol manifests only about 30% of this activity. Since vitamin E is considered to be physiologically the most important lipid-soluble chain-breaking antioxidant of membranes, we studied alpha-tocotrienol as compared to alpha-tocopherol under conditions which are important for their antioxidant function. d-Alpha-tocotrienol possesses 40-60 times higher antioxidant activity against (Fe2+ + ascorbate)- and (Fe2+ + NADPH)-induced lipid peroxidation in rat liver microsomal membranes and 6.5 times better protection of cytochrome P-450 against oxidative damage than d-alpha-tocopherol. To clarify the mechanisms responsible for the much higher antioxidant potency of d-alpha-tocotrienol compared to d-alpha-tocopherol, ESR studies were performed of recycling efficiency of the chromanols from their chromanoxyl radicals. 1H-NMR measurements of lipid molecular mobility in liposomes containing chromanols, and fluorescence measurements which reveal the uniformity of distribution (clusterizations) of chromanols in the lipid bilayer. From the results, we concluded that this higher antioxidant potency of d-alpha-tocotrienol is due to the combined effects of three properties exhibited by d-alpha-tocotrienol as compared to d-alpha-tocopherol: (i) its higher recycling efficiency from chromanoxyl radicals, (ii) its more uniform distribution in membrane bilayer, and (iii) its stronger disordering of membrane lipids which makes interaction of chromanols with lipid radicals more efficient. The data presented show that there is a considerable discrepancy between the relative in vitro antioxidant activity of d-alpha-tocopherol and d-alpha-tocotrienol with the conventional bioassays of their vitamin activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号