首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic sequencing was used to localise 5-methylcytosine residues in individual DNA strands of 5S rRNA genes in tobacco. The density of methylation along the sequence was high in both strands, exceeding the average methylation density of the tobacco genome. Besides methylation of CG and CNG sequences, considerable amounts of mC were found in non-symmetrical sites. Among 69 sequenced clones obtained from leaf DNA we did not detect any non-methylated clone, and Southern blot hybridisation analysis also failed to suggest the presence of methylation-free 5S rDNA units in the tobacco genome. Differences were observed among methylation patterns of individual sequenced clones. This heterogeneity reflects either heterogeneity among individual members of 5S rRNA gene cluster or differences among individual cells. Methylation of CNG and non-symmetrical sites can be efficiently reduced by treatment with dihydroxypropyladenine, an inhibitor of S-adenosylhomocysteine hydrolase. Received: 28 January 1998 / Accepted: 29 April 1998  相似文献   

2.
Genomic sequencing was used to localise 5-methylcytosine residues in individual DNA strands of 5S rRNA genes in tobacco. The density of methylation along the sequence was high in both strands, exceeding the average methylation density of the tobacco genome. Besides methylation of CG and CNG sequences, considerable amounts of mC were found in non-symmetrical sites. Among 69 sequenced clones obtained from leaf DNA we did not detect any non-methylated clone, and Southern blot hybridisation analysis also failed to suggest the presence of methylation-free 5S rDNA units in the tobacco genome. Differences were observed among methylation patterns of individual sequenced clones. This heterogeneity reflects either heterogeneity among individual members of 5S rRNA gene cluster or differences among individual cells. Methylation of CNG and non-symmetrical sites can be efficiently reduced by treatment with dihydroxypropyladenine, an inhibitor of S-adenosylhomocysteine hydrolase.  相似文献   

3.
4.
5.
Maize pericarp color1 (p1) gene, which regulates phlobaphene biosynthesis in kernel pericarp and cob glumes, offers an excellent genetic system to study tissue-specific gene regulation. A multicopy p1 allele, P1-wr (white pericarp/red cob) is epigenetically regulated. Hypomethylation of P1-wr in the presence of Unstable factor for orange1 (Ufo1), leads to ectopic pigmentation of pericarp and other organs. The Ufo1-induced phenotypes show incomplete penetrance and poor expressivity: gain of pigmentation is observed only in a subset of plants carrying Ufo1 mutation, and the extent of pigmentation is highly variable. We show that Ufo1 induces progressive hypomethylation of P1-wr repeats over generations. After five generations of exposure to Ufo1, a 30–40% decrease in CG and CNG methylation was observed in an upstream enhancer and an intron region of P1-wr. Interestingly, such hypomethylation correlated with an increase in penetrance of the Ufo1-induced pigmentation phenotype from ~27 to 61%. Expressivity of the Ufo1-induced phenotype also improved markedly as indicated by increased uniformity of pericarp pigmentation in the later generations. Furthermore, the poor expressivity of the Uo1 is associated with mosaic methylation patterns of the P1-wr upstream enhancer in individual cells and distinct P1-wr gene copies. Finally, comparison of methylation among different tissues indicated that Ufo1 induces rapid CG and CNG hypomethylation of P1-wr repeats during plant development. Together, these data indicate that the poor penetrance and expressivity of Ufo1-induced phenotypes is caused by mosaicism of methylation, and progressive mitotic hypomethylation leads to improved meiotic heritability of the mutant phenotype. In duplicated genomes like maize, loss of an epigenetic regulator may produce mosaic patterns due to redundancy of epigenetic regulators and their target sequences. We show here that multiple developmental cycles may be required for complete disruption of suppressed epigenetic states and appearance of heritable phenotypes.  相似文献   

6.
It has been widely shown that polyploidization can result in changes in cytosine methylation. However, little is known regarding how cytosine methylation changes in polyploids development, especially in polyploid trees. In this study, we investigated drifting changes of DNA methylation status at 5′-CCGG sites in the apical bud, young and mature leaf tissues of triploid black poplar (Populus. euramericana) with methylation-sensitive amplification polymorphism (MSAP) and assessed the expression of multiple DNA methyltransferases (MTases) and DNA demethylase during different developmental stages. MSAP analysis detected methylation levels at CG and CNG sites of diploid tissues reduced during development from bud to leaves, while for the triploid, methylation at CNG sites increased during development, but levels of methylation at CG sites first decreased in young leaves before increasing in mature leaves. MTase genes related to CG or CNG methylation were respectively preferential in different triploid tissues with high CG or CNG methylation levels. High expression of DNA demethylase was observed in tissue with high demethylation trends. These finding suggest CG and CNG methylation and their related enzymes are involved with different biological functions and networks of gene regulation in different developmental stages of triploid.  相似文献   

7.
8.
9.
10.
Tian  Qi  Zou  Jianxiao  Tang  Jianxiong  Fang  Yuan  Yu  Zhongli  Fan  Shicai 《BMC genomics》2019,20(2):1-10
Background

Determination of genome-wide DNA methylation is significant for both basic research and drug development. As a key epigenetic modification, this biochemical process can modulate gene expression to influence the cell differentiation which can possibly lead to cancer. Due to the involuted biochemical mechanism of DNA methylation, obtaining a precise prediction is a considerably tough challenge. Existing approaches have yielded good predictions, but the methods either need to combine plenty of features and prerequisites or deal with only hypermethylation and hypomethylation.

Results

In this paper, we propose a deep learning method for prediction of the genome-wide DNA methylation, in which the Methylation Regression is implemented by Convolutional Neural Networks (MRCNN). Through minimizing the continuous loss function, experiments show that our model is convergent and more precise than the state-of-art method (DeepCpG) according to results of the evaluation. MRCNN also achieves the discovery of de novo motifs by analysis of features from the training process.

Conclusions

Genome-wide DNA methylation could be evaluated based on the corresponding local DNA sequences of target CpG loci. With the autonomous learning pattern of deep learning, MRCNN enables accurate predictions of genome-wide DNA methylation status without predefined features and discovers some de novo methylation-related motifs that match known motifs by extracting sequence patterns.

  相似文献   

11.
12.
13.
14.
About 1800 sequences of gene promoters, enhancers and other types of regulatory elements (REG) have been statistically analysed for investigation of a role for enzymatic DNA methylation in prokaryotes, yeasts, plants, invertebrates, animal viruses, vertebrates and human. The frequencies and localizations of CG and CNG methylated sites and also the number of CG-->TG+CA transitions in different series of REGs have been studied. It was showed that the pro- and eukaryotic REGs with the exception of yeast and drosophila ones have higher CpG-suppression values than the main genome in the same species. About 40% of all the point substitutions in pro- and eukaryotic REGs were found in the CG and CNG methylated sites, that are "hot spots" for C-->T transitions. More than 30% of all analysed REGs have neither sites CG nor CNG and so they are not capable of methylation in vivo. The methylated sites have not been localized in any specific regions of promoters and other types of REGs nor in the flanking sequences of the same genes. Only part of the homological REG's sequences have CG and CNG methylated sites. Therefore the methylation of cytosine residues in any REGs may be not an obligatory condition for normal regulation of the REG activity in cells. Two main REG's families of different length were unexpectedly found in the study. The length of the first one is 9-12 n. and the second is 17-20 n. The families are about 60-80% of other REGs. The essential deficiency of cytosine residues and also triplets of CGG, CCG, CTG and CAG has been showed in the "sense" chain of the REGs. The chain has some abundance of TTG, CCA and CAA triplets. The REG's chains have a strong asymmetry in purine and pyrimidine contents and also in duplets TG and CA frequencies. It may be the result of different reparation effectivity of G-T pairs produced by 5-meC residues deamination in DNA complementary chains. Therefore cytosine methylation in REGs may strongly destabilize the structure, accelerate its divergence in evolution, and disturb the REGs binding with protein factors regulating activity of the genes. The results showed that a function of DNA enzymatic methylation may be hardly realized through the modification of gene regulatory elements.  相似文献   

15.
16.
采用亚硫酸氢盐测序技术,检测了Cu胁迫对海州香薷(Elsholtzia haichowensis Sun) Cu抗性和非抗性种群酸性转化酶基因启动子甲基化的影响。结果表明,海州香薷液泡转化酶基因(vINV)和细胞壁转化酶基因(cwINV)的启动子在CG位点分别表现出超甲基化和低甲基化的现象。酸性转化酶基因启动子CHG和CHH位点的甲基化状态受Cu胁迫影响较大。Cu胁迫下,vINV和cwINV启动子分别有1个CHG和6个CHH位点的甲基化状态在Cu抗性种群和非抗性种群之间表现出较大差异。抗Cu种群中这些甲基化差异位点对Cu胁迫不敏感,但在非抗性种群中这些位点的甲基化水平在Cu胁迫后出现大幅上升或下降。有些甲基化差异位点位于或者临近预测的启动子顺式作用元件区域,可能参与Cu胁迫下酸性转化酶基因的表达调控。  相似文献   

17.
Methylation of DNA is important for the epigenetic silencing of repetitive DNA in plant genomes. Knowledge about the cytosine methylation status of satellite DNAs, a major class of repetitive DNA, is scarce. One reason for this is that arrays of tandemly arranged sequences are usually collapsed in next‐generation sequencing assemblies. We applied strategies to overcome this limitation and quantified the level of cytosine methylation and its pattern in three satellite families of sugar beet (Beta vulgaris) which differ in their abundance, chromosomal localization and monomer size. We visualized methylation levels along pachytene chromosomes with respect to small satellite loci at maximum resolution using chromosome‐wide fluorescent in situ hybridization complemented with immunostaining and super‐resolution microscopy. Only reduced methylation of many satellite arrays was obtained. To investigate methylation at the nucleotide level we performed bisulfite sequencing of 1569 satellite sequences. We found that the level of methylation of cytosine strongly depends on the sequence context: cytosines in the CHH motif show lower methylation (44–52%), while CG and CHG motifs are more strongly methylated. This affects the overall methylation of satellite sequences because CHH occurs frequently while CG and CHG are rare or even absent in the satellite arrays investigated. Evidently, CHH is the major target for modulation of the cytosine methylation level of adjacent monomers within individual arrays and contributes to their epigenetic function. This strongly indicates that asymmetric cytosine methylation plays a role in the epigenetic modification of satellite repeats in plant genomes.  相似文献   

18.
Endogenous pararetroviral sequences are the most commonly found virus sequences integrated into angiosperm genomes. We describe an endogenous pararetrovirus (EPRV) repeat in Fritillaria imperialis, a species that is under study as a result of its exceptionally large genome (1C = 42 096 Mbp, approximately 240 times bigger than Arabidopsis thaliana). The repeat (FriEPRV) was identified from Illumina reads using the RepeatExplorer pipeline, and exists in a complex genomic organization at the centromere of most, or all, chromosomes. The repeat was reconstructed into three consensus sequences that formed three interconnected loops, one of which carries sequence motifs expected of an EPRV (including the gag and pol domains). FriEPRV shows sequence similarity to members of the Caulimoviridae pararetrovirus family, with phylogenetic analysis indicating a close relationship to Petuvirus. It is possible that no complete EPRV sequence exists, although our data suggest an abundance that exceeds the genome size of Arabidopsis. Analysis of single nucleotide polymorphisms revealed elevated levels of C→T and G→A transitions, consistent with deamination of methylated cytosine. Bisulphite sequencing revealed high levels of methylation at CG and CHG motifs (up to 100%), and 15–20% methylation, on average, at CHH motifs. FriEPRV's centromeric location may suggest targeted insertion, perhaps associated with meiotic drive. We observed an abundance of 24 nt small RNAs that specifically target FriEPRV, potentially providing a signature of RNA‐dependent DNA methylation. Such signatures of epigenetic regulation suggest that the huge genome of F. imperialis has not arisen as a consequence of a catastrophic breakdown in the regulation of repeat amplification.  相似文献   

19.
The ornithine decarboxylase (odc) gene is an early response gene, whose increased expression and relaxed chromatin structure is closely coupled to neoplastic growth. In various tumour cells, the odc gene displays hypomethylation at the sequences CCGG. Hypomethylation of genes is believed to correlate with chromatin decondensation and gene expression. Since a given pattern of DNA methylation may not be preserved in neoplastic cells, we studied the methylation status of odc gene at the CCGG sequences in c-Ha-rasVal 12 oncogene-transformed NIH-3T3 fibroblasts during the growth cycle and relative to their normal counterparts. We found that the methylation state of the odc gene and its promoter and mid-coding and 3' regions remain unaltered during the cell cycle. We also found that in ras oncogene-transformed cells, which display a more decondensed nucleosomal organization of chromatin than the normal cells, the CCGG sequences in bulk DNA and at the odc gene were methylated to the same extent as in the nontransformed cells. These data suggest that DNA hypomethylation at the CCGG sequences is not a prerequisite for chromatin decondensation and cell transformation by the c-Ha-rasVal 12 oncogene.  相似文献   

20.
以湿地松×洪都拉斯加勒比松(Pinus elliottii×P.caribaea var.hondurensis)及亲本为实验材料,采用甲基化敏感扩增多态性技术对其基因组中CCGG位点的甲基化相对水平及遗传变异模式进行了初步分析。结果表明,杂种及亲本CCGG总甲基化相对水平介于77.74%~81.75%,CG甲基化相对水平略低于CNG甲基化水平,CG/CNG甲基化相对水平高于亲本。杂种遗传自亲本的CG与CNG甲基化位点数之比接近1:1,遗传自母本的甲基化位点数与遗传自父本的CCGG甲基化位点数比例为1:1;杂种产生的全新甲基化与完全去甲基化位点数之比接近7:1,初步推测大量甲基化变异促进了杂合体的生长发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号